化学工程与工艺的理解范文

时间:2023-08-20 14:41:25

引言:寻求写作上的突破?我们特意为您精选了4篇化学工程与工艺的理解范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

化学工程与工艺的理解

篇1

[Abstract]The GC-MS method was adopted to determine the contents of β-myrcene, limonene, menthone, menthofuran, pulegone, β-caryophyllene, 1-octen-3-one and 3-octanone in volatile in Schizonepetae Herba processed by traditional processing and integration processing methods. The efficacies of Schizonepetae Herba with different processing methods were detected based on the inhibition of ear swelling induced by dimethylbenzene in mice. The rationality of the integration processing was expounded based on the comparison of chemical constituents and their pharmacological effects. The results showed that the contents of the eight chemical components in the products processed with the integrated processing method were higher than those processed with the other method. And both of the processing methods could reduce the degree of swelling and the content of TNF-α/IL-1β/IL-6 in mice serum. However, the anti-inflammatory efficacy of the products processed with the integration processing method was superior to that processed with the other method. Compared with the traditional processing method, the integration processing method ensures the quality of decoction pieces, with lower time and labor costs and higher efficiency.

[Key words]Schizonepetae Herba; integration; chemical component; anti-inflammatory

doi:10.4268/cjcmm20161117

荆芥是唇形科植物荆芥Schizonepeta tenuifolia Briq.的干燥地上部分,又名假苏,始载于《神农本草经》[1],为临床常用中药,性温、味辛,以全草入药,具有解表散风、透疹、消疮之功效,主治风寒感冒、咽喉肿痛及多种皮肤病[2-3]。现代药理研究表明荆芥具有抗病毒、解热、抗菌、抗过敏、镇痛、降温等作用[4-7],在解表药中其地位独特而重要[8-9]。挥发油类成分是其抗炎的主要物质基础之一,沸点较低,容易挥发散失,而且对日光及温度较敏感,易于分解变质[10]。2015年版药典中规定荆芥的产地加工方法主要是除杂后干燥成药材,需制成饮片时,将荆芥药材除去杂质后喷淋清水,洗净润透,于50 ℃烘1 h,再经切段干燥即得。综合其加工过程,药材加工成饮片时需水处理及重复干燥,会造成挥发油及其他水溶性成分的损失,且分段加工干燥时间长,效率低下,雨天易霉烂变质、容易被鼠、虫、灰尘等污染,药材含水量、质量难以稳定[11]。为避免分段加工造成的有效成分的流失、降低药材饮片加工的时间及人工成本,本实验室前期探索了荆芥药材、饮片一体化加工工艺,现拟通过比较传统加工饮片与一体化加工饮片有效成分含量与功效的异同,探讨荆芥药材、饮片一体化工艺的可行性与合理性。

1 材料

薄荷酮、胡薄荷酮对照品(中国食品药品检定研究院,批号分别为 111705-201205,111706-201205); 1-辛烯-3-酮、d-柠檬烯、β-石竹烯对照品均购自Tokyo Chemical Industrial公司(日本);β-香叶烯、薄荷呋喃、3-辛酮对照品均购自Sigma-Aldrich公司(奥地利),对照品纯度均大于98%;萘(内标,国药集团化学试剂有限公司,分析纯);正戊烷(内标,国药集团化学试剂有限公司,GC级);乙酸乙酯为色谱纯;阿司匹林购自南京白敬宇制药有限责任公司(批号140601);二甲苯(批号20110410,江苏永华精细化学品有限公司);羧甲基纤维素钠(CMC-Na,批号F20101222,国药集团化学试剂有限公司);小鼠白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)、Elisa试剂盒(南京森贝伽生物科技有限公司,批号分别为SBJ-R0024,SBJ-M0044,SBJ-M0010)。

荆芥于2014年10月采自河北安国,经南京中医药大学吴⒛辖淌诩定为唇形科植物荆芥S.tenuifolia的地上部分。

Agilent 6890N-5975B气相色谱-质谱联用仪、Agilent ChemStation化学工作站软件(美国 Agilent公司);B211D 电子天平(1/10万,赛多利斯科学仪器有限公司)。

ICR小鼠,SPF级,雄性,体重(20±2) g。由浙江省实验动物中心提供,合格证号SCXK(浙)2013-0016。

2 方法

2.1 荆芥挥发油含量及其所含成分的定量测定[12]

