时间:2023-08-27 15:11:11
引言:寻求写作上的突破?我们特意为您精选了4篇化工热力学论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
2注重章节横向联系、提炼章节要点
化工热力学内容较多,而教学时间有限,这就要求教师要打破传统的授课体系,注重各章节知识的横向联系,深入对教学内容加以研究,挖掘教学内容深层次内涵,将书本上的内容提炼出来讲给学生听。比如在讲述偏离函数的时候,要把偏离函数和状态方程以及对比态原理、常用热力学基础数据结合起来,推导合适状态方程下的偏离函数,并求取常数值,指导和鼓励学生们用临界温度和临界压力,对比温度和对比压力,偏心因子和基础数据估算热力学过程。这样整个课程通过偏离函数就可以形成有机统一。对于课程中的封闭系统和敞开系统,同学们在物理化学中并没有太多深刻认识,在课堂上我抛出化工工艺学中的氨合成,这样的问题使同学们感受到课程间的相互衔接。对于氨的合成,同学们都知道N2+3H2→2NH3,在反应平衡之前,组成都在发生变化,在反应之前和反应平衡之后,组成都是不变的,这几个状态下系统的研究和学习,有助于同学们对化学反应的整个过程的热力学性质的计算,包括均相封闭系统和均相敞开系统的联系与区别。
3多媒体教学和互动教学结合
多媒体教学是现代化教学手段,灵活有效使用多媒体教学可以使抽象的概念具体化,提高教学的有效性,在教学过程中,由于教学内容过多,如果采取大量板书教学,势必会影响教学进度,同时该门课程要向同学们展示大量化工设备图片,必须要采用多媒体教学。大学教学必须要师生互动,而师生互动教学的关键在于教师的提问,所以要设计多层次多方面适合教学内容的问题,问题设计有难有易,可以促进整个班上不同层次的学生的思考,问题都设计的简单,学的较好的同学就会无所事事,问题都设计的难,跟不上节奏的学生会一脸茫然失去学习兴趣,好的问题可以帮助同学们从多层次多角度思考问题,化工热力学的精髓实际就是能量利用和节能减排的时候,同学们对于能量利用还有基本的认识,因为在物理化学里面就谈到了反应的方向和限度。但是对于节能减排,却没有深刻认识。结合国家目前大力致力于关转停高耗能和高污染企业,并提倡绿色工业和绿色居住,同学们了解到能量利用和节能减排已经上升到国家战略高度。对于能量利用,要有实例,比如向大家介绍1摩尔水在气化完之后是水在液态的时候体积的1603倍,而体积增大正好做工,正是因为如此,蒸汽机才能带动火车,实现第一次工业革命。基于此,激发同学们想到汽油作为工质做工,让汽车跑的更快,让飞机飞的更远,让轮船遨游大洋。举一反三,这些都是同学们在日常生活中时时碰到,原来能量利用是如此重要。正是因为能源的普遍利用,国内自然环境正经历伦敦雾都在第一次工业革命的阵痛,节能减排和能量合理利用就尤为重要。
谈节能减排和能量合理利用很重要,这是同学们必须要慢慢接受的观点,要深入大脑,案例很重要。比如说煤矿的使用带来了大量粉尘和大量排放和地质危害,所以国内正在大力开发煤制油的技术以及更清洁的原料天然气。而石油的地下存量已经在减少,大庆油田已经进入老年,这也告诉同学们石油和煤矿,天然气这些能源都是不可再生,总有用完的一天,同时这些不可再生的能源都有一个害处,就是燃烧之后有二氧化碳和一氧化碳的排放,都臭氧层有很大的破坏,地球的温度在上升。那么有没有什么好的替代能源呢,同学们普遍感兴趣,而且也是科技工作者共同的难题。这个时候我会在适当时候抛出水制氢这样一个最简单的课题,作为老师是知道现在很多研究小组都在研究水制氢的课题,也是科技界的热点和难点。但是对于同学们而言,同学们会认为这是一个多么简单的问题,只要电解就可以实现。
如何激励研究生的创新意识,锻炼和培养研究生的创新和研究能力,是研究生教育改革的重要课题之一。当前,传统的接受式教学模式面临巨大的挑战,这种教学方式的特点是:教师在讲台上讲授,学生在台下做笔记,学生被动地接受知识,这种传统的单向灌输式教学方式,无法调动学生学习的积极性和主动性,学生往往在没有压力的状态中学习,教学效果不佳。本科生相比,研究生身心已较为成熟,思维活跃、求知欲望和实践意向都较为强烈,若还是采用传统的灌输式教学,注重结论和公式的推导,而这些结论和公式到底有何作用,学生常常并不清楚,学习积极性不高,教学效果事倍功半。学生缺乏研究创新,不能很好地解决实际问题,是传统教学模式最大弊端,有的研究生在进入论文阶段后不清楚科研论文如何写作,对科学问题的敏感性不强,将文献的阅读变成简单的课程学习,科研能力、创新能力都不强,专业课程内容呈老化,教学特点日益淡化,甚至浪费了课程学习阶段,因此,有必要对研究生的课程,尤其是专业课程的教学方法和教学理念进行改革,引进国内外先进的教学方法和教学理论,提高研究生的科研能力和创新能力。
