数据分析的统计学基础范文

时间:2023-08-27 15:11:09

引言:寻求写作上的突破?我们特意为您精选了4篇数据分析的统计学基础范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

数据分析的统计学基础

篇1

[中图分类号] G320 [文献标识码] B

近年来,随着全球经济一体化进程的加快和网络时代信息获取的便捷程度的极大提高,“用数据说话,做科学决策”已成为企业提高经营管理水平的必然选择,在全球500强企业中,90%以上的重要投资和经营决策都取决于充分的数据分析支持。数据分析在企业战略规划、项目投资决策、融资决策、营销决策、生产运营与管理决策中发挥的作用和价值日益显现,并已被我国政府部门和各行各业越来越多的企业所认同。在这一时代背景下,社会对项目数据分析师、市场调查分析师这些高技能应用型人才的需求旺盛,供给缺口巨大,据权威部门预测,在未来几年,我国对专业项目数据分析师的需求预计可达20万人,调查分析师的市场缺口则在100万人以上。面对社会对数据分析人才的强劲需求和高校经管专业毕业生就业难并存的局面,高校应充分地认识到,当今社会数据分析能力已成为经管类大学毕业生在职场中生存的一项核心能力,积极探讨提升经管类专业大学生数据分析能力的有效策略,对于更好地适应社会需求,提高大学生的职业竞争力具有重要的意义。

一、社会对数据分析人才的技能与素质要求分析

数据分析是指运用适当的统计分析方法对收集来的大量数据进行整理、分析,从数据中提取有用信息并形成分析结论,提出有价值的决策参考建议的过程。数据分析师是指在不同行业中,专门从事数据搜集、整理、分析,并依据数据做出行业或市场研究、评估和预测的专业人员。笔者通过对各大招聘网站数据分析师、市场调查/市场分析师等职位招聘信息的搜索和分析,深入挖掘并归纳出社会用人单位对数据分析师职位的技能和能力素质要求(详见下表1),以期为高校经管专业学生数据分析能力的培养提供参考。

从表1可以看出,数据分析能力是一种综合实践能力,它要求数据分析人员在了解行业状况及公司业务流程的基础上,构建数据分析的思路,主动地搜集相关数据,运用恰当的统计分析方法,借助于统计分析软件对数据进行处理和分析,从而得出分析结论,并撰写出有价值的分析报告。

通过以上分析,笔者认为,高校在经管类专业学生的培养定位中应对数据分析能力的培养给予充分的重视。应要求所有经管类专业的学生具备基本的数据分析能力,以适应本专业领域业务数据的收集、整理和初步分析的需要,并有针对性地培养出一批具有较强数据分析能力的学生,为他们考取项目数据分析师、调查分析师等资格证书创造条件,使他们有机会成为各行业中数据分析领域的高级专门人才。

二、经管类专业大学生数据分析能力培养中存在的主要问题

(一)经管类专业课程体系设置中缺少数据分析能力培养模块

当前,在许多高校经管类专业的培养方案中,较少设有专门讲授数据分析内容的课程。与数据分析相关的内容分散于《大学计算机基础》、《数据库应用基础》、《统计学》、《市场调查与预测》等课程,学生虽然从多门课程中接触到与数据分析相关的一些内容,但各门课程的教学资源未能实现有效的整合,如,《大学计算机基础》课程一般在大一开设,该门课程中将Excel软件作为办公自动化软件之一,一般只讲授简单的文字和数据录入及处理,并未涉及Excel软件的高级数据分析功能。而《统计学》和《市场调查与预测》课程一般在大二开设,主要侧重于从理论上介绍数据的收集、整理和数据分析的各种方法,以及市场调查和市场预测的各种方法,这两门课程主要为数据分析提供方法论的指导。这样的课程体系设置中就缺少了将数据分析的方法与数据分析的工具结合起来培养学生数据分析实际技能的课程,致使学生并未能有效、深入地掌握实际的数据分析技能。

(二)缺少实用性强的培养学生数据分析能力的实践教材

近年来,一些出版社出版了一批以Excel或SPSS为分析工具的统计分析教材,如:黄等编著的《Excel统计分析基础教程》、邓维斌等编著的《SPSS19(中文版)统计分析实用教程》等教材,这些教材在内容体系上与《统计学》教材大体相同,教材内容涉及面广,与企业实际需求结合不紧密且难度较大,对于没有数据分析基础的学生来讲很难掌握,而且有些高级统计分析方法在企业的实际工作中也很少能应用到。

(三)缺乏数据分析理论与实践能力兼备的教师队伍

培养学生的数据分析能力,首先需要拥有一支既懂数据分析理论又能指导学生统计软件操作的高水平的教师队伍,而长期以来统计学教学中一直存在的重理论,轻实践的状况,使得能够讲授《数据分析》实践课程的教师严重缺乏,这也是影响学生数据分析能力培养的关键制约因素。

(四)学生对数据分析存在畏惧心理

对于许多初次接触统计学和数据分析的学生,经常会对书中大量的数学公式和复杂的软件操作产生畏惧心理和回避心理,加之一些统计学教师在教学过程中对学生的学习没有加以正确的引导,致使很多学生从一开始就对掌握数据分析这门有用的技能失去了的兴趣和学习的信心,从而必然会影响到学习的效果。