2.1.1 GC-MS条件 色谱柱: HP-5MS毛细管柱(30 m×0.25 mm,0.25 μm);进样口温度200 ℃;载气氦气,载气流速1.0 mL・min-1;分流比20∶1;程序升温:初始温度为50 ℃,以10 ℃・min-1升温至90 ℃,保持6 min,再以8 ℃・min-1升温至150 ℃,保持2 min;进样量1 μL;电轰击电离源(EI);电子能量70 eV;四级杆度150 ℃;离子源温度230 ℃;接口温度280 ℃;扫描范围m/z40~400。GC-MS图见图1。

2.1.2 样品制备 一体化加工方法:鲜荆芥除杂后50 ℃干燥5 h,切段(1 cm),40 ℃干燥3 h干燥成饮片。传统加工方法:除去杂质,晒干,制得药材。取药材喷淋清水,洗净,润透,于50 ℃烘1 h,切段(1 cm),40 ℃干燥3 h得饮片。挥发油的提取:取荆芥饮片适量,照《中国药典》2015年版四部 “挥发油提取法”甲法提取挥发油,计算得率。提取的挥发油加入适量无水Na2SO4静置保存。

2.1.3 内标溶液的制备 取萘和正癸烷适量,置100 mL量瓶中,加乙酸乙酯溶解并稀释至刻度,摇匀,即得(每1 mL含萘1.73 mg,正癸烷0.29 mg)。

2.1.4 供试品溶液的制备 取加入适量无水Na2SO4静置1 h后的荆芥挥发油约50 mg,精密称定,置10 mL量瓶中,加乙酸乙酯溶解稀释至刻度,摇匀,精密量取该溶液和内标溶液各1 mL置10 mL量瓶中,加乙酸乙酯溶解并稀释至刻度。

2.1.5 对照品溶液的制备 精密称取对照品3-辛酮12.47 mg、β-香叶烯10.91 mg、薄荷酮160.35 mg、1-辛烯-3-酮13.64 mg、D-柠檬烯21.18 mg、薄荷呋喃14.07 mg、胡薄荷酮270.42 mg、β-石竹烯12.95 mg,分别置10 mL量瓶中,加乙酸乙酯溶解并稀释至刻度,摇匀,即得各待测化合物的对照品溶液。精密量取3-辛酮溶液0.5 mL、β-香叶烯0.3 mL、薄荷酮2 mL、1-辛烯-3-酮0.5 mL、D-柠檬烯1 mL、薄荷呋喃1 mL、胡薄荷酮2 mL、β-石竹烯1 mL置同一10 mL量瓶中,加乙酸乙酯稀释至刻度,摇匀,即得对照品混合溶液。荆芥中8个化合物MS监测数据见表1。

2.1.6 线性关系的考察 分别精密量取对照品混合溶液0.1,0.2,0.4,0.6,0.8,1.0 mL置10 mL量瓶中,分别精密加入内标溶液 1 mL,加乙酸乙酯溶解并稀释至刻度,摇匀。分别吸取上述6份溶液各1 μL,进样,按内标法以峰面积计算。以各待测化合物与内标的峰面积比值(y)为纵坐标,各待测化合物质量浓度(x,mg・L-1)为横坐标,进行线性回归,得回归方程。各化合物线性关系考察结果见表2。

2.1.7 精密度试验 精密量取对照品混合溶液1 mL置10 mL量瓶中,精密加入内标溶液1 mL,加乙酸乙酯稀释至刻度,摇匀,即得精密度试验溶液。连续进样6次,计算各待测化合物峰面积与内标峰面积的比值,计算RSD,结果为8种化合物的RSD为1.4%~2.4%,表明本方法精密度良好,具体结果见表3。

2.1.8 重复性试验 取同一荆芥饮片所得挥发油6份,分别按2.1.4项下方法制备供试品溶液,照上述试验条件进样测定,计算各待测化合物峰面积与内标峰面积的比值,按内标法计算含量,计算RSD,结果为8种化合物的RSD为2.3%~2.9%,表明本方法重复性良好,具体结果见表3。

2.1.9 稳定性试验 取同一份荆芥挥发油供试品溶液,照上述试验条件分别在0,2,4,6,8,12 h进样测定,计算各待测化合物峰面积与内标峰面积的比值,计算RSD,结果为8种化合物的RSD为1.5%~2.3%,表明供试品溶液在12 h内稳定,具体结果见表3。