研究性教学模式是在综合美国布鲁纳的“发现学习模式”和瑞士皮亚杰的“认知发展学说”基础上构建的教学模式,主要强调它在与工程实践结合较紧密的专业课程中的应用,是一种培养创造性人才的新途径。因为学生学习的过程与科学家的研究过程在本质上是一致的,因此学生应像“科学家”一样,以主人公的身份去发现问题、分析问题、解决问题,并在探究过程中获取知识、发展技能、培养能力,特别是培养创新能力,发展自己的个性。研究性教学将科学研究的思想和过程融入课堂教学中,鼓励和带领学生从课本固有知识框架中走出来,勇敢且智慧地去发现未知,帮助学生形成自己对某一事物的分析路径和独特观点。
《高等工程热力学》是动力机械、制冷与低温工程、工程热物理、化工等与能源相关专业研究生的重点基础课程,其理论对高效利用能源、节约能源以及开发新能源有重要的指导意义。其主要教学内容包括热力学理论基础、流体工质的热力性质计算、多组分系统热力学和相平衡、管内气体流动热力学。其教学目的是让学生更深刻地理解热力学三大定律,以及用热力学知识去解决问题的方法。从以往的教学情况看,学生普遍反映理论较难理解,课程实用性不强,学习兴趣不高。针对这种情况,笔者结合研究型教学的特点进行以下方面的尝试。
一、改变教学手段,传统教学模式和课堂讨论式教学相结合
《高等工程热力学》是本学院研究生的专业基础课程,一些必要的理论和方法需要通过传统教学模式教授给学生。在讲授过程中,针对以往学生提出的实用性不强的问题,在讲解某一理论的时候,更侧重该理论及方法的应用背景,让学生在结合使用背景去理解理论知识,达到事半功倍的效果。课堂讨论则是研究型教学的一种方法,研究导向的教学模式侧重于营造情境,提出问题,引导学生独立思考,形成自己的观点,而不在于给学生提供权威性的标准答案。在进行传统教学的一个阶段结束之后,进行一堂课堂讨论,一方面,有利于加深学生对所学知识的理解;另一方面,也可以提高学生对问题独立思考的能力。但组织课堂讨论,要注重讨论内容的选择,过难或过于抽象的问题会使学生丧失兴趣和信心,导致冷场。在课堂讨论过程中,教师要始终把握讨论的重点和方向,不致偏题,对于学生提出的观点,教师要给予适当的点评和鼓励,指出其不足,并引导讨论逐步深入进行。同时为了避免同学在课堂上提出的问题比较空洞、缺乏一定的论据,在课堂讨论的前二周时间会给学生布置下去题目,让学生在课下进行查阅资料并归纳总结,最终在课堂上提出自己有理有据的论点。
同时笔者鼓励学生自由思考、标新立异,引导学生在已有的学习和生活经验基础之上形成假说。比如,在进行“准平衡过程和可逆过程”这两个基本概念的课堂讨论中,有很多同学提出了对这两个概念自己的理解,对原有的概念提出了质疑。同时通过课堂讨论,大家也更深刻地理解了在经典热力学中为什么要引入这两个概念。
二、完善课程内容,追踪研究领域的最新进展
学生要完成研究型的学习,单靠一本教材是不可能完成的。所以笔者在教学的过程中,针对某一部分教学内容,笔者经常是结合着国内外最新的研究文献或者硕博论文进行讲解,同时附上参考文献。在整个课程的讲解过程中,笔者共引用了10余本书,并对其进行简短评价,学生可以根据自己的兴趣和研究方向,有重点地对这些参考书和文献进行深入的研究。研究生阶段学生对研究领域内的所有未知充满好奇,通过对本领域最新进展的学习,可培养学生创造性思维的意识。科研工作如果缺少创新性,则研究的价值就不能体现出来。因此笔者在授课过程中,一方面介绍当前研究的热点问题,比如说开发环保型工质的问题、先进联合循环的问题、不可逆热力学中有限时间热力学的问题等。同时还给学生介绍本专业的一些高水平期刊,比如说《Progress in Energy and Combustion Science》、《Microscale Thermophysical Engineering》等。让学生追踪本学科领域的最新研究进展,开拓自己的思路和视野。
三、改变评价体系,考核形式多样化