三、经管类专业大学生数据分析能力提升策略的探讨

(一)完善学生数据分析能力培养模块

为强化学生数据分析能力的培养,高校经管类各专业的培养方案中应设置培养学生数据分析能力的模块。笔者认为,首先应将已开设的与学生数据分析能力培养相关的《大学计算机基础》、《数据库应用基础》、《统计学》、《市场调查与预测》等课程的内容进行有机地整合,在此基础上,在大三学年开设《数据分析基础》实践必修课,以加强学生数据分析的实际技能,构建学生数据分析能力的完备知识体系。同时,经管各专业还可根据需要增设《SPSS软件应用》作为专业选修课,以满足那些对数据分析有浓厚兴趣,准备考取项目数据分析师、调查分析师资格证书,有志于成为数据分析专门人才的学生的需求。

(二)开发实用性强的《数据分析》实践教材

借鉴社会项目数据分析师、调查分析师资格认证相关培训教材,编写一部《数据分析基础》实践教材,教材将以通用的Excel软件为分析工具,这样可以降低学习难度,从心理上拉近与非统计专业学生的距离,目的是使经管专业的学生掌握必知必会的数据分析概念、流程和操作,以适应社会对经管类应用型人才应具备基本的数据分析技能的需求。教材的内容体系将按数据分析的流程构建,具体内容将设以下7大模块:1.数据分析概述;2.数据采集;3.数据处理;4.数据分析(包括数据分析方法、数据分析工具的使用);5.数据呈现;6.报告撰写;7.综合案例。

(三)培养一支数据分析理论与实践能力兼备的教师队伍

针对当前部分高校缺乏数据分析理论与实践能力兼备的讲师队伍的难题,学校可以采取“引进来,走出去”的办法多渠道解决专业师资力量不足的问题,一方面可以从其他学校聘请专业教师授课,也可以派出本学校中、青年教师到其他设有统计学专业的高校进行短期的进修学习,以提高数据分析的理论水平和实践能力,此外,学校还可以鼓励本校中、青年教师考取项目数据分析师等资格证书,以深入地了解社会对数据分析能力的需求,使学校的人才培养定位与社会需求能够实现无缝对接。

(四)培养学生对数据分析的浓厚兴趣

记得有一位资深的数据分析人士曾说过:“统计学是一门很难,但是很有趣,更是很有用的工具学科。懂得如何使用它的人总是乐在其中,而尚未入门的人则畏之如虎。”笔者结合多年的教学经验认为,要想将《统计学》这样一门多数人认为很难的课程让初学者理解它、接受它,对它产生浓厚兴趣,需要借助一些人们生活中的小案例,将难懂的统计学的基本概念和公式还原回生活当中,用来解释社会经济现象,帮助学生发现隐藏在数据背后的规律。总之,培养学生对数据分析的浓厚兴趣,是提升经管类专业学生数据分析能力的关键所在。

[参 考 文 献]

篇2

【论文关键词】统计学;统计思想;认识

1关于统计学

统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。

2统计学中的几种统计思想

2.1统计思想的形成

统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。

2.2比较常用的几种统计思想

所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:

2.2.1均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.2.2变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

2.2.3估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

2.2.4相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

2.2.5拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。

2.2.6检验思想

统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

2.3统计思想的特点

作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。

3对统计思想的一些思考

3.1要更正当前存在的一些不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。

3.2要不断拓展统计思维方式

统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

3.3深化对数据分析的认识

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

参考文献:

[1]陈福贵.统计思想雏议[J]北京统计,2004,(05).

篇3

统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际。随着社会的不断发展,统计学的应用越来越广泛,并不断发展。

一、 统计学中的几种统计思想

(一)统计思想的形成

统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。

(二)比较常用的几种统计思想

所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:

1.均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

3.估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

4.相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

5.拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。

6.检验思想

统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

(三)统计思想的特点

作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。

二、对统计思想的一些思考

(一)要更正当前存在的一些不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。

(二)要不断拓展统计思维方式

统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

(三)深化对数据分析的认识

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

参考文献:

[1] 陈福贵.统计思想雏议[J].北京统计,2004.(05) .

[2] 庞有贵.统计工作及统计思想[J].科技情报开发与经济,2004.(03) .

[3] 范文正.几种基本统计思想的现实意义[J].统计与决策,2007.(08) .

[4] 邢莉.《九章算术》中的统计学思想探究[J].统计研究,2008.(03).

篇4

统计思想需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的数理统计思想。

二、数理统计思想的特点

数理统计思想从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在数理统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)数理统计思想强调方法性与应用性的统一;(2)数理统计思想强调科学性与艺术性的统一;(3)数理统计思想强调客观性与主观性的统一;(4)数理统计思想强调定性分析与定量分析的统一。

三、数理统计思想

就是统计实际工作、数理统计学理论及应用研究中必须遵循的基本理念和指导思想。数理统计的思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。

1.均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有数理统计学理论,是数理统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。数理统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

3.估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

4.相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

5.拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模于此而预示的可能性”。

6.检验思想

数理统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

四、数理统计的思想方法?

1.要更正不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。

2.要不断拓展统计思维方式

数理统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

3.要深化对数据分析的认识

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析、推断性数据分析和探索性数据分析等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

数理统计思想方法应用必须坚持以事实为依据、用数据说话的原则,把统计技术的应用与专业技术紧密结合,在考虑统计项目实施时,应从理论和事实层面上注重分析和使用条件,认真权衡各种关联因素。数理统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。

参考文献

[1] 陈福贵.统计思想雏议[J]北京统计,?2004,(05).

[2] 庞有贵.统计工作及统计思想[J]科技情报开发与经济,?2004,(03).

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页