2.1.10 加样回收试验 取已知待测化合物含量的同一荆芥挥发油约50 mg,共6份,精密称定,置10 mL量瓶中,分别加入薄荷酮对照品溶液和胡薄荷酮对照品溶液各1 mL,加入3-辛酮对照品溶液、β-香叶烯对照品溶液和d-柠檬烯对照品溶液各0.1 mL,加入1-辛烯-3-酮对照品溶液和β-石竹烯对照品溶液各0.3 mL,加入薄荷呋喃对照品溶液0.5 mL,用乙酸乙酯溶解稀释至刻度,摇匀,精密量取该溶液和内标溶液各1 mL置10 mL量瓶中,加乙酸乙酯溶解并稀释至刻度。照上述试验条件进样测定,以各待测化合物与内标的峰面积比值按内标法计算样品含量,再计算加样回收率,结果见表3。

2.1.11 样品测定 分别取3个批次的鲜荆芥,每个批次分为2份,分别按2.1.2项下制备2个加工工艺的样品。取每份样品适量,按2.1.4项下制备供试品溶液。照上述实验条件进行测定,以各待测化合物与内标的峰面积比值按内标法计算待测成分含量,再以含油量换算饮片中各待测成分的含量,取平均值,结果见表4。

2.2 2种工艺产品抗炎作用的比较

2.2.1 分组与给药 取ICR小鼠90只,随机分为空白组、模型组、阳性组、一体化高、中、低剂量组(1.5,3.0,6.0 g・kg-1)、传统高、中、低剂量组(1.5,3.0,6.0 g・kg-1),每组10只。二甲苯致炎前每天上午9:00和下午4:00灌胃给药,连续给药3 d。阳性组给予阿司匹林混悬液,一体化高、中、低剂量组分别给予不同浓度的荆芥一体化工艺产品粉末混悬液,传统高、中、低剂量组分别给予不同浓度的荆芥传统工艺产品粉末混悬液,空白组和模型组给予等体积的0.5% CMC-Na溶液,各组小鼠每次灌胃给药体积均为15 mL・kg-1(体重)。

2.2.2 模型制备与耳肿胀度检测 末次给药1 h后,除空白组外,各组小鼠于左耳正反两面涂抹0.04 mL二甲苯致炎,右耳做对照。1 h后将小鼠脱颈处死,沿耳廓基线剪下两耳,用直径7 mm的打孔器分别在同一部位打下圆耳片,称重,以左右耳片重量之差与右耳的比值为肿胀度。

2.2.3 ELISA法检测荆芥对耳肿胀小鼠血清TNF-α,IL-1β和IL-6含量的影响 二甲苯致炎1 h后眼框取血,血样静置30 min后3 000 r・min-1离心10 min,取上清,ELISA法检测血清中TNF-α, IL-1β和IL-6含量。

2.2.4 数据处理 数据用±s表示,采用SPSS 20.0进行统计学分析,以P

3 结果

3.1 一体化工艺与传统工艺加工产品化学成分的比较

相比传统加工工艺产品,一体化加工工艺产品中挥发油与8个待测成分的含量均有所增加,见表4。

3.2 对二甲苯致耳廓肿胀小鼠肿胀度的影响

与模型组比较,阳性药抑制肿胀作用明显,荆芥一体化工艺和传统工艺产品各剂量均能降低小鼠耳廓肿胀度,高、中剂量作用尤其显著(P

3.3 对二甲苯致耳廓肿胀小鼠的血清中TNF-α,IL-1β,IL-6含量的影响

与空白组比较,模型组小鼠血清中TNF-α,IL-1β,IL-6的含量显著增加(P

4 讨论

现代中医学研究认为,表证症状与炎症这一基本病理过程紧密相连,解表药的抗炎作用是其发挥解表功效的重要药理基础之一,因而研究荆芥抗炎作用及作用机制是研究荆芥的解表作用的重要途径[13]。本实验通过比较小鼠的肿胀度以及血清中TNF-α,IL-1β和IL-6含量,来考察荆芥一体化工艺和传统工艺产品高、中、低3种剂量饮片粉末的抗炎作用。TNF-α作为炎症反应的重要介质,通过增高微血管壁通透性和趋化、增强中性粒细胞与血管内皮细胞的黏附性激活炎性细胞。IL-1β和IL-6介导中性粒细胞等炎性细胞到局部病灶,是炎症性疾病中的重要因素[14]。在本实验中,荆芥一体化工艺产品与传统工艺产品均能降低小鼠血清中TNF-α,IL-1β和IL-6炎症细胞因子的含量,降低小鼠耳廓肿胀度,发挥抗炎作用。