过去的考试体系往往是一卷订终身的形式,教学围绕考试转。最终考核的不是学生的综合能力,而是学生的记忆能力。因此笔者和课程组其他人员讨论,拟定采取“小组作业”和“个人作业”相结合的考核方式。小组作业一般由6~8人分工完成。在学期初期就将学生分组,每个小组的题目不同,要结合所学的内容和研究专题去确定题目。小组成员要定期进行讨论。在小组研究过后,需要撰写科技类的小论文,字数一般为3000字左右。之后,由小组成员分工把主要内容采用适当的形式(多采用PowerPoint)讲解出来,其他小组的成员和教师会就作业内容提出问题。小组作业一般占个人总成绩的40%,个人作业占个人成绩的60%,其由期末考试、平时讨论发言情况成绩组成。期末考试改变过去闭卷考试的形式,而采取开卷考试的形式,试题题目侧重于运用知识去解决实际问题的方法,而不再是公式的死记硬背。
通过这种考试形式的改变,在很大程度上调动了学生主动学习的积极性,对高等工程热力学产生了浓厚的兴趣。“小组作业”的形式改变了过去学生只是一个人闷头拿着教材看和学的状态,注重和组内其他人的交流,加强合作意识。同时小组的经常讨论,也使得每个学生都得到了表达自己的机会,使学生的表达能力得到了加强。而科技论文的撰写,是研究生今后从事科研的必备能力,因此课堂上科技论文的撰写是其练兵的过程。这大大地激发了学生的学习兴趣,同时也鼓励学生的创新思维。
研究型大学培养的研究生更应该具有创新意识,因此在研究生专业基础课上进行研究型教学的探索是非常有必要的,根据笔者进行的教学模式、教学内容和评价体系三方面的改革探索,已经确定初步的成效。但这仅仅是课程改革的开始,在教学模式和教学内容上我们还有许多工作要做,旨在使我们培养出来的研究生都符合知识经济时代对创新人才的要求。
参考文献:
[1]翟亚军,哈明虎.我国研究生课程教学中存在的问题及对策研究[J].中国高教研究,2004,(6):39-41.
[2]张喜德.研究生专业课程教学改革的探讨与实践[J].广西大学学报(哲学社会科学版),2006,(28):65-66.
[3]孙旭峰。有限元法课程中的研究型教学实践[J].高教论坛.2009,(3):86-88.
工程热力学是热能与动力工程专业和建筑环境与设备工程专业的重要专业基础课,同时也是油气储运工程、化工机械过程与装备和石油加工等专业的选修课。它是一门从工程实际出发来论述热能与机械能相互转换规律及其应用的基础性课程。课程的特点是理论性强、概念抽象、公式图表繁多、热力过程变化复杂以及热力循环的表示和分析困难。
多媒体技术是文本、图像、动画、声音等运载信息的媒体结合体,以图文并茂的形式为工程热力学教学提供了多样化、多视角、立体化的教学信息空间。在工程热力学的课堂教学中,合理、适当的采用多媒体技术,不仅充实了教学内容,而且使课堂教学更加生动形象,提高了教学质量,教学效果良好吼
一、多媒体教学的必要性
工程热力学课程的基本理论应用部分涉及许多图片、图形,内容围绕工作原理图、系统循环图展开,传统的板书教学需占大量的课堂时间手工绘制,效果不太理想,如果利用计算机制作成多媒体课件,集光、形、色于一体,形象直观、内容生动,可以使视觉和听觉同时发挥作用,增加课堂授课的生动性,激发学生学习的兴趣,有利于学生认知能力的开发和对教学内容的理解。
〔一)及时更新教学内容。多媒体辅助教学,可以节约板书时间,有效地拓宽教学空间,在有限的时间内提供更多信息量,使教师有更多的时间进行重点、难点知识的讲解。现代科学技术发展迅速,日新月异,而部分教材内容不可能及时更新,在课件制作中可补充大量最新技术资料,不仅解决教材内容相对滞后的问题,而且可引荐专业发展的前沿信息,拓展学生的视野。
(二)完善传统教学手段。多媒体将传统教学手段难以表达的内容和难以观察到的微观热现象通过文字、图像、声音和动画等形式生动的表现出来,加深了学生对知识的理解,激发了学习兴趣和学习主动能动性。另外多媒体可通过字体的缩放、颜色的变化或明暗交替以及动态出现等方式来强调重点,使学生印象深刻,更容易记住这些知识点。
(三)增强学生感性认识。工程热力学中有许多抽象的概念和过程,如孤立系统、平衡状态、压缩过程、水蒸汽定压发生过程等。仅通过书本上的概念和简单的插图来讲述或通过学生的想象来理解、掌握这些知识点是非常困难的,而借助多媒体技术就能使这些问题迎刃而解。多媒体课件支持FLASH动画}WMV,AVI视频等播放插件。如在讲解内燃机结构和原理时,采用FLASH制作简单的动画来演示汽车内燃机的工作过程,学生在动画中能非常直观地看到内燃机的吸气、压缩、燃烧和排气,再配合P-V图画出热力过程,看起来一目了然,有利于学生对过程的理解和掌握,进而分析不同的压缩过程所需功耗的不同。同时结合一些有趣的思考题。如:为何给球打气时用湿布裹住气筒外壁能节省体力?汽车油门是控制油量还是空气量?这样既能有效巩固压缩机省功原理,又与现实生活紧密联系,极大的激发了学生的学习兴趣。
