时间:2023-08-28 09:23:58
引言:寻求写作上的突破?我们特意为您精选了12篇高中数学基本思想方法范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
中图分类号:G63 文献标识码:A文章编号:1673-0992(2010)11-0000-01
正文:
(一)整体思想
往往很多学生遇到一个大题或一个较复杂的小题时,会感到束手无策,不知如何下手。其实如果你仔细分析题意,认真观察结构,把某个要解决的问题看作一个整体,通过研究问题的整体形式、整体结构或做种种整体处理后,常常能够得到巧妙的解法。比如:当式子中出现e^x和x,还要求导时,如果直接求导,不能消去e^x。而一个式子里同时出现e^x和x,我们是无法求导的。所以我们给就可以简单的换元,令e^x=t,则x=lnt,经过求导以后,就可以消除e^x。
整体思想大概有:整体代入、整体变形、整体配对、整体设元。下面举一个典型的例子:已知:2sinx-cosx=1,求(sinx+cosx+1)/(sinx-cosx+1)的值。看到这个题,我们可能感到很困难,但经过仔细的分析,可以发现用换元的方法,这个问题就迎刃而解了。设t=(sinx+cosx+1)/(sinx-cosx+1),则(1-t)sinx+(1+t)cosx=t-1,与已知条件2sinx-cosx=1联立接得sinx=(2t)/(3+t),cosx=(3t-3)/(3+t).再由(2t/(3+t))^2 + ((3t-3)/(3+t))^2 =1,解得t=0或2.即所求式子的值为0或2.
(二)化归思想
化归就是要化一般为特殊,化未知为已知。它能使解决问题时的山穷水尽变得柳暗花明。这种顿悟和解题的发现能培养学生的数学思维能力,正确的转化能达到事半功倍的效果。化归的思想用的很广泛,比如说三角函数里,利用诱导公式,可以把任意角的三角函数化归为锐角三角函数;利用两角和与两角差的正弦、余弦、正切公式,能够将和角与差角问题化为单角的正弦、余弦、正切问题;利用二倍角公式、能够将二倍角问题化为单角问题。它还可以充分运用到证不等式问题、以及各种函数问题中。有好多证不等式的方法,如分析法、反证法;以及分离变量、数形结合等方法都用到了化归的思想。
(三)归纳和猜想
有时候,可能遇到一个题,完全不能用常规方法解,或者说计算很复杂。但这些题往往会有一些特定规律,即有一类事件和式子。这样一来,我们就要学会由它的一些特殊事例或其全部可能情况,归纳出一般结论。一般的,它有完全归纳和不完全归纳两种,解题时要一般用到的是不完全归纳。
高中数学新课标从改革理念、课程内容到课程实施都发生了较大变化。要实现数学教育教学改革的目标,教师是关键,教学实施是主渠道,而教学设计是实现课程目标、实施教学的前提和重要基础。因此,在高中数学教学设计中必须充分考虑数学的学科特点,高中学生的心理特点,以及不同水平、不同兴趣学生的学习需要,运用多种教学方法和手段,引导学生积极主动地学习,掌握数学的基础知识和基本技能以及数学思想方法,发展应用意识和创新意识,形成积极的情感态度,提高数学素养,使学生对数学形成较为全面的认识,为未来发展和进一步学习打好基础。
一、重新审视基础知识,注重基本技能训练
1. 强调对基本概念和基本思想的理解和掌握。教学中应强调对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想(如函数、空间观念、运算、数形结合、向量、导数、统计、随机观念、算法等)要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。
2. 重视基本技能的训练。熟练掌握一些基本技能,对学好数学非常重要。在高中数学课程中,要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练,但应注意避免过于繁杂和技巧性过程的训练。
3. 审视基础知识与基本技能。随着科技的进步、时代的发展和数学研究的不断深化,高中数学的基础知识和基本技能也在发生变化,教学要与时俱进地审视基础知识和基本技能。例如统计、概率、导数、向量、算法等内容已经成为高中数学的基础知识。对原有的一些基础知识也要用新的理念来组织教学。例如,立体几何的教学可从不同视角展开――从整体到局部,从局部到整体,从具体到抽象,从一般到特殊,而且应注意用向量方法(代数方法)处理有关问题;不等式的教学要关注它的几何背景和应用;三角恒等变形的教学应加强与向量的联系,简化相应的运算和证明。
二、关注相关数学内容之间的联系,全面地解和认识数学
数学各部分内容之间的知识是相互联系的,学生的数学学习是循序渐进、逐步发展的。为了培养学生对数学内容联系的认识,在教学设计中,须要将不同的数学教学内容相互沟通,以加深学生对数学的认识和本质的理解。例如,可以借助二次函数的图像,比较和研究一元二次方程、不等式的解;比较等差数列与一次函数、等比数列与指数函数的图像,发现它们之间的联系等。
新的高中数学教学内容是根据学生的不同需要,分不同的系列和层次展开的,因此必须引起课堂教学设计的足够关注。同时,处理这些内容时,还要注意明确相关内容在不同模块中的要求及其前后联系,注意使学生在已有知识的基础上螺旋上升、逐步提高。例如,统计的内容,在必修系列课程中主要是通过尽可能多的实例,使学生在义务教育阶段的基础上,体会随机抽样、用样本估计总体的统计思想,并学习一些处理数据的方法;在选修课中则是通过各种不同的案例,使学生进一步学习一些常用的统计方法,加深对统计思想及统计在社会生产生活中的作用的认识。
三、关注知识的发生和发展过程,促进学生自主探索
在高中数学教学设计中,呈现教学内容应注意反映数学发展的规律,以及人们的认识规律,体现从具体到抽象、特殊到一般的原则。例如,在引入函数的一般概念时,应从学生已学过的具体函数(一次函数、二次函数)和生活中常见的函数关系(如气温的变化、出租车的计价)等入手,抽象出一般函数的概念和性质,使学生逐步理解函数的概念;立体几何内容,可以用长方体内点、线、面的关系为载体,使学生在直观感知的基础上,认识空间点、线、面的位置关系。
在教学设计中,应注意创设恰当的情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题,提出问题,经历数学的发现和创造过程,了解知识的来龙去脉。教学素材的呈现应为引导学生自主探索留有比较充分的空间,有利于学生经历观察、实验、猜测、推理、交流、反思等过程;还可以通过设置具有启发性、挑战性的问题,激发学生进行思考,鼓励学生自主探索,并在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对数学较为全面的体验和理解。
在必修3中第一章算法是独立的一章,看似与传统数学内容的联系很少,因此教师在教学中容易将它孤立起来,机械地、照本宣科地实施教学任务,教完后不会像函数、方程、数列那样在后续的教学中重复出现。学生常常是在高一新授课时利用两周学完,在高三复习的最后阶段做两套练习,此外就极少再接触到算法,有些学生及教师将算法比喻成“鸡肋”,食之无味,可有可无。
《普通高中数学课程标准》写到“算法是一个全新的课题,已经成为计算机科学的重要基础,它在科学技术和社会发展中起着越来越重要的作用。算法的思想和初步知识,也正在成为普通公民的常识。在高中数学必修课程中将学习算法的基本思想和初步知识,算法思想将贯穿高中数学课程的相关部分。”由此可见,不能孤立地教学算法,要使学生将算法的核心思想融入到已有的认知结构中去。结构主义也提出:学科教育的实质是使学生理解学科的基本结构,建立新知识和原有知识之间的联系。
二、数学的算法如何和信息技术的算法整合
如何整合数学的算法和信息技术的算法,将两者有机地结合起来,使得算法课既有数学味,又不失计算机的特色,这是困扰中学教师的又一个问题。