研究表明,挥发油是荆芥的主要药效成分,其药效作用可能是几种成分的加和或协同作用,不同成分组成或主要成分比例有较大差异的荆芥挥发油,药效和急性毒性相差很大[15-16]。前期研究发现,胡薄荷酮、薄荷酮、柠檬烯、3-辛酮、1-辛烯-3-酮、β-香叶烯、β-石竹烯、薄荷呋喃在荆芥挥发油中占有很高的比例,其中胡薄荷酮、薄荷酮和柠檬烯的含量最高,为挥发油的主要药效成分,故本实验选取荆芥挥发油中主要的8种成分作为指标,考察一体化工艺与传统工艺的挥发性成分差异。结果发现,荆芥一体化工艺产品折干后挥发油含油量为1.08%,传统工艺产品折干后挥发油质量分数为0.55%,明显低于一体化工艺产品,所以其胡薄荷酮等8个成分的含量远低于一体化工艺产品。

本课题前期已采用正交实验优化荆芥一体化加工工艺参数(本部分正在申报专利),一体化工艺产品含油量较高是因为只经过一次干燥加工过程,避免了挥发油的流失。挥发油乃热不稳定性成分,重复干燥过程势必会造成其含量的降低。荆芥采收后经产地加工为干燥药材,此时的荆芥叶、穗质地较脆,在包装、运输及饮片加工过程中易脱落造成损失,以致挥发油含量降低。而一体化工艺产品是由荆芥采收后直接切段干燥成饮片,减少荆芥叶、穗在长途运输过程中的脱落损失,保证了饮片质量。此外,传统加工还经过水处理,两个工艺产品的水溶性成分及其他成分是否存在差异还需进一步的研究与探索。

药效研究结果表明,一体化工艺产品的抗炎作用整体上优于传统工艺,结合化学成分比较分析的结果,一体化工艺产品挥发油及其中各个组分的含量均高于传统工艺产品,故推断一体化工艺产品挥发油成分较高与其抗炎效果优于传统工艺产品之间有密切相关性。此外,工业化生产中一体化工艺不仅能够保证饮片质量,更能够提高加工效率,节约时间及人工成本。因此荆芥药材、饮片一体化加工有其一定的可行性及合理性。

[参考文献]

[1] 吴普.神农本草经[M].北京: 人民卫生出版社, 1963: 77.

[2] 赵立子, 魏建和.中药荆芥最新研究进展[J].中国农学通报, 2013, 29(4):39

[3] 中国药典.一部[S].2015:232.

[4] 钱雯, 单鸣秋, 丁安伟, 等.荆芥的研究进展[J].中国药业, 2010, 19(22): 17.

[5] 张霞, 周, 姚梅悦, 等.荆芥穗提取物体外抗呼吸道合胞病毒有效部位研究[J].山东中医杂志, 2015, 43(3):213.

[6] 何婷, 汤奇, 曾南, 等.荆芥挥发油及其主要成分抗流感病毒作用与机制研究[J].中国中药杂志, 2013, 38 (11):1772.

[7] 何婷, 陈恬, 曾南, 等.荆芥挥发油体外抗甲型流感病毒作用及机制的研究[J].中药药理与临床, 2012, 28 (3):51.

[8] 胡炜.解表药的作用机理探讨[J].浙江中医杂志, 2013, 48(10):771.

[9] 邹文俊, 雷载权, 张廷模.解表用药规律探讨[J].成都中医药大学学报, 2001, 24(1):7.

[10] 权美平.荆芥挥发油药理作用的研究进展[J].现代食品科技, 2013, 29 (6):1459.

[11] 陈艺文, 于生, 丁安伟, 等.荆芥不同干燥加工方法药材质量变化研究[J].广州化工, 2010, 38(5):102.

[12] Yu Sheng, Chen Yiwen, Zhang Li, et al.Quantitative comparative analysis of the bio-active and toxic constituents of leaves and spikes of Schizonepetae tenuifolia at different harvesting times[J].Int J Mol Sci, 2012, 12:6635.

[13] 陆茵, 张大方.中药药理学[M].北京: 人民卫生出版社, 2012:55.