二、多媒体教学内容的选择
国内各类院校能源动力类专业基本都开设了工程热力学课程,但可供课程使用的优良教材数量有限,且教材更新较慢,特别是工程背景和应用方面的知识较为匾乏。为此,首先应根据各高校学科专业特色,选择合适的教材和参考书,为多媒体课件制作提供最基本的知识体系保障。其次各专业知识是相通的,但侧重点不一样,应补充介绍同一概念在不同工程运用背景下的区别和联系,让学生能更好的理解基本概念做到融会贯通。比如,热力学能是工质的内部储存能,是温度和比容的函数。工程流体力学课程中,认为液体流动中温度和比容为常数,所以热力学能不变,研究中可以忽略。而工程热力学研究中,热力学能是重要的状态参数,不能忽略其变化。最后要结合专业特色,拓展工程实践知识,开展相关工程应用专题讲座,避免计算时出现手提吹风机功率在60KW以上,甚至达363KW,而汽轮机喷管出口速度只有十几米每秒的低级常识性错误。
三、多媒体课件制作应注意的问题
多媒体电子教案存在直观、形象、生动、图形图像功能强大、易于展示最新科研成果、教学信息量大、学生易于复习等优点,但同时存在单幅信息量少、幅间信息不连贯、前后呼应不够、学生思维不易跟上等问题。在制作时应该扬长避短处理好以下几点问题。
(一)多媒体模板的制作。多媒体课件需合理照顾章节间的关系,但每张幻灯片的空间有限,难以有效发挥“标题”和“正文”的相互呼应。合理制作多媒体模板,是增加课件内容逻辑性和关联性的重要保证。为此,应根据教学大纲内容制作本章节教学内容的主题目录,教学时采用超链接的方式打开。其次建议每张幻灯片分成三个区域:标题区、正文区和脚注区,并用横线严格区分,做成统一的模板。在标题区右上角,角注本章标题,而在标题区中央插人本节标题。正文第一行插入本节幻灯片主要内容标题,与正文呼应,使信息尽量连贯。脚注区可插人授课日期,页码等辅助信息,保证每页幻灯片的完整性。最后,应制作复习提纲,与首页主题目录提纲和正文重点内容呼应。
(二)文字内容的确定。工程热力学作为一门技术基础课程,基本概念、基本原理、基本方法是要求学生掌握的重点,需要通过大量的文字来进行表述,因而课件上的文字内容不可避免要占有较大篇幅。需要特别注意的是切忌将大量教材内容原文照搬到课件上,授课时照本宣科。文字内容的确定必须经过反复推敲、归纳和总结,将核心内容提炼出来,完整的表述则通过授课或与同学之间的讨论来完善。古人云:文章千古事,得失寸心知。幻灯片制作也是一样,一定要精益求精。建议每张幻灯片不超过四段文字,每段文字不超过两行。在需要特别强调的地方如前提条件和重要结论要点,用特殊强化处理标注,如PPT自带的红色五角星符号。当然对于课程中一些经典的概念和原理如孤立系统嫡增原理等建议给出原文,让学生根据自己的理解提炼或用自己的言语表述,以加强对概念或原理的理解,同时培养学生的逻辑思维能力。
(三)图像的选择与处理。多媒体课件的优势就是图片功能强大,需要充分发挥。应选择既反映工程实际又具有较高清晰度和对比度的优良图片,这样才不会出现投影放大后的图像失真的问题,这一点需严格遵循宁缺勿滥的原则。对于原理性图,如果直接采用软件从书本上复制粘贴由于涉及图像格式转化会导致图像像素丢失,图像失真,建议利用PPT自带的画图工具绘制,这样既可以对图像中各类曲线实现不同颜色、线条标记,又可以在播放时实现分层逐级播放。另外结合PPT动画播放功能里的“擦除”效果,可实现曲线的动态绘制过程,利于学生理解和掌握热力过程曲线。比如,理想气体几种基本热力过程在P-V图上同时出现时曲线烦乱,各区间物理意义复杂易混淆。采用上述方法可以得到很好的解决。
(四)多媒体课件的放映。在课件放映时,文字的出现应设为逐行或逐字播放,让学生有时间记笔记和思考,不宜像放电影一样整屏播出,此时内容繁多,眉毛连着胡子,学生分不清主次,很容易走神,更谈不上理解和掌握。
作者的体会是应根据讲解的思路和过程,逐级播放。特别是涉及公式推导时,应模拟黑板推导的过程,逐步或分块出现。当然,这也会造成教师频繁使用电脑,影响教师讲解和学生思考的连贯性。建议使用多功能激光笔,实现远程控制幻灯片播放。这样教师一方面不用局限于讲台上,活动空间得到大大解放,另一方面也可以到讲台下加强与学生的近距离互动讨论,有效维护课堂记录。