《标准》明确指出:“在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。”可见数学的算法和信息技术的算法是不同的。信息技术的算法即编程,是一项浩大的工程,通常要涉及大量细碎的技术问题。数学的算法不会让学生过多地纠缠于程序的调试和实现,而是要让学生感受算法的思想,理解算法的“算理”。
当然数学的算法也不可能完全脱离计算机的技术,教学中也要让学生体会算法的程序性、明确性、有限性等特点。必须帮助学生认识计算机工作的一些基本原理。
三、算法思想如何自然地在高中数学教学中渗透
《标准》要求“算法的思想方法应渗透在高中数学课程其他有关内容中,鼓励学生尽可能地运用算法解决相关问题。”其实这个要求不过分,算法对学生来说并不陌生。从小学的四则运算所遵循的先乘除、后加减的规则,括号的处理规则,到初中的方程组的解法,高中的二分法求方程的近似解,数列、递推数列求和都是算法的典型体现。几乎每个问题的解决都对应一个算法,高中数学的教学需要让学生站在较高的角度解决问题,算法思想的渗透和研究是必要的,这是每位高中数学教师都明白的。要学生很自然地认识到算法思想的重要性,使之成为学生的一种意识、一种思想、一种方法、一种工具,这也是教学过程中的重中之重。
四、突出算理,牢牢把握算法教学的重点
笔者认为首先必须明确算法的教学重点,算法的含义是“对一类问题的机械的、统一的求解方法”,其精髓是算理,算理具有概括性,它指向一类问题,以系列步骤为载体。因此教学的重点是突出算理,以教科书中提供的案例为载体,体会算法的基本思想,提高学生的逻辑思维能力,要防止将算法的教学变成程序语言和程序设计的教学。
2001年我国新一轮基础教育课程改革已正式启动,此次基础教育数学课程改革的特点之一就是把数学思想方法作为课程体系的一条主线。已经有不少文章探讨初中数学教材中的数学思想方法,但对高中数学教材中蕴含的数学思想方法探讨较少。事实上,高中数学教材的改革也已经开始酝酿,目前高中普遍使用的数学教材是人教社2000年版的《全日制普通高级中学教科书(试验修定本)•数学》(下称普通教材),也有部分高中根据学生的情况选用了原国家教委的《中学数学实验教材(试验本•必修•数学)》(下称实验教材)。可以说在素质教育推动下,与旧数学教材相比这两套新教材在内容、结构编排上都有了很大变化,都体现了新的数学教育观念,而在原国家教委的《中学数学实验教材》中尤其突出了数学思想和数学方法,体现了知识教学和能力培养的统一。本文就着重探讨高中数学内容中所蕴含的数学思想方法,并对实验教材与普通教材在数学思想方法处理方面进行比较。
二、高中数学应该渗透的主要数学思想方法
1、数学思想与数学方法
数学思想与数学方法目前尚没有确切的定义,我们通常认为,数学思想就是“人对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想”。就中学数学知识体系而言,中学数学思想往往是数学思想中最常见、最基本、比较浅显的内容,例如:模型思想、极限思想、统计思想、化归思想、分类思想等。数学思想的高层次的理解,还应包括关于数学概念、理论、方法以及形态的产生与发展规律的认识,任何一个数学分支理论的建立,都是数学思想的应用与体现。
所谓数学方法,是指人们从事数学活动的程序、途径,是实施数学思想的技术手段,也是数学思想的具体化反映。所以说,数学思想是内隐的,而数学方法是外显的,数学思想比数学方法更深刻,更抽象地反映了数学对象间的内在联系。由于数学是逐层抽象的,数学方法在实际运用中往往具有过程性和层次性特点,层次越低操作性越强。如变换方法包括恒等变换,恒等变换中又分换元法、配方法、待定系数法等等。
总之,数学思想和数学方法有区别也有联系,在解决数学问题时,总的指导思想是把问题化归为能解决的问题,而为实现化归,常用如一般化、特殊化、类比、归纳、恒等变形等方法,这时又常称用化归方法。一般来说,强调指导思想时称数学思想,强调操作过程时称数学方法。
2、高中数学应该渗透的主要数学思想方法
中学数学教育大纲中明确指出数学基础知识是指:数学中的的概念、性质、法则、公式、公理、定理及由数学基础内容反映出来的数学思想方法。可见数学思想方法是数学基础知识的内容,而这些数学思想方法是融合在数学概念、定理、公式、法则、定义之中的。
在初中数学中,主要数学思想有分类思想、集合对应思想、等量思想、函数思想、数形结合思想、统计思想和转化思想。与之对应的数学方法有理论形成的方法,如观察、类比、实验、归纳、一般化、抽象化等方法,还有解决问题的具体方法,如代入、消元、换元、降次、配方、待定系数、分析、综合等方法。这些数学思想与方法,在义务教材的编写中被突出的显现出来。
在高中数学教材中,一方面以抽象性更强的高中数学知识为载体,从更高层次延续初中涉及的那些数学思想方法的学习应用,如函数与映射思想、分类思想、集合对应思想、数形结合思想、统计思想和化归思想等。另一方面,结合高中数学知识,介绍了一些新的数学思想方法,如向量思想、极限思想,微积分方法等。
因为其中一些数学思想方法都介绍很多了,这里只谈一下初等微积分的基本思想方法。无穷的方法,即极限思想方法是初等微积分的基本思想方法,所谓极限思想(方法)是用联系变动的观点,把考察的对象(例如圆面积、变速运动物体的瞬时速度、曲边梯形面积等)看作是某对象(内接正n边形的面积、匀速运动的物体的速度,小矩形面积之和)在无限变化过程中变化结果的思想(方法),它出发于对过程无限变化的考察,而这种考察总是与过程的某一特定的、有限的、暂时的结果有关,因此它体现了“从在限中找到无限,从暂时中找到永久,并且使之确定起来”(恩格斯语)的一种运动辨证思想,它不仅包括极限过程,而且又完成了极限过程。纵观微积分的全部内容,极限思想方法及其理论贯穿始终,是微积分的基础。
三、普通教材与实验教材在数学思想方法处理方面的比较
普通高中教育是与九年义务教育相衔接的高一层次基础教育,在数学教材的编写上,必须要注意培养学生的创新精神、实践能力和终身学习的能力。与旧教材相比,新的数学教材开始重视渗透数学思想方法,那么高中现行使用的普通教材与实验教材在数学思想方法处理方面有何异同呢?因为内容太多,下面只能粗略的作一比较。
1、相同之处在于
普通教材与实验教材都多将数学思想方法的展示,融合在数学的定义、定理、例题中。例如集合的思想,就是通过集合的定义“把某些指定的对象集在一起就成为一个集合”,及通过用集合语言来表述问题,体现了集合思想方法来处理数学问题的直观性,深刻性,简洁性。对非常重要的数学思想方法也采用单独介绍的方式,如普通教材与实验教材都将归纳法列为一节,详细学习。
2、不同之处在于
(1)有些在普通教材中隐含方式出现的数学思想方法,在实验教材中被明确的指出来,并用以指导相关数学知识的展开。
关于数学方法
我们举不等式证明方法的例子。实验教材在不等式一章第三节“证明不等式”中详细讲述了不等式证明的方法,比较法、综合法、分析法、反证法。普通教材中虽然也在不等式一章,列出第三节“不等式的证明”介绍比较法、综合法、分析法,但对方法的分析不够透彻,更象是为了解释例题。比如在综合法的介绍中,普通教材只讲:“有时我们可以用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。”而在实验教材更准确更详细的介绍:“依据不等式的基本性质和已知的不等式,正确运用逻辑推理规律,逐步推导出所要证明的不等式的方法,称为综合法。综合法实质上是“由因导果”的直接论证,其要点是:四已知性质、定理、出发,逐步导出其“必要条件”,直到最后的“必要条件”是所证的不等式为止”。分析法的介绍也是这样,在实验教材中给出了分析法实质是“执果索因”的说明,这样学生能清楚的领会综合法、分析法的要义,会证不等式的同时学会了综合法和分析法,而不仅是能证明几个不等式。
关于数学思想