篇2

下面我们来具体的分析一下:第一,生产的效率低下。就我国来看,我国的工业生产存在一个盲区,重点就在于生产的效率较低。在化学工程的研究的过程中,生产技术首先没有达到预期的效果,环境污染的现象依旧没有被制止。举个例子来说,在进行的化学生产的实验的过程中,材料的运用做不到理想的反应,反应现象达不到预计的效果。在这一系列的生产实验的过程中,事实上,环境污染的现象已经在悄然的发生了,化学实验所产生的残留物、化学实验败北过程中所造成的化学污染。实验过程造成了资源浪费的现象十分的严重,经济浪费更是不在话下,极大的降低了生产的效率水平。另一方面,实验没有达到预期的效果,化学产品的使用效率低下,根本不能够满足人们的生活所需。第二,化学工程的生产过程,给环境造成了较大程度的影响。化学污染在当下我国的环境污染的比重中占了较大成分。重工业,尤其是金属工业所产生的污染现象尤为严重。在对水资源的检测的过程中发现,废弃水中的金属含量严格的超过了安全性能的指标。水资源的污染,也会对地下的土质产生影响,而土质又会影响农业的产值,这样看来,化学生产所造成的污染现象是严重的。另外,在工业生产的过程中,废弃水的直接排放,给自然环境同样造成了污染。第三,化学工程的不连贯性,很容易生产的间断性,从而影响生产的进度,尤其是当它发生了不合理的间断的时候,很快就会对整个生产的过程产生影响。由此看来,生产效率的低下、生产过程中产生的污染以及生产的不合理的间断等等这一系列的问题,都在阻碍着化学工程的发展和进步。

2我国化工生产工艺解析

从上文中,对于我国目前的化工生产过程中,存在着主要的问题就在于我国的化工生产工艺还不是非常完善。针对这些存在的问题,化学的生产工艺需要有哪些改进呢?在化工生产过程中,采取哪些最新的化学生产工艺能够降低化学生产所产生的污染呢?第一,化学生产过程中,提高反应条件以及反应环境。反应条件是化工生产中最为重要的环节,为了达到高效生产,提高生产效率,减少废料的产生,反应条件是最为关键的因素。因此,提高化工生产效率的最为关键的因素就在于加强化学生产过程中的反应条件。催化剂以及反应所需条件一定要达到所需标准,才能保证在化工生产过程中,高效生产,并减少废物的产生。保证废物不直接排放到自然环境中,就能保证化工生产的相对环保。第二,化工生产过程中,并非只是提高产品生产的环境,更应该能够提供废物处理的程序以及治理系统。包括我们经常看到的废气,都应该经过适当处理后才能进行排放。废水的排放要采用化学综合的化工工艺。其原理很简单,主要是化学反应中最基本的原理,将废水中的重金属通过沉淀,从而减轻其危害性。此外,废气的处理应该在排气的中部以及顶部,都设置一出废气处理系统,这些装置可以将废气中的有毒气体以及废气中的粉尘过滤,从而保证排放到空气中的气体符合国家要求的标准。第三,真正从化学工程中的化工生产工艺技术入手,工艺技术是指从不同的反应原理以及反应条件进行分析与探讨。制造氧气的方式有很多种,那么哪种方式才是最效率高并且更适合化工生产呢?在不同的环境下,对于生产的原料以及方式都是可以随机改变的,并能通过改变来进行适应性生产,从而提高化学生产的效率,并实现高效以及绿色生产。

篇3

    2全国同类高校的化学工程与工艺专业认识实习的现状

    目前,全国高校的认识实习时间几乎都安排在学习专业课之前,安排为期一周的认识实习,旨在使学生初步了解专业内容,增强学生对各种化工企业的感性认识,激发学生学习后续专业课程动力和兴趣,以增强学生对后续要学习的化工原理、分离工程、化工工艺学和化工设计等专业课程有初步的认识。但普遍存在认识实习的时间短,经费有限等问题,认识实习仅体现于单纯的现场参观实习。我校在大一结束的夏季学期安排了为期1周的认识实习,由指导老师带队参观西南地区的大中型化工企业和研发机构,同样由于实习经费和时间有限,学生只能看、问、听不能动手操作。对于尚未接触专业课的大学生来说,这种走马观花的认识实习显得生疏且抽象,学生只能看到表面的企业生产情况、工艺流程与设备,无法深入理解化工是我市的支柱产业之一,更不能激发他们对化工行业的热情和兴趣,进而导致我校化工专业大部分调剂学生对专业的积极性降低等实际问题。对2006、2007和2008届化工专业的学生在认识实习后进行座谈会交流,50%以上的学生认为这种认识实习效果一般,甚至有近5%的学生认为实习效果甚微。因此,面临招生就业的新形势,如何提高认识实习效果与实习效率是急需解决的课题。