四、多媒体教学中需注意的问题
效果优良的多媒体教学也存在学生视觉疲劳问题,这与黑板教学相比是一个固有缺陷。据赣南医学院的一份调查数据显示。大学生在课堂上被多媒体教学光照时间太长,学生连续2个课时接受多媒体教学,约22%产生轻度视觉疲劳,连续4个课时,轻度视觉疲劳则高达61%。可见,培养一支高素质多媒体教学课件制作队伍,是消除学生视觉疲劳和提高教学质量的关键。积极参加多媒体教学课件制作学习班,学习适用于大学生最佳课件制作视觉效果的理论与方法,制定多媒体教学课件制作视觉审美的基本要素、基本规范和基本参数。
同时多媒体授课时光线较暗,如果课堂授课时教师只是点点鼠标,学生瞪大双眼看,相互之间缺乏交流,学生容易昏昏欲睡。因此教师不能只站在讲台前一字不差地朗读讲课,应当随时观察学生听课的精神状态,适当地走到屏幕前指点内容,或者丰富教师自身的面部表情和肢体语言,利用提问、现场讨论等互动交流以活跃课堂气氛与调动学生学习积极性。
热工课程以研究热能的有效利用及转换与传递规律为其基本内容,在工科许多大类专业的人才培养中具有重要地位。在我国,热工基础课程一般指工程热力学与传热学两门课程,内容主要由工程热力学与传热学组成的“热工学”或“热工基础”也属于热工基础课程的范畴。本文的讨论主要针对这三类课程来进行。
至上世纪末,我国热工课程开设的情况是:有150余所高等工业学校开设热工类课程,分布在除台湾、、青海三省区以外的境内高校。全国热工课程教学的一般情况是:(1)热工课程的设置主要在能源动力类、石油化工类、航天航空类、土建类、交通运输、轻纺食品等大类专业;(2)热工教学实验以验证性为主,测试手段比较落后,设备比较陈旧:(3)已经出版了一批由我国作者自行编写的工程热力学、传热学与热工学教材。
6年多来,经过“211工程”、“985工程”建设项目的支持,我国热工实验教学情况有了较大改观,开课的大类专业面有所扩大,机械类专业目前大多开出了少学时的热工学课程。同时通过教育部组织的面向21世纪教学内容和课程体系的改革,以及21世纪初高等教育教学改革项目的实践,出版了一批面向21世纪课程教材,使我国热工课程教材的内容有了较大的更新,编著水平也明显提高。在近十年中,国际上工业先进国家也同时在进行着类似的改革,并出现了一批比较优秀的新教材。与这些先进国家的热工课程教学和新教材相比较,我国还有一定的差距,某些方面差距还比较大。
本文在简要回顾了热工课程教学的历史后,着重介绍和分析了工业发达国家近十年中热工及相关课程的教学与教材编著情况,最后提出作者的意见,以求教于国内同行专家和教师。
一、国外、境外热工课程教学发展情况
1.热工课程教学的历史
近代热科学的产生与初期的发展集中在欧洲国家。根据文献[1]的观点,热科学研究的起源可以追溯到Galileo时代(1592),而且早期热学作为物理学的一部分,热力学与传热学的研究是溶为一体的,例如Boltzmann从热力学证明了Stefan由实验得出的辐射四次方定律。又如热力学第二定律的创建人之一Kelvin在1862年用以下的方法来估算地球的年龄:假设地球之初是温度均匀(3900℃)的圆球,热扩散率为常数,取为岩石沙砾之值,利用Fourier导热微分方程,按半无限大物体计算,从初温冷却到目前地层深处的温度梯度(1℃/27.8m)需要9800万年。按现代的观点看,Kelvin显然求解了一个传热学的问题。
无论热力学还是传热学,其发展都经历了从“科学”到“工程”的过程,即,从初期作为物理学一部分的热学演变、发展成密切结合工程实际的“工程热力学”与“工程传热学”。以传热学为例,[2]在19世纪的物理学中热量传递方式只有导热与辐射,其基本定律均已得到解决。然而大量的工程问题中还遇到流体与固体间的热交换,虽然牛顿早在1701年就提出了对流换热的初期思想,但并没有真正解决工程计算问题,一直到进入20世纪,经过一批主要是德国科学家的努力,包括Prandtl、Karmann、Nusselt、Blasius以及后来的Eckert,也有前苏联科学家(如Kirpichev等)的贡献,传热学开始由“科学”演变成“工程”,其中整理试验数据的量纲分析方法或相似原理引入传热学的对流换热是一个标志性的转折。第二次世界大战后,传热学的研究中心由德国转移到美国,其中Jakob、Karmann及Eckert三位德国科学家的移居美国起了很大的作用。欧美国家工程热力学与传热学课程的开设始于何时,暂时无法查考。就教材而言,最早的一本传热学可能是德国科学家Grober的著作(1921)。[3]然而影响较大的要推McAdams的“Heat transmission”(1933)。[4]随后Jakob与Hawkins的教材,[5]Eckert的教材[5]相继问世,成为20世纪40~50年代的代表作。Holman的传热学第一版出版于1963年。[7]此后欧美以及前苏联的传热学教材出版情况可见文献[8]。