在实验教材第一册(下)研究性课题“函数学思想及其应用”中,明确提出“把一个看上去不是明显的函数问题,通过、或者构造一个新函数,利用研究函数的性质和图象,解决给出的问题,就是函数思想”,并举例用函数思想解决最值问题、方程、不等式问题,及一些实际应用的问题。其实普通教材在讲函数时也在用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系进行刻划并加以研究,但从未提函数思想方法。虽然实验教材中只是以研究性课题的形式,对函数思想作以介绍和应用探讨,可这已经是一种重视数学思想方法的信号,随着今后素质教育的推进,和实践经验的积累,我想数学思想方法在数学教材中会有更明确的介绍。我们举向量的例子。
(2)实验教材中还增加了一些数学思想方法的介绍。
关于数学方法
普通教材在第一册第三章“数列”中只介绍了数列的概念、等差等比数列及其求和,而在实验教材第二册(下)的第十章“数列”中增加了第四节“数列应用举例”介绍了作差,将某些复杂数列转化为等差等比数列的方法。这在潜移默化中也渗透了转化的思想。又如在第一册(上)中,增加了研究性课题“待定系数法的原理、方法及初步应用”,阅读材料“插值公式与实验公式”,虽然不是作为正式章节,但也体现了对数学思想方法的重视。再如数学归纳法普通教材介绍的相当简略,而实验教材详细介绍了什么是归纳法,归纳法的结论是否一定正确,什么是数学归纳法归纳起始命题等问题,还举了大量例子,切实注重让学生真正理解方法。
关于数学思想
实验教材中对向量,解析几何的处理体现了将向量思想,几何代数化思想的引入,并用这些数学思想方法来统领相关数学知识的介绍。实验教材在第六章“平面向量”开首就讲:“代数学的基本思想方法是运用运算律去系统地解答各种类型的代数问题;几何学研究探索的内容是空间图形的性质。……在这一章中,我们首先要把表达“一点相对另一点的位置”的量定义为一种新型的基本几何量……我们称之为向量,……这样,我们就可以用代数的方法研究平面图形性质,把各种各样的几何问题用向量运算的方法来解答。再看普通教材第五章“平面向量”的前提介绍:“……,位移是一个既有大小又有方向的量,这种量就是我们本章报要研究的向量。向量是数学中的重要概念之一。向量和数一样也能进行运算,而且用向量的有关知识更新还能有效地解决数学、物理、等学科中的很多问题。这一章里,我们将学习向量的概念、运算及其简单的应用。”显然实验教材是从数学思想方法的高度来引入向量,这也使后面内容的学习可以以此为线索,体现了知识的内在统一。实验教材在第六章“平面向量”之后,紧接着设置了第七章“直线和圆”,从第七章的内容提要中我们看出这样设计是有良苦用心的。内容提要如下:“人们对于事物的认识和理解,总是要经过逐步深化的过程和不断推进的阶段。对于空间的认识和理解,就是先有实验几何,然后推进到推理几何,理推进到解析几何。在第六章,我们引进了平面向量,并且建立了向量的基本运算结构,把平面图形的基本性质转化为得量的运算和运算律,从而奠定了空间结构代数化的基础;再通过向量及其运算的坐标表示,实现了从推理几何到解析几何的转折。解析几何是用坐标方法研究图形,基本思想是通过坐标系,把点与坐标、曲线与方程等联系起来,从而达到形与数的结合,把几何问题转化为代数问题进行研究和解决。”并且在后面直线的方程、直线的位置关系点到直线的距离几节中都自然而然的延续了向量的思想和方法,使直线的学习连惯、完整、深刻。而普通教材将第一册(下)的第五章设为“平面向量”,在第二册(上)的第七章才设置“直线和圆的方程”,中间隔了不等式一章,并且在内容上,也没有将向量与直线方程联系起来,关于法向量、点直线点法式方程都没有讲,只是随后设置了“向量与直线”的阅读材料简单介绍法向量、直线间的位置关系。
四、重视数学思想方法,深化数学教材改革
1、在知识发生过程中渗透数学思想方法
这主要是指定义、定理公式的教学。一是不简单下定义。数学的概念既是数学思维基础,又是数学思维的结果。概念教学不应简单地给出定义,而是应引导学生感受或领悟隐含于概念形成之中的数学思想方法。二是定理公式介绍中不过早下结论,可能的话展示定理公式的形成过程,给教师、学生留有参与结论的探索、发现和推导过程的机会。
2、在解决问题方法的探索中激活数学思想方法
①注重解题思路的数学思想方法分析。在例题、定理证明活动中,揭示其中隐含的数学思维过程,才能有效地培养和发展学生的数学思想方法。如运用类比、归纳、猜想等思想,发现定理的结论,学会用化归思想指导探索论证途径等。
数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。回归课本,自己先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,欲速则不达。复习课的容量大、内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。
二、夯实基础,提炼方法
在第一轮复习要求学生打好基础,牢固掌握课本上的重点知识及常用的基本思想和方法。近两年来的高考数学试题的难度比较稳定,对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,通过对数学知识的考查,反映考生对数学思想和方法的理解;命题主要从学科整体意义和思想价值立意,另一个特点是强化对通性通法的考查,淡化特殊的技巧,这更加突出了对数学思想方法核心部分的考查。
数学的思想方法是数学的精髓,只有运用数学思想方法,才能把数学的知识与技能转化为分析问题和解决问题的能力,才能体现数学的学科特点,才能形成数学的素质,因此,在系统复习的阶段,一定要打好扎实的基础,深刻领会数学思想方法,以适应高考要求。例如解析几何的学科特点是用代数的方法研究、解决几何的问题,坐标系是建立代数与几何联系的桥梁,解题时既要善于把几何图形的形状、大小、位置关系等方面的问题通过坐标系转化为曲线方程,又要善于运用代数的方法解决几何问题。
高考试题中主要从以下几个方面对数学思想进行考察:(1)常用的数学方法:配方法、消元法、换元法、待定系数法、降次、数学归纳法、坐标法、参数法等。(2)数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等。(3)数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳与演绎等。(4)重要的思想:主要有函数和方程、数形结合思想、分类讨论思想、转化(化归)思想等。
三、以“错”纠错,查漏补缺
这里说的“错”,是指把平时做作业中的错误收集起来。高三复习,各类试题要做几十套,甚至上百套。如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。
四、创建知识网络体系
在第一轮复习时,注意加强课本上各知识点的联系,使学生对知识系统化网络化,加深对知识的理解和记忆。(1)横向联系。数学考试中对数学知识的考查,特别注意“点”和“面”的结合。考查的面宽,知识点在每份试卷有100多个,例如函数是高中数学的主干,其知识和方法,与不等式、方程、数列、平面三角、解析几何、极限与导数的联系十分密切,相互渗透,相互作用,自然成为高考中考查的重点内容。向量是一个重要的运算工具,不能把它作为一个独立的单纯的知识点学习,应学会使用这个工具。(2)纵向联系。例如函数是高中数学的一条主线,在高中数学中占有重要的地位,由于对函数知识的综合考查能够比较全面看出学生运用数学知识解决问题的能力,所以高考中对函数的考查是一个重点。在复习函数时,我们由函数的概念入手,到函数的性质:定义域、值域、图象、单调性、奇偶性、周期性、最(极)值、对称性、可逆性、连续性、可导性等十一个方面来学习。尤其是处理函数的最(极)值问题、值域问题、单调性问题、不等式等都可以用导数这一工具来解决,常使问题大大简化。同时总结中学数学的常见的函数:正比、反比、一次、二次、指数、对数、三角以及由它们复合而成的一些基本初等函数,较熟练地掌握它们的图像和性质。所以复习函数由浅入深,逐步到位。第一轮复习中在课堂上对一些重点、难点概念要注意重点复习。系统复习知识不是简单的重复和机械的记忆,而是要把所学的知识形成网络化,形成体系,基本达到综合、灵活应用的水平。