    3我校化学工程与工艺专业认识实习的改革与探索

    3.1强化校企产学研合作实习基地

    基于重庆长寿天然气化工产业园区,涪陵化肥化工产业园区和万州盐化工产业园区三大化工基地的地域特色优势和发展,地方高校培养的化工应用型人才大部分会服务于重庆的地方支柱产业,因此,我们选择了具有地方特色的产学研合作基地,既让学生深入了解重庆化工产业的发展,同时也解决了实习经费有限和工厂不愿接收大规模学生实习等问题。选择的特色产学研合作基地如下:一是与我校开展合作共建工程技术研究中心的江津德感工业园区的“重庆三峡油漆股份有限公司”和万州盐化工园区“重庆大全新能源有限公司”等,二是我校科技特派员下乡入园进企的涪陵李渡工业园区的“中化重庆涪陵化工有限公司”和“巫山天地农业开发有限责任公司”等,三是与我校专家开展科技攻关合作的北碚产业科技园区的“重庆仪表材料研究所”、长寿化工园区的“重庆紫光化工股份有限公司”和“重庆博赛矿业(集团)股份有限公司”等,四是与我校开展广泛科研合作的科研院所“重庆化工研究院”和“重庆化工设计研究院”等。这不但使我们与各单位确定了稳定的合作关系,实习过程不会敷衍应付。企业指导老师也会因为校企合作认识到自己是实习工作的负责人员,会更加积极主动地参与实习,并愿意与学生交流,热心回答学生所提出的问题,取得较好的实习效果。

    3.2打造专业的认识实习的师资队伍

    学校选派教师深入实习基地或相关企业和从企业中选聘具有较高理论水平和素质的技术人员作为实习指导教师,提高教师的实践能力,为实习教学提供重要的保证条件。如为了让学生更好地了解无机化工工艺学“合成氨”的生产工艺流程,我们邀请了建峰化工有限公司的技术总工为我们讲解空分、气化、净化、合成等四个工序,充分理解原料气如何制备和净化,合成氨反应塔的结构及能量综合运用与节能减排。在学习有机化工工艺学时,我们派送了教师去紫光化工有限公司挂职学习蛋氨酸等有机产品的生产工艺,再进行认识实习的指导。通过打造专业的师资队伍,认识实习的效果明显增强。

    3.3开展三大化工园区的专家大讲堂

    围绕重庆的化工产业发展,为更好地让学生了解重庆化工产业链布局,邀请三大化工园区的管委会领导和实习工厂总工程师及车间技术高工来校讲学,使学生更好地了解实际工业生产,减少现场实习的盲目性。为了让学生更好地理解“天然气化工”的产业发展和高附加值精细化学品和高分子化学品产业,邀请长寿化工园区管委会主任来我校讲学,让学生理解石油化工、天然气化工、氯碱化工、生物质化工、精细化工和新材料产业的布局及相互关系,深入理解“产业项目一体化、环境保护一体化、公用工程一体化、物流配送一体化、管理服务一体化”等可持续发展观和循环经济理论,构建学生工程思维。为让学生理解“磷化工”产业在我市经济发展中的作用和地位,邀请了中化重庆涪陵化工有限公司的总工程师给学生介绍磷化工产业的概况、发展历程、市场动态,并详细讲解各车间的工业原理、工艺流程、生产设备及本专业领域最先进的新技术、新工艺、新材料、新设备、研究热点以及市场前景。这些大讲堂激发了学生的求知欲,增强对其所学专业的使命感和责任感,从而增加了他们学习专业知识的动力。

    3.4引入现代CAE技术

    在学生看、问、听的实习过程中,学生无法了解各种反应器、换热器、精馏塔和泵等设备的内部结构的,这对学生学习后续的专业课程,如化工原理、化学反应工程、分离工程和化工工艺学,是非常不利的。基于这方面的考虑,我们做了两方面的准备。一是准备了专门的实习课件,课件中包含了大量的实物照片(原料,反应工艺和产品分离和输送)、实景录像(具体流体输送、搅拌、精馏、吸收和干燥等单元操作)等,课件真实、形象、生动地展示出离心泵、搅拌反应器、精馏塔和换热器等设备的内部结构,并让学生对尚未学到的化工单元操作原理、典型设备结构和操作有所了解。二是我们建立了计算机仿真实习系统,将认识实习工厂的具体产品的生产工艺(如合成氨制气、净化、合成工艺),所涉及的单元操作(吸收、干燥和精馏等),典型设备(离心泵、反应器、精馏塔和换热器等)作为主要内容,对生产工艺进行模拟,让学生在计算机上模拟工业过程,对制气、净化、合成等工艺的管件、阀件和控制仪表进行操作,对工艺参数进行控制和调节,进行开、停车及事故处理等各种仿真操作。这些计算机辅助教学技术可激发学生的学习兴趣,增强学生思考问题、解决问题的能力,培养学生的创新能力。