2.近代热工课程开设情况
到20世纪80年代后,工程热力学与传热学已经成为欧美国家机械类学生的必修课,有的学校还设为工科学生的基础课。根据我们的调查统计,在境外的高等工程教育中,传热学与热力学课程的开设相当普遍。[9]我们曾经调查过国外20余所大学开设热工课程的情况。从返回的调查表看出,机械工程系、化工系、核能工程系、材料系等均普遍开设热工类课程。有的学校把热学类课程作为工学院的公共课程,如美国依阿华(Iowa)州立大学工学院在2000年开出的81门课程中(不含基础课),包括有电子、信息、计算机、控制、电磁场等系列的课程,其中热学方面的基本课程有4门,即热力学I、热力学II、传热学及热流系统设计。麻省理工、普渡大学及密西根大学等,热力学和传热传质学都是机械系设置的主要课程之一。表1是密西根大学工学院机械系学科基础和专业课课程学分情况,从中可以看出热工理论课程所占的分量。
在美国高等学校中,机械工程系主修课程的设置一般分为两个层次,即(1)基本层次,该层次中的课程一般覆盖了该校机械系各个研究方向的最基本的原理,是所有学生的必修课,在这一层次课程中均包含热力学与传热学的基本原理课程在内。(2)专门化层次,该层次中按专门方向不同而分成若干组课程供学生选修。欧美这样的课程设置值得我们借鉴。
3.最近十年美国热工课程教学的发展
在最近十年中,美国高等学校工科热工课程的教学呈现出许多新的发展趋向值得我们重视。首先在热工课程教材方面,美国高校中出现了像Cengel与Boles的Thermodynamics――An Engineering Approach,[10]Cengel的Heat transfer――A practical approach,[11]Incropera/DeWitt的Fundamentals of heat transfer[12]这样取材丰富、构思新颖、内容先进的教材。有关这些教材特点的
详细分析见参考文献[8]。
在热工实验方面,20世纪末美国高校也进行了面向21世纪的探索,例如美国普渡大学DeWitt等三位教授进行了题为“Curriculum for the 21th Century”的研究,[13]对于传热学试验提出了以下改革内容:
(1)减少“传统”的实验,增加学生进行团队项目的时间;(2)增加有挑战性的工程设计项目;(3)给予动手训练机会;(4)训练与工程界合作;(5)培养交流项目结果的能力。
为此,该校改进了原有的实验系统,配备了数据采集系统,同时从工业界不断引入设计性的实验课题,并分解成为团队项目的内容。从普渡大学机械系的这一改革思路看强调了减少传统的实验,增加来自工业界实际项目的训练;强调了团队合作的训练;强调了培养交流与动手的能力。
当然传统的实验还是需要的,是加深学生对教学内容的理解以及培养动手能力的环节。在传统实验的内容与组织上也要注意综合性的培养。我们来看普渡大学的传统传热学实验课程的内容,参见表2。
由表2可见,就这些传统的实验内容而言,其综合性与测试技术的训练也是比较好的。
二、对今后教学改革与发展的一些思考
1.热工课程教材怎样适应不同类型学生的培养需要
热工课程的基本知识应当成为工科各专业学生必须具备的技术素质,热工课程应当成为我国工科学生、尤其是机械类专业的学生的共同的工程基础课程。这是由于:(1)热现象是自然界中最普遍的物理现象,同时各个工程技术领域中及日常生活中的各种其他形式能量最终大都是以热能的形式耗散于环境及宇宙之中。因而作为介绍热能的有效、合理的利用和转换、传递技术的热工课程,不仅应是许多大类专业的重要技术基础课,而且也应是21世纪所有工科类专业学生的一门公共技术基础课。(2)我国中长期能源发展规划制定了节能优先战略,提高能源利用率是确保我国中长期能源供需平衡的先决条件。无论是从国内资源还是世界资源的可获量考虑,中国只有创造比目前工业化国家更高的能源效率,才能在有限的资源保证下,实现高速经济增长和达到中等发达国家人均水平。因此,工科学生应该具备合理用能、节能的意识并懂得其基本技术。而热工课程的内容是合理用能及节能理论中最基础与核心的部分,热工基础课程在工科各专业人才培养中具有重要的作用和地位。