数学思想所指的是,对于数学事实以及概念和理论的本质认识,这是对数学知识的一种高度概括。数学思想在数学认识活动中,它的具体反映和体现是数学方法,并且数学方法还是处理探索解决数学问题,以及实现数学思想的手段以及重要工具。在教学中,渗透数学这种思想方法,对于提高学生的综合数学素质,起到的作用是不可替代的。对渗透数学这种思想方法的重视,对于教学取得成功是非常关键的。因此,在高中数学函数教学中渗透数学思想方法的研究是很有必要的。
一、集合思想
集合的定义是:一些特定的事物,它们所组成的整体,在这些事物中,它们中的每一个都被称为这个集合的一个元素。我们可以把集合这种思想融入到高中函数教学中,增强学生的集体意识,还可以利用高中数学的重要特点,也就是严谨性,学会在逻辑用语中,尽力地教会学生,应该认真看清楚题目,充分理解题目的意思,而且还可以从题目中已经给出的条件,用来推敲出其他的条件,并且可以分析出来哪些是有帮助的,而哪些是没有意义的。将那些有帮助的、会用到的条件归为一个整体,为成功解题做好铺垫。
二、方程与函数思想
方程与函数思想,可以说是高中数学函数的基本思想,在历年的高考中也是经常出现,而且是重点和难点。目前所使用的高中教材,大部分是以知识结构作为编写体系来进行的,并且这其中所蕴含的各种数学教学思想,还是见于整个教材之中,所以,对于大多数的学生来说,如果只侧重于用一种方法来解答题目,不会做到举一反三,很容易导致数学思想方法的主观随意性。函数思想的含义是:运用运动以及变化的观点,可以来建立函数关系,或是构造函数,并且运用函数的图像,以及性质去分析问题,或者是转化问题,从而达到解决问题的目的;方程思想的含义是:分析数学教学问题中的各个变量间的等量关系,并据此建立方程,或者是方程组,也可以构造方程,并运用方程的各种性质去分析问题、转化问题,进而解决问题。方程与函数的思想,在数学教学中,它非常强调对学生能力的培养,而且非常注重对学生的运算能力以及他们的逻辑思维能力的训练,让学生将他们所学的知识尽量都运用到生产以及生活中,运用到实际工作去,与此同时,还可以了解题的技能以及技巧,以及理解题目中蕴含的各种数学思想,使得学生会主动地将所学的知识应用于社会实践中去。
三、化归、类比思想
化归、类比思想指对于需要解决的问题,将其转化归结为已有知识范围内的,可解的问题的一种数学意识,简单地说是将陌生化为熟悉,或者是将复杂化为简单,也可以说是将抽象的问题,充分转化为具体直观的问题,更通俗的是将一般性的问题,经过转化,成为直观的、比较特殊的问题。而且,化归、类比思想可以说是高中数学函数中最常见、最基本的思想方法,以至于函数中,几乎一切问题的解决,几乎是离不开化归以及类比。在高考中,很大部分试题,它们条件与目标的联系一般都不是显而易见的,只有通过在不断的转化过程中,才有机会去发现题目所给条件与目标之间的联系,因此归结出来一个能够解决问题的方法。
四、整形结合思想
数形结合思想的含义:在研究与解决数学问题的时候,可以将反映问题的比较抽象的数量关系,通过与直观的平面以及空间图形相结合起来进行思考,从而得出解决问题的办法。图形整合也是通过将抽象思维,与比较形象思维有机地结合起来解决问题,这是一种重要的数学解题方法。这种方法具有直观性以及灵活性的特点。
五、结束语
数学思想在数学认识活动中,它的具体反映和体现是数学方法,并且数学方法还是处理探索解决数学问题,以及实现数学思想的手段以及重要工具。在高中数学函数教学中,具体而言它包括集合思想、方程与函数思想、化归类比思想以及整形结合思想等。在教学中,渗透数学这种思想方法,对于提高学生的综合数学素质,起到的作用是不可替代的。因此,在进行数学教学时必须积极进行数学思想方法的传授。
参考文献
[1]邓勤 新课程背景下初高中数学教学的有效衔接――从函数概念的教学谈起[J].数学通报,2011,(02)。
[2]孙雪飞 浅谈三角函数章节教学中学生数学思想的培养[J].新课程学习(基础教育),2010,(10)。
2.数学建模在高中数学教学中的应用
2.1用数学建模思想概括数学知识
许多不同版本的高中数学教材都用数学建模的思想构建了数学知识体系,如人教版A中将函数介绍为“许多运动变化现象都表现变量之间的依赖关系.在数学上,用函数模型描述了这种相互关系,并通过函数的性质分析了各因素之间的变化规律”.人教版B版关于函数的定义是,“函数是描述变量之间依赖关系和集合之间关系的一个基本的数学模型,是研究事物变化的规律和之间的关系的一个基本的数学工具”.北师大版关于函数的描述是,“函数是分析事物变化规律的数学模型,是数学的基本概念,函数思想是研究数学问题的基本思想”,以上几个版本都在课本中设置了函数的章节.在高中数学教学中,只要教师能够领会函数的真正内涵,就很容易设置出相应的数学教学模式.有些教材,如苏教版没有设置数学建模章节,教师可以根据自行的教学内容,从数学模型的角度设置函数的概念,用具体问题的数学建模来引入新课.
2.2解决问题的过程分解
在高中数学的学习中,由于学生长期以来解决数学问题的方式和学习数学知识的方法与数学建模的思维存在着较大的差异,所以数学模型的构建难度比较大.因此,为了解决学生在数学建模方面的困境,必须要鼓励学生多参与数学模型的构建活动,教师要培养学生构建数学模型的思维,通过分析数学模型设计、构建的过程、以及模型的应用等提示,提高学生构建模型的思维,概括出建模中蕴含的数学思想和思维方法,设置一些适合于高中学生思维相符合的数学建模,让学生在建模中体验建模成功的感觉,树立建模的信心,培养学生的数学思维能力、创新能力和实践能力.教师在高中数学教学中,可以将完整的数学建模分割为问题提出、模型推断、模型求解、模型检验等几大环节进行分解,在不同的环节设置不同数学问题,学生根据实际选择不同的问题对数学建模进行分析.本文中认为,利用数学建模解决数学问题时,可以在日常的教学中融入以下几种方式:
第一,在高中数学的课堂教学中,教师可以留出一些时间来介绍一个数学模型问题,让学生通过讨论的方式对问题进行分析,并提出新的模型推断,将推断的模型求解与检验放到课后去完成.例如,在数学函数模块的教学中可以选择以下问题,即“把半径为r的圆木料锯成横截面为矩形的木料,怎样才能使横截面的面积最大”.数学模型分析,如果要使横截面的面积最大,那么矩形的面积要做到最大.把矩形木料抽象为矩形,舍弃原型中的非本质属性“木料”.假设矩形的长为x,则宽为4r2-x2由此构成矩形面积公式模型S=xy=x4r2-x2.
第二,在数学的课堂教学中,要将所学的知识点与数学建模相结合起来,将所学的知识点应用到模型的定性推断问题上,让学生在课余时间完成数学建模的定量推断与求解、检验.许多传统的数学应用题也可纳入数学建模中进行研究.
第三,在若干具体问题的完成的数学模型上,归纳出建立数学模型的策略和方法.如从增长率问题、福利问题归纳出这些问题的数学建模等.
第四,在数学模型的构建上,要根据阶段性所学的知识点综合设置完整的数学模型.数学模型问题的选择与设置要与生活实际相结合,能够引起学生的兴趣,让学生能够体会到数学模型能够与人类的生活紧密联系,解决实际问题,体现出数学模型的价值.这样,学生看到能用数学知识解决实际问题,有利于增强学生学习数学的自信心和兴趣.
3.高中数学模型构建教学中所遵守的原则
3.1突出学生在数学模型构建中的主体地位
高中数学模型构建的过程就是将抽象和复杂的问题简化成数学模型,通过数学模型建立一个合理的解决问题的方法,并对这种方法进行检验.高中数学建模课程中将学生作为教学的主体,教师引导学生和鼓励学生尝试着将实际问题纳入数学模型的构建中,在数学模型的构建中,要多阅读、多思考、多练习和多请教,
让学生始终处于主动参与、主动探索的积极状态.