    3.5强化认识实习教学管理与指导

篇4

1工程教育专业认证背景

我国的工程教育专业认证由中国工程教育专业认证协会组织实施,始于1993年土建类专业评估,2006年正式在多个专业领域实施,迄今己走过9年的发展历程,其目的是:构建工程教育的质量监控体系,推进工程教育改革,进一步提高工程教育质量;建立与工程师制度相衔接的工程教育专业认证体系,促进工程教育与工业界的联系,增强工程教育人才培养对产业发展的适应性;促进中国工程教育的国际互认,提升我国工程技术人才的国际竞争力。

2结合毕业生十项毕业要求中的主要三项,提出课堂教学改革具体措施

结合专业认证标准,我校化学工程与工艺专业培养方案中明确规定了本专业学生毕业时应达到十项毕业要求。《分离工程》课程作为专业基础课程,在化工热力学和化工传递过程知识的基础上,采用理论与实践密切结合的方式,详细阐述各类分离过程(精馏、吸收、解吸、萃取、膜分离、吸附、浸取、结晶和干燥等)的物理化学原理、设计计算方法、工业应用、主要设备、数学模型和计算机应用软件,并展示分离过程学科的发展历史和主要进展。本文针对《分离工程》课程贡献于毕业生十项毕业要求中的主要三项,分别展开讨论。

2.1掌握扎实的化学工程基础知识和本专业的基本理论知识,具有系统的工程实践学习经历,了解本专业的前沿发展现状和趋势

按照该项要求,我们在授课中,一方面强调基础理论知识的学习,对复杂及多样性的分离技术按原理进行分类,如:通过加入分离媒介生成两相的分离为平衡分离,如精馏、吸收等;不需要加入分离媒介,以压差、浓度差、电位差等为推动力的分离过程为速率分离,如膜分离;对多组分精馏计算由浅入深展开,由假定理想情况下的简捷法计算入手,建模用MESH方程开展严格法计算,为解决实际工业应用问题奠定了理论基础。并强调本专业知识和化工原理、化工热力学、化工设备等其他专业基础知识的对立统一,如在介绍最小回流比知识点时,要注意比较多元精馏与化工原理中介绍的二元精馏中最小回流比的异同点,二元精馏中最小回流比下,进料板上下出现一个恒浓区,可通过作图法求解;而多元精馏体系中最小回流比下出现了两个恒浓区,且恒浓区出现的位置视待分离组分性质的不同而不同,通常利用Under-wood(恩德伍德)方程求解;再比如在介绍相平衡常数的求解时,要结合化工热力学课程中活度系数法及逸度系数法,进一步巩固两种求解方法的优缺点。另一方面结合行业发展前沿趋势,介绍新兴分离技术在工业中的应用。如泡沫分离技术,它根据表面吸附的原理,借鼓泡使溶液内的表面活性物质聚集在气液界面(气泡的表面)上浮至溶液主体上方形成泡沫层,将泡沫层和液相主体分开,就可达到浓缩表面活性物质和净化液相主体的目的。近年来,在染料、皮革、石油化工工业污水中降低化学耗氧量、色素、有机化合物等,在浓度为ppm级的大量稀溶液中回收贵金属、稀有金属或除去有害物质等工业领域得以应用。还有近年来崛起的一种新兴膜分离技术:液膜分离,即以液膜为分离介质、以浓度差为推动力的一种膜分离过程。由于其分离选择性高、通量大而受到关注,在烃类混合物的分离、废水的处理及生物医学上如液膜人工肝、人工肺、人工肾等领域得到应用。在工程实践方面,我们分别组织学生参观了中国石化集团安庆石油化工总厂及中盐安徽红四方股份有限公司,并结合课程内容,重点介绍炼油工艺中的常减压蒸馏装置及原料气净化处理过程中的吸收装置。如吸收设备中喷雾塔、调料塔、板式塔的选择,填料塔中各种填料如鲍尔环、脉冲填料、网孔栅格的选择,塔高的计算等,在实践中强化理论知识的学习,并将课本中的公式及知识应用到工厂案例中去。