按照这一观点,在我国工科21类专业中,[14]至少有6大类(能源动力类、化工制药类、航空与航天类、环境与安全类、武器类、土建类)专业应该开出高学时的工程热力学与传热学的课程,其中能源动力类是最典型的一个大类专业。我国目前设有能源动力大类专业的学校有130余所。按照教育部分类办学的思想(研究型,教学型以及介于其间的类型),这一百多所学校不可能是属于同一类型的学校。那么同是高学时工程热力学与传热学在教材上是否要有所区分?还是可以采用同一种教材由主讲教师酌情选讲?如果有区分,区分主要在哪些方面?这一问题涉及到热工课程教学指导委员会在制定基本要求以及今后组织教材编写方面的一个基本考虑,需要通过深入研究取得共识。
2.如何使教材内容适时地跟上学科与工程技术的发展
近代工程技术的发展给本科热工课程教学带来了巨大的变化。[8]例如,20年前的本科生教材很少有关于火用分析方面的内容,而现在这个状态参数已经被广泛接受并用来分析设备过程的能量利用情况。近代高新技术的发展给传热学增添了许多新的内容,近十年内发展起来的纳米微米传热学就是一例。
相对于传热学,工程热力学国内外教材的内容显得过于稳定,近年来出版的教材中新技术的概念介绍极少。比如,当前中国的长期能源问题已经十分突出,为保护环境,执行可持续发展的方针,在工程热力学教材上,对新的、先进的能源利用方式(联合循环发电、氢能利用、燃料电池、分布式发电和热电冷三联供、新能源发电等等)是否应该有适当的反映?超临界和超超临界循环是传统燃煤汽轮发电机组提高经济性与环保性的有效途径,也是近年来国外燃煤火电厂的重要发展方向及我国要积极研发的方向,在工程热力学的新教材和今后的教学中也应有相应的地位。
3.热工课程的实验教学改革与更新应当怎样进行
热工课程包含的两门学科,热力学与传热学,都是应用科学,实验教学无疑是完整的课程教学的组成部分。多年的经验表明,实验教学的改革与发展某种程度上比课程本身还要困难,主要是涉及到设备的购置、更新所需的经费问题。在国家实施“211工程”二期或者“985工程”的建设中怎样利用有限的资源(财力)来改革、更新热工教学实验值得重视。在建设实际动手的实验台位时,是否也可利用多媒体的工具建设或购置一些“软件实验”作为补充?[15]在动手的实验方面,前苏联曾经出版过有关传热学实验教学的图书,[16]20世纪80年代热工教学指导委员会也组织出版过这样的图书。[17]目前有否必要再组织出版这样的参考书?
4.在热工课程的教材与教学过程中怎样加强学生的能力与创新精神的培养
近期世界范围的内的教育改革都十分注意对学生解决问题的能力与创新精神的培养,这从最近出版的美国教材中可以明显看出。由于中外教育体制、教育传统和教学理念方面的不同,在吸收西方教材先进经验的同时,我们应当努力探索适应我国具体情况的措施与方法。过去的实践表明,首先教师本身除了从事教学以外一定要参加科研,以丰富自己的学识、提高自己的业务水平。在教学过程中每位教师都应努力将教学内容与自己的学术经历结合起来,努力使书本上的资料成为活生生的实例。在教学法方面注意启发性,辅以对部分学有余力学生的讲座等课外活动,等,这些都能收到一定成效。但是从总体上说,热工课程教学中探索对学生的能力与创新精神的培养仍然是进一步研究的课题。
5.是否要开出经过整合的新型热工课程
为适应不同类型专业的需要,可以开设出一些综合性的新的热工类课程。无论是能量转换、热量传递还是质量传输,都有如何提高转换效率、传递效率和节约能源的问题,其中的关键是要减少过程的熵产(或不可逆损失)以及强化传递过程。这是它们共同的最重要的东西,可否开设一门综合热力学、传热学、传质学和流体力学的新课――例如可称为“热设计及优化”。国外目前已经有这类图书出版,第一步可以翻译过来作为参考教材。如果关于“优化”的内容能结合一些专业过程中的具体问题,那么这样的课程就会受到相关专业的欢迎。
6.热工课程的双语教学应当怎样进行
双语教学是目前教育部提倡进行的一项教学改革,
而热工基础课程也常常被选为进行工程技术课程的双语教学的对象。[18]这里涉及到许多具体问题:在编写汉语教材时怎样照顾到双语教学的需要?怎样选择英语工程热力学与传热学教材?怎样循序渐进地进行教学,以真正收到双语教学的实效而不流于形式?