3.2重点思考和分析建模的数学思维过程
新课标对传统的高中数学知识作了较大的调整,内容变化也较大,有的从整个编排体系上都作了改变。但是,传统的高中数学知识中的重点内容仍然是高中学生学习的主要内容,在教学中对这些知识内容应拓广加深。
例如,增加了函数的最值及其几何意义,函数的最值常常与函数的值域有联系,而求函数的值域的基本方法有观察法、配方法、分离常数法、单调性法、图像法等,这些基本方法应该让学生了解。 二次函数,它一直是高(初)中的重点基础知识,在高中数学中二次函数可以与其它许多数学知识相联系,因此拓广和加深二次函数是必要的。例如在高中数学中如闭区间上二次函数的值域;二次函数含参数讨论最值;利用二次函数判断方程根的分布等,这些内容可作适当拓广。 要补充“十字相乘法”、“一元二次方程的根与系数的关系”等知识。函数的图像,除了学习指数函数和对数函数、五个简单幂函数的图象外,应该对三种图像变换:平移变换、伸缩变换、对称变换作适当拓广。《标准》强调指数函数、对数函数、幂函数是三类不同的函数增长模型。在教学中,要求收集函数模型的应用实例,了解函数模型的广泛应用;要求将函数的思想方法贯穿在整个高中数学的学习中,学生对函数概念的认识和掌握,需要多次反复,不断加深理解。
又如,数列一直是高中数学的重点知识。按照教材要求,首先讲数列的一般知识,然后学习等差,等比数列的有关知识,而数列的递推关系,是反映数列的重要特征,也是经常用到的,在讲完了等差,等比数列之后,仍然可以考虑把数列的递推关系的问题适当加深,使学生能解一些简单的递推题目。课本要求掌握等差数列、等比数列求和,而对于非等差数列、非等比数列求和问题,常转化为等差等比数列用公式求和也可用以下方法求解:分组转化法、裂项相消法、错位相减法、倒序相加法。
圆锥曲线是解析几何的重点内容,是高中阶段传统的数学内容,强调知识的发生、发展过程和实际应用,突出了几何的本质。新教材要求学生能够经历椭圆曲线的形成过程,目的是让学生对圆锥曲线的定义和几何背景有一个比较深入地了解。新教材设计了一个平面截圆锥得到椭圆的过程,“有条件的学校应充分发挥现代教育技术的作用,利用计算机演示平面截圆锥所得的圆锥曲线。”在这里要拓宽学生视野,树立数形结合的观点,要善于把几何条件转化为等价的代数条件,进而利用方程求解,在解析几何中,对运算能力也较过去要求更高,这就需要加强理解能力的训练,使学生解决一要会算,二要算对这两大难点。
二、对新增加的知识内容加强基础训练
新课标中增加了一部分新的数学知识,特别是选修系列中新内容较多,有些新内容与高等数学有关,对这些内容在教学中不宜当作高等数学知识来讲,应该关注学生感受背景,认识基本思想。
例如,“数列”部分内容有增有减,增加的内容有:等差数列与一次函数的关系;等比数列与指数函数的关系。突出了数列与函数的内在联系,强调数列是一种特殊的函数,让学生体会等差数列、等比数列与一次函数、二次函数的关系。这部分内容指出要保证基本技能的训练,但训练要控制难度和复杂程度。
又如“导数及其应用”部分内容有增有减,增加的内容有:函数的单调性与导数的关系;利用导数研究函数的单调性;函数在某点取得极值的充分条件和必要条件。应认识导数的本质是什么,这里的导数不应作为微积分初步来讲,把一些较复杂的复合函数求导也引入到教学中。
再如,古典概率问题,与排列组合有联系,又有区别,学生应理解清楚概率的意义,建立随机思想,而处理实际问题时又要会合理应用概率计算公式及原理。
三、加强数学应用问题的教学
新课标对高中数学知识的应用、数学建模提出了更高的要求,新课标的教材在这方面也大大加强了,许多知识是从实际问题引出,最后又要回到解决实际问题中去,但是作为教材受篇幅限制,不可能包括所有内容,而实际问题又是不断发展,不断产生的,因而对应用问题仍有许多地方可以进一步丰富素材。
例如,《标准》强调指数函数、对数函数、幂函数是三类不同的函数增长模型。在教学中,要求收集函数模型的应用实例,了解函数模型的广泛应用;要求将函数的思想方法贯穿在整个高中数学的学习中,学生对函数概念的认识和掌握,需要多次反复,不断加深理解。
又如,“分期付款”、“购房按揭”、“贷款买车”等目前生活中大量存在的实际问题,是与数列有密切联系的,讲完数列之后,可以让学生去分析研究目前各种分期付款的形式,在讨论问题中深化对数列的认识。
再如,教学中,要防止将导数仅仅作为一些规则和步骤来学习,而忽视它的思想和价值,指出任何事物的变化率都可以用导数来描述,注重导数的应用,例如:通过使利润最大、材料最省、效率最高等优化问题,体会导数在解决实际问题中的作用:强调数学文化,体会微积分的建立在人类文化发展中的意义和价值。
高中阶段的主要教学目的就是要突出培养学生的计算能力、空间想象能力、逻辑思维能力和分析问题、解决问题的能力。虽然这些能力在初中数学教学过程中也有所体现,但是在高中阶段才真正被提上日程,充分地表现了出来。要做好初高中数学教学的衔接工作,笔者认为可以采用以下几种措施。
一、明确教学要求
学生进入高一,一方面。教师不应该是忙忙碌碌于教授新课,而是应该对自己所教班级中学生的数学知识情况进行必要的摸底考试,了解学生的知识掌握程度和学习习惯;另一方面,教师不应该只专注于高中数学教材和大纲的研究和学习,还应结合初中数学知识体系,分析相对于初中的数学来说,高一教学内容的特点。在这个联系和比较中,就很容易地找到初高中知识的衔接点,建立知识网络。这样既能达到温故而知新的教学目的,又能帮助学生真正地理解数学知识和基本思想方法。
二、引领学习方法
二、高中数学教学方式的转变
在传统的高中数学教学中,大多数教师教学观念陈旧,把教科书当成学生学习的惟一对象,照本宣科,不加分析的满堂灌,学生则听得很乏味,感觉有点看电影。改变教与学的方式,是高中新课程标准的基本理念,在高中数学教学中,教师应把学生当成学习的主人,充分挖掘学生的潜能,处处激发学生学习数学的兴趣。教师不能大包大揽,把结论或推理直接展现给学生,而是要让学生独立思考,在此基础上,让师生、生生进行充分的合作与交流,努力实现多边互动。积极倡导“自主、合作、探究”的教学模式。同时,由于学生认知方式、水平、思维策略和学习能力的不同,一定会有个体差异,所以教师要实施“差异教学”使人人参与,人人获得必需的数学,这样也体现了教学中的民主、平等关系。
三、高中数学教学结构的转变
传统的封闭式教学,所有问题皆在课堂内解决(尤其高中数学课),学生时时处在被动接受的地位。在新的课程理念要求下,高中数学课由封闭式转变为开放式,给学生广阔的学习时空。教师开放组织形式,如教学统计知识时,教师可以组织学生调查单位、厂矿里各种生产情况、入口年龄分布情况等把课堂延伸到课外。开放教学内容,新课程教材在一定程度上与生产生活实践相结合,如个人所得税的计算等。为此,教师应引导学生走向家庭、社会寻找鲜活的数学内容,开放教学形式,允许学生根据学习需要,课前自学、尝试练习、提出疑问、小组合作等不受限制。开放教学过程。教师应给学生充分的探究机会,时刻关注并捕捉教学过程中师生互动产生的新情况、新问题,及时调整教学进程。
四、高中数学教学手段的转变
随着新课程实验的深入,它呼唤课堂教学要走向现代化,取而代之的是现代信息技术手段的广泛应用:多媒体教学平台的使用、网络技术的应用等,一改以往只凭“一张嘴、一支粉笔、一本书”的传统的课堂教学模式。例如,教学必修3中“统计”中的“数据收集和整理”的习题时,教师利用电脑设计教学情境,把课本上的插图变成实景,屏幕上有声有色地出现一辆辆摩托车、小汽车、大客车、载重车通过一路口,学生在实景中搜集数据,解决了课本难以解决的问题,学生的注意力集中,学习兴趣高涨,充分体会到实地收集数据的,收到事半功倍的效果,还有如教学必修4中探究函数y=Asin(ωx+φ)的图象,利用多媒体展现图象的平移、变换实况,学生能直观的看到变化的过程情景,自然容易接受。教学实践证明,运用现代信息技术手段,对改变学生学习数学的方式,激发学生学习数学的兴趣,提高课堂高中数学教学效率将产生重大的影响。运用现代信息技术手段教学不仅可以帮助学生理解数学概念、探索数学结论,还应鼓励学生使用现代技术手段处理繁杂的计算、解决实际问题,以取得更多的时间和精力去探索和发现数学的规律,培养创新精神和实践能力。
一、问题提出
数学思想方法是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍适用的方法。它能使人领悟到数学的真谛,学会数学的思考和解决问题,并对人们学习和应用数学知识解决问题的思维活动起着指导和调控的作用。日本数学教育家米山国藏认为,学生在进入社会以后,如果没有什么机会应用数学,那么作为知识的数学,通常在出校门后不到一两年就会忘掉,然而不管他们从事什么业务工作,那种铭刻在人脑中的数学精神和数学思想方法,会长期地在他们的生活和工作中发挥重要作用。所以突出数学思想方法教学,是当代数学教育的必然要求,也是数学素质教育的重要体现,如何在中学数学教材中体现数学思想方法也是一个十分重要的问题.