2.2具备设计和实施工程试验的能力,并能够对试验结果进行分析;具有综合运用所学化工专业理论和技术手段分析

并解决化学工程问题的基本能力主要包括以下几个方面的内容:能独立完成实验方案的设计、能正确地操作实验装置,安全地开展实验、能正确地采集、整理实验数据,对实验结果进行关联、分析、解释,并且掌握工程实践、科学研究与工程设计的基本方法,能够将所学课程有机联系起来,对化学工程基本问题,加以分析并予以解决。针对该项要求,我们在课程教学中,将课程和专业实验相结合。如在介绍反应精馏章节时,以催化反应精馏制甲缩醛为例,该实验为典型的工程与工艺结合的专业实验,以甲醇和甲醛为反应原料,浓硫酸为催化剂,在常压下通过反应精馏法制备甲缩醛。教学过程中,我们引导学生先思考传统合成、分离工艺,找出问题,寻求改进后的工艺流程。传统工艺采用先反应再利用精馏技术分离,存在反应转化率低、未反应的稀甲醛回收困难、稀甲醛的浓缩产生甲酸严重腐蚀设备等问题。为解决传统工艺存在的问题,引导学生结合本章节内容,采用反应精馏工艺。新工艺的优点:1.甲缩醛氧化所得甲醛与水的摩尔比为:醛/水=3,可直接作为三聚甲醛的原料,不必浓缩。2.甲缩醛的合成可在较低温度(44~80℃)下进行,避免了甲酸生成,解决了设备腐蚀问题。新工艺的关键技术:甲缩醛的合成与分离。实验过程中既需要考察反应工程影响因素如温度效应、浓度效应及其他工程因素,同时要考察精馏技术影响因素如回流比、塔顶采出率及塔釜加热量等。综合考虑后,结合实验装置,确定拟考察的工艺参数,且采用正交设计来制定本实验的方案,则根据实验涉及的影响因子,并假设每个因子取两个水平,可得到如下实验条件表,如表1所示。最后整理实验数据,规范作图。

2.3掌握基本的创新方法,具有追求创新的态度和意识;具有综合运用理论和技术手段设计系统和过程的能力

该项要求可分解为以下指标点:运用所学知识,初步设计化工操作单元、设备及工艺过程;在各化工设计、毕业设计环节中体现创新意识。结合该指标点,我们鼓励学生利用课余和节假日时间开展大学生科研实践训练、创新性实验计划、学科竞赛等课外实践与创新活动,引导学生“在学习中研究、在研究中学习”,激发学生的创新思维和创新意识,提升本科生的创新实践能力。我们将课程教学与本科生毕业设计相结合,并利用课程设计环节综合应用所学知识点,统筹分离工程课程与其他专业基础课程,并在分离工程的课程教学中以往年毕业设计内容为案例加以剖析。如结合毕业设计课题“乙烯裂解气脱甲烷系统的工艺设计”,涉及到脱甲烷精馏塔的计算,这是典型多组分精馏塔计算的一个案例。首先确定关键组分是甲烷和乙烯,其中轻关键组分是甲烷,重关键组分是乙烯。塔顶分离出来的甲烷轻馏分应使其中的乙烯含量尽可能的低,以保证乙烯的回收率。而塔釜产品则应是甲烷含量尽可能低,以确保乙烯产品的质量。我们利用AspenPlus过程模拟软件高效地完成了工艺计算及参数的优化。采用DSTWU模块开展简捷法物料衡算、能量衡算,所得回流比与理论板数关系曲线如下图1所示;并将简捷法计算结果作为初值代入RadFrac模块进行严格法计算,并进行灵敏度分析,横坐标为混合进料位置,纵坐标为塔顶甲烷的纯度(摩尔分率),得到关系曲线如图2所示。通过该设计案例的开展,一方面使得学生们统筹所学多组分精馏知识点去思索如何解决工业上的实际问题,另一方面在分析实际工业案例时,又强化了同学们对多组分精馏简捷法计算及严格法计算的理解和综合应用。

3结束语

分离工程课程在教学过程中,我们以化学工程与工艺本科专业认证为导向,在对“工程教育专业认证标准”进行认真分析的基础上,以工程实际为切入口,把分离技术的理论与方法融入应用实例,将分离工程基础理论与化工工程实践有机结合,进一步突出了分离工程的课程特点及实用性,而且根据现代化工的发展方向及时调整、更新课程内容,加强化工新型分离技术分析,让学生更坚实地掌握分离工程的基本理论,进一步提高教学效果。

[参考文献]

[1]刘家祺.分离过程[M].北京:化学工业出版社,2006.

[2]J.D.Seader.SeparationProcessPrinciples[M].北京:化学工业出版社,2002.

友情链接