7.对我国中青年热工课程教师学术趋向的思考
要提高我国热工课程教学质量,关键在于教师。与我国人才队伍总体情况一样,我国热工课程教师队伍的主体已经由30~45岁的中青年教师所构成。这个主体的特点是学历层次较高,大多数具有博士学位,一般具有硕士学位。为使我国热工课程教学接近或者达到发达国家的平均水平,关键在于这支教师队伍。就他们的学术发展而言,目前他们的学术趋向面临一个主要问题是:是否需要将热力学与传热学融为一体,固然可以有所侧重,但是不是不要截然分开?这方面,国外的一些情况值得我们借鉴:英国的Spalding是著名的计算传热学与流体力学专家,但是他也写过一本工程热力学的教科书:[19]Cengel以他的传热学教科书而知名,但他同时又是工程热力学教科书的作者,[10]而且Cengel的工程热力学与他的传热学同样著名;田长霖教授是熟知的传热学大家,但他与Lienhard合作写过一本统计热力学教科书。[20]将熵产分析用于传热问题的首创者Bejan也是集热力学与传热学于一身的知名学者。[21-22]我国的中青年热工课程教师值得对此进行思考。
参考文献:
[1]Cheng K C.Historical development of the theory of heat and thermodynamics:Review and some observations.Heat Transfer Engineering,1992,13(3):19-37.
[2]Lienhard J H. Learning and teaching heat transfer.Heat Transfer Engineering,1985,6(3):26-34.
[3]Grober H.Die Grundgesetze der Warmeleitung und des Warmeuberganges.1921.
[4]McAdams W H.Heat transmission.New York:McGraw-Hill,1934.
[5]Jakob M,Hawkins G A.Elements of heat transfer and insulation.New York:John Wiley,1942.
[6]Eckert E R G.Introduction to heat transfer.New York:McGraw-Hill,1950.
[7]Holman J P.Heat transfer.New York:McGraw-Hill,1963.
[8]陶文铨,何雅玲,李增耀,唐桂华.“传热学”本科生教材40年的变迁及其对我们的启示[Z].2004年全国热工课程发展战略研讨会论文集.
[9]陶文铨,何雅玲,王秋旺.境外大学工科热工类课程的设置[J].高等工程教育,2000(增刊).
[10]Cengel Y A,Boles M A.Thermodynamics-An engineering approach.Sixth edition.New York:McGraw-Hill,2006.
[11]Cengel Y A.Heat transfer A practical approach.Second edition.New York:McGraw-Hill,2003.
[12]Incropera F P,DeWitt D P Fundamentals of heat and mass transfer.Fifth edition.New York:John Wiley&Sons,2002.
[13]Bianchi M V A,Schoenhala R J,DeWitt D P.Changing the role of the laboratory in a heat transfer course.ASME HTD-Vol.344,National Heat Transfer Conference,Vol.6,1997,1―8.
[14]中华人民共和国教育部高等教育司编.中国普通高等学校专业设置大全[M].北京:高等教育出版社,2003.
[15]Hammer N R,Voller V R.Simulations of basic fluid mechanics laboratories using multimedia authoring tools.ASMEHTD-Vol.344.National Heat Transfer Conference,1997,Vol.6,pp.43-52.
[16]奥西波娃B A.传热学实验研究[M].蒋章焰等译.北京:高等教育出版社,1982.
[17]涂颉,章熙民,李汉炎,林瑞泰.热工实验基础[M].北京:高等教育出版社,1986.
[18]冯妍卉,张欣欣.“传热传质学”课程双语教学计划的探讨[J]中国电力教育,2002,4:95-97.
[19]Spalding D B,Cole E H.Engineering thermodynamics.London:Edward Arnold,1973.
[20]Tien C L and Lienhard J H.Statistical Thermodynamics.New York:Holt Reinhart and Winston,1971.