2001年我国新一轮基础教育课程改革已正式启动,此次基础教育数学课程改革的特点之一就是把数学思想方法作为课程体系的一条主线。已经有不少文章探讨初中数学教材中的数学思想方法,但对高中数学教材中蕴含的数学思想方法探讨较少。事实上,高中数学教材的改革也已经开始酝酿,目前高中普遍使用的数学教材是人教社2000年版的《全日制普通高级中学教科书(试验修定本)?数学》(下称普通教材),也有部分高中根据学生的情况选用了原国家教委的《中学数学实验教材(试验本?必修?数学)》(下称实验教材)。可以说在素质教育推动下,与旧数学教材相比这两套新教材在内容、结构编排上都有了很大变化,都体现了新的数学教育观念,而在原国家教委的《中学数学实验教材》中尤其突出了数学思想和数学方法,体现了知识教学和能力培养的统一。本文就着重探讨高中数学内容中所蕴含的数学思想方法,并对实验教材与普通教材在数学思想方法处理方面进行比较。
二、高中数学应该渗透的主要数学思想方法
1、 数学思想与数学方法
数学思想与数学方法目前尚没有确切的定义,我们通常认为,数学思想就是“人对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想”。就中学数学知识体系而言,中学数学思想往往是数学思想中最常见、最基本、比较浅显的内容,例如:模型思想、极限思想、统计思想、化归思想、分类思想等。数学思想的高层次的理解,还应包括关于数学概念、理论、方法以及形态的产生与发展规律的认识,任何一个数学分支理论的建立,都是数学思想的应用与体现。
所谓数学方法,是指人们从事数学活动的程序、途径,是实施数学思想的技术手段,也是数学思想的具体化反映。所以说,数学思想是内隐的,而数学方法是外显的,数学思想比数学方法更深刻,更抽象地反映了数学对象间的内在联系。由于数学是逐层抽象的,数学方法在实际运用中往往具有过程性和层次性特点,层次越低操作性越强。如变换方法包括恒等变换,恒等变换中又分换元法、配方法、待定系数法等等。
总之,数学思想和数学方法有区别也有联系,在解决数学问题时,总的指导思想是把问题化归为能解决的问题,而为实现化归,常用如一般化、特殊化、类比、归纳、恒等变形等方法,这时又常称用化归方法。一般来说,强调指导思想时称数学思想,强调操作过程时称数学方法。
2、 高中数学应该渗透的主要数学思想方法
中学数学教育大纲中明确指出数学基础知识是指:数学中的的概念、性质、法则、公式、公理、定理及由数学基础内容反映出来的数学思想方法。可见数学思想方法是数学基础知识的内容,而这些数学思想方法是融合在数学概念、定理、公式、法则、定义之中的。
在初中数学中,主要数学思想有分类思想、集合对应思想、等量思想、函数思想、数形结合思想、统计思想和转化思想。与之对应的数学方法有理论形成的方法,如观察、类比、实验、归纳、一般化、抽象化等方法,还有解决问题的具体方法,如代入、消元、换元、降次、配方、待定系数、分析、综合等方法。这些数学思想与方法,在义务教材的编写中被突出的显现出来。
在高中数学教材中,一方面以抽象性更强的高中数学知识为载体,从更高层次延续初中涉及的那些数学思想方法的学习应用,如函数与映射思想、分类思想、集合对应思想、数形结合思想、统计思想和化归思想等。另一方面,结合高中数学知识,介绍了一些新的数学思想方法,如向量思想、极限思想,微积分方法等。
因为其中一些数学思想方法都介绍很多了,这里只谈一下初等微积分的基本思想方法。无穷的方法,即极限思想方法是初等微积分的基本思想方法,所谓极限思想(方法)是用联系变动的观点,把考察的对象(例如圆面积、变速运动物体的瞬时速度、曲边梯形面积等)看作是某对象(内接正n边形的面积、匀速运动的物体的速度,小矩形面积之和)在无限变化过程中变化结果的思想(方法),它出发于对过程无限变化的考察,而这种考察总是与过程的某一特定的、有限的、暂时的结果有关,因此它体现了“从在限中找到无限,从暂时中找到永久,并且使之确定起来”(恩格斯语)的一种运动辨证思想,它不仅包括极限过程,而且又完成了极限过程。纵观微积分的全部内容,极限思想方法及其理论贯穿始终,是微积分的基础。
三、普通教材与实验教材在数学思想方法处理方面的比较
普通高中教育是与九年义务教育相衔接的高一层次基础教育,在数学教材的编写上,必须要注意培养学生的创新精神、实践能力和终身学习的能力。与旧教材相比,新的数学教材开始重视渗透数学思想方法,那么高中现行使用的普通教材与实验教材在数学思想方法处理方面有何异同呢?因为内容太多,下面只能粗略的作一比较。
1、相同之处在于
普通教材与实验教材都多将数学思想方法的展示,融合在数学的定义、定理、例题中。例如集合的思想,就是通过集合的定义“把某些指定的对象集在一起就成为一个集合”,及通过用集合语言来表述问题,体现了集合思想方法来处理数学问题的直观性,深刻性,简洁性。对非常重要的数学思想方法也采用单独介绍的方式,如普通教材与实验教材都将归纳法列为一节,详细学习。
2、 不同之处在于
(1)有些在普通教材中隐含方式出现的数学思想方法,在实验教材中被明确的指出来,并用以指导相关数学知识的展开。
关于数学方法
我们举不等式证明方法的例子。实验教材在不等式一章第三节“证明不等式”中详细讲述了不等式证明的方法,比较法、综合法、分析法、反证法。普通教材中虽然也在不等式一章,列出第三节“不等式的证明”介绍比较法、综合法、分析法,但对方法的分析不够透彻,更象是为了解释例题。比如在综合法的介绍中,普通教材只讲:“有时我们可以用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。”而在实验教材更准确更详细的介绍:“依据不等式的基本性质和已知的不等式,正确运用逻辑推理规律,逐步推导出所要证明的不等式的方法,称为综合法。综合法实质上是“由因导果”的直接论证,其要点是:四已知性质、定理、出发,逐步导出其“必要条件”,直到最后的“必要条件”是所证的不等式为止”。分析法的介绍也是这样,在实验教材中给出了分析法实质是“执果索因”的说明,这样学生能清楚的领会综合法、分析法的要义,会证不等式的同时学会了综合法和分析法,而不仅是能证明几个不等式。
关于数学思想
在实验教材第一册(下)研究性课题“函数学思想及其应用”中,明确提出“把一个看上去不是明显的函数问题,通过、或者构造一个新函数,利用研究函数的性质和图象,解决给出的问题,就是函数思想”,并举例用函数思想解决最值问题、方程、不等式问题,及一些实际应用的问题。其实普通教材在讲函数时也在用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系进行刻划并加以研究,但从未提函数思想方法。虽然实验教材中只是以研究性课题的形式,对函数思想作以介绍和应用探讨,可这已经是一种重视数学思想方法的信号,随着今后素质教育的推进,和实践经验的积累,我想数学思想方法在数学教材中会有更明确的介绍。我们举向量的例子。
(2)实验教材中还增加了一些数学思想方法的介绍。
关于数学方法
普通教材在第一册第三章“数列”中只介绍了数列的概念、等差等比数列及其求和,而在实验教材第二册(下)的第十章“数列”中增加了第四节“数列应用举例”介绍了作差,将某些复杂数列转化为等差等比数列的方法。这在潜移默化中也渗透了转化的思想。又如在第一册(上)中,增加了研究性课题“待定系数法的原理、方法及初步应用”,阅读材料“插值公式与实验公式”,虽然不是作为正式章节,但也体现了对数学思想方法的重视。再如数学归纳法普通教材介绍的相当简略,而实验教材详细介绍了什么是归纳法,归纳法的结论是否一定正确,什么是数学归纳法归纳起始命题等问题,还举了大量例子,切实注重让学生真正理解方法。
关于数学思想
实验教材中对向量,解析几何的处理体现了将向量思想,几何代数化思想的引入,并用这些数学思想方法来统领相关数学知识的介绍。实验教材在第六章“平面向量”开首就讲:“代数学的基本思想方法是运用运算律去系统地解答各种类型的代数问题;几何学研究探索的内容是空间图形的性质。……在这一章中,我们首先要把表达“一点相对另一点的位置 ”的量定义为一种新型的基本几何量……我们称之为向量,……这样,我们就可以用代数的方法研究平面图形性质,把各种各样的几何问题用向量运算的方法来解答。再看普通教材第五章“平面向量”的前提介绍:“……,位移是一个既有大小又有方向的量,这种量就是我们本章报要研究的向量。向量是数学中的重要概念之一。向量和数一样也能进行运算,而且用向量的有关知识更新还能有效地解决数学、物理、等学科中的很多问题。这一章里,我们将学习向量的概念、运算及其简单的应用。”显然实验教材是从数学思想方法的高度来引入向量,这也使后面内容的学习可以以此为线索,体现了知识的内在统一。实验教材在第六章“平面向量”之后,紧接着设置了第七章“直线和圆”,从第七章的内容提要中我们看出这样设计是有良苦用心的。内容提要如下:“人们对于事物的认识和理解,总是要经过逐步深化的过程和不断推进的阶段。对于空间的认识和理解,就是先有实验几何,然后推进到推理几何,理推进到解析几何。在第六章,我们引进了平面向量,并且建立了向量的基本运算结构,把平面图形的基本性质转化为得量的运算和运算律,从而奠定了空间结构代数化的基础;再通过向量及其运算的坐标表示,实现了从推理几何到解析几何的转折。解析几何是用坐标方法研究图形,基本思想是通过坐标系,把点与坐标、曲线与方程等联系起来,从而达到形与数的结合,把几何问题转化为代数问题进行研究和解决。”并且在后面直线的方程、直线的位置关系点到直线的距离几节中都自然而然的延续了向量的思想和方法,使直线的学习连惯、完整、深刻。而普通教材将第一册(下)的第五章设为“平面向量”,在第二册(上)的第七章才设置“直线和圆的方程”,中间隔了不等式一章,并且在内容上,也没有将向量与直线方程联系起来,关于法向量、点直线点法式方程都没有讲,只是随后设置了“向量与直线”的阅读材料简单介绍法向量、直线间的位置关系。
四、重视数学思想方法,深化数学教材改革
1、在知识发生过程中渗透数学思想方法
这主要是指定义、定理公式的教学。一是不简单下定义。数学的概念既是数学思维基础,又是数学思维的结果。概念教学不应简单地给出定义,而是应引导学生感受或领悟隐含于概念形成之中的数学思想方法。二是定理公式介绍中不过早下结论,可能的话展示定理公式的形成过程,给教师、学生留有参与结论的探索、发现和推导过程的机会。
2、在解决问题方法的探索中激活数学思想方法
①注重解题思路的数学思想方法分析。在例题、定理证明活动中,揭示其中隐含的数学思维过程,才能有效地培养和发展学生的数学思想方法。如运用类比、归纳、猜想等思想,发现定理的结论,学会用化归思想指导探索论证途径等。
②增强解题的数学思想方法指导。解题的思维过程都离不开数学思想的指导,可以说,数学思想指导是开通解题途径的金钥匙。将解题过程从数学思想高度进行提炼和反思,并从理论高度叙述数学思想方法,对学生真正理解掌握数学思想方法,产生广泛迁移有重要意义。 3、在知识的总结归纳过程中概括数学思想方法,以数学思想方法为主线贯穿相关知识
概括数学思想方法可以从某个概念、定理、公式和问题教学中纵横归纳,反过来也可以以数学思想方法统领相关知识,
总之,数学思想方法是数学的灵魂和精髓,我们在中学数学教材中,应努力体现数学思想方法,不失时机的向学生渗透数学思想方法,学生方能在运用数学解决问题自觉运用数学思想方法分析问题、解决问题,这也是素质教育的要求。
参考文献:
王传增 初中数学教学中的数学思想方法教 教学与管理 2001年4月
李艳秋 发挥义务教材特点,培养学生数学素 教育实践与研究 2002年8月
曹才翰 章建跃 数学教育心理学 北京师范大学出版社 2001
一、问题提出
数学思想方法是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍适用的方法。它能使人领悟到数学的真谛,学会数学的思考和解决问题,并对人们学习和应用数学知识解决问题的思维活动起着指导和调控的作用。日本数学教育家米山国藏认为,学生在进入社会以后,如果没有什么机会应用数学,那么作为知识的数学,通常在出校门后不到一两年就会忘掉,然而不管他们从事什么业务工作,那种铭刻在人脑中的数学精神和数学思想方法,会长期地在他们的生活和工作中发挥重要作用。所以突出数学思想方法教学,是当代数学教育的必然要求,也是数学素质教育的重要体现,如何在中学数学教材中体现数学思想方法也是一个十分重要的问题.
2001年我国新一轮基础教育课程改革已正式启动,此次基础教育数学课程改革的特点之一就是把数学思想方法作为课程体系的一条主线。已经有不少文章探讨初中数学教材中的数学思想方法,但对高中数学教材中蕴含的数学思想方法探讨较少。事实上,高中数学教材的改革也已经开始酝酿,目前高中普遍使用的数学教材是人教社2000年版的《全日制普通高级中学教科书(试验修定本)•数学》(下称普通教材),也有部分高中根据学生的情况选用了原国家教委的《中学数学实验教材(试验本•必修•数学)》(下称实验教材)。可以说在素质教育推动下,与旧数学教材相比这两套新教材在内容、结构编排上都有了很大变化,都体现了新的数学教育观念,而在原国家教委的《中学数学实验教材》中尤其突出了数学思想和数学方法,体现了知识教学和能力培养的统一。本文就着重探讨高中数学内容中所蕴含的数学思想方法,并对实验教材与普通教材在数学思想方法处理方面进行比较。
二、高中数学应该渗透的主要数学思想方法
1、数学思想与数学方法
数学思想与数学方法目前尚没有确切的定义,我们通常认为,数学思想就是“人对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想”。就中学数学知识体系而言,中学数学思想往往是数学思想中最常见、最基本、比较浅显的内容,例如:模型思想、极限思想、统计思想、化归思想、分类思想等。数学思想的高层次的理解,还应包括关于数学概念、理论、方法以及形态的产生与发展规律的认识,任何一个数学分支理论的建立,都是数学思想的应用与体现。
所谓数学方法,是指人们从事数学活动的程序、途径,是实施数学思想的技术手段,也是数学思想的具体化反映。所以说,数学思想是内隐的,而数学方法是外显的,数学思想比数学方法更深刻,更抽象地反映了数学对象间的内在联系。由于数学是逐层抽象的,数学方法在实际运用中往往具有过程性和层次性特点,层次越低操作性越强。如变换方法包括恒等变换,恒等变换中又分换元法、配方法、待定系数法等等。
总之,数学思想和数学方法有区别也有联系,在解决数学问题时,总的指导思想是把问题化归为能解决的问题,而为实现化归,常用如一般化、特殊化、类比、归纳、恒等变形等方法,这时又常称用化归方法。一般来说,强调指导思想时称数学思想,强调操作过程时称数学方法。
2、高中数学应该渗透的主要数学思想方法
中学数学教育大纲中明确指出数学基础知识是指:数学中的的概念、性质、法则、公式、公理、定理及由数学基础内容反映出来的数学思想方法。可见数学思想方法是数学基础知识的内容,而这些数学思想方法是融合在数学概念、定理、公式、法则、定义之中的。
在初中数学中,主要数学思想有分类思想、集合对应思想、等量思想、函数思想、数形结合思想、统计思想和转化思想。与之对应的数学方法有理论形成的方法,如观察、类比、实验、归纳、一般化、抽象化等方法,还有解决问题的具体方法,如代入、消元、换元、降次、配方、待定系数、分析、综合等方法。这些数学思想与方法,在义务教材的编写中被突出的显现出来。
在高中数学教材中,一方面以抽象性更强的高中数学知识为载体,从更高层次延续初中涉及的那些数学思想方法的学习应用,如函数与映射思想、分类思想、集合对应思想、数形结合思想、统计思想和化归思想等。另一方面,结合高中数学知识,介绍了一些新的数学思想方法,如向量思想、极限思想,微积分方法等。
因为其中一些数学思想方法都介绍很多了,这里只谈一下初等微积分的基本思想方法。无穷的方法,即极限思想方法是初等微积分的基本思想方法,所谓极限思想(方法)是用联系变动的观点,把考察的对象(例如圆面积、变速运动物体的瞬时速度、曲边梯形面积等)看作是某对象(内接正n边形的面积、匀速运动的物体的速度,小矩形面积之和)在无限变化过程中变化结果的思想(方法),它出发于对过程无限变化的考察,而这种考察总是与过程的某一特定的、有限的、暂时的结果有关,因此它体现了“从在限中找到无限,从暂时中找到永久,并且使之确定起来”(恩格斯语)的一种运动辨证思想,它不仅包括极限过程,而且又完成了极限过程。纵观微积分的全部内容,极限思想方法及其理论贯穿始终,是微积分的基础。
三、普通教材与实验教材在数学思想方法处理方面的比较
普通高中教育是与九年义务教育相衔接的高一层次基础教育,在数学教材的编写上,必须要注意培养学生的创新精神、实践能力和终身学习的能力。与旧教材相比,新的数学教材开始重视渗透数学思想方法,那么高中现行使用的普通教材与实验教材在数学思想方法处理方面有何异同呢?因为内容太多,下面只能粗略的作一比较。
1、相同之处在于
普通教材与实验教材都多将数学思想方法的展示,融合在数学的定义、定理、例题中。例如集合的思想,就是通过集合的定义“把某些指定的对象集在一起就成为一个集合”,及通过用集合语言来表述问题,体现了集合思想方法来处理数学问题的直观性,深刻性,简洁性。对非常重要的数学思想方法也采用单独介绍的方式,如普通教材与实验教材都将归纳法列为一节,详细学习。
2、不同之处在于
(1)有些在普通教材中隐含方式出现的数学思想方法,在实验教材中被明确的指出来,并用以指导相关数学知识的展开。
关于数学方法
我们举不等式证明方法的例子。实验教材在不等式一章第三节“证明不等式”中详细讲述了不等式证明的方法,比较法、综合法、分析法、反证法。普通教材中虽然也在不等式一章,列出第三节“不等式的证明”介绍比较法、综合法、分析法,但对方法的分析不够透彻,更象是为了解释例题。比如在综合法的介绍中,普通教材只讲:“有时我们可以用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。”而在实验教材更准确更详细的介绍:“依据不等式的基本性质和已知的不等式,正确运用逻辑推理规律,逐步推导出所要证明的不等式的方法,称为综合法。综合法实质上是“由因导果”的直接论证,其要点是:四已知性质、定理、出发,逐步导出其“必要条件”,直到最后的“必要条件”是所证的不等式为止”。分析法的介绍也是这样,在实验教材中给出了分析法实质是“执果索因”的说明,这样学生能清楚的领会综合法、分析法的要义,会证不等式的同时学会了综合法和分析法,而不仅是能证明几个不等式。
关于数学思想
在实验教材第一册(下)研究性课题“函数学思想及其应用”中,明确提出“把一个看上去不是明显的函数问题,通过、或者构造一个新函数,利用研究函数的性质和图象,解决给出的问题,就是函数思想”,并举例用函数思想解决最值问题、方程、不等式问题,及一些实际应用的问题。其实普通教材在讲函数时也在用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系进行刻划并加以研究,但从未提函数思想方法。虽然实验教材中只是以研究性课题的形式,对函数思想作以介绍和应用探讨,可这已经是一种重视数学思想方法的信号,随着今后素质教育的推进,和实践经验的积累,我想数学思想方法在数学教材中会有更明确的介绍。我们举向量的例子。
(2)实验教材中还增加了一些数学思想方法的介绍。
关于数学方法
普通教材在第一册第三章“数列”中只介绍了数列的概念、等差等比数列及其求和,而在实验教材第二册(下)的第十章“数列”中增加了第四节“数列应用举例”介绍了作差,将某些复杂数列转化为等差等比数列的方法。这在潜移默化中也渗透了转化的思想。又如在第一册(上)中,增加了研究性课题“待定系数法的原理、方法及初步应用”,阅读材料“插值公式与实验公式”,虽然不是作为正式章节,但也体现了对数学思想方法的重视。再如数学归纳法普通教材介绍的相当简略,而实验教材详细介绍了什么是归纳法,归纳法的结论是否一定正确,什么是数学归纳法归纳起始命题等问题,还举了大量例子,切实注重让学生真正理解方法。
关于数学思想
实验教材中对向量,解析几何的处理体现了将向量思想,几何代数化思想的引入,并用这些数学思想方法来统领相关数学知识的介绍。实验教材在第六章“平面向量”开首就讲:“代数学的基本思想方法是运用运算律去系统地解答各种类型的代数问题;几何学研究探索的内容是空间图形的性质。……在这一章中,我们首先要把表达“一点相对另一点的位置”的量定义为一种新型的基本几何量……我们称之为向量,……这样,我们就可以用代数的方法研究平面图形性质,把各种各样的几何问题用向量运算的方法来解答。再看普通教材第五章“平面向量”的前提介绍:“……,位移是一个既有大小又有方向的量,这种量就是我们本章报要研究的向量。向量是数学中的重要概念之一。向量和数一样也能进行运算,而且用向量的有关知识更新还能有效地解决数学、物理、等学科中的很多问题。这一章里,我们将学习向量的概念、运算及其简单的应用。”显然实验教材是从数学思想方法的高度来引入向量,这也使后面内容的学习可以以此为线索,体现了知识的内在统一。实验教材在第六章“平面向量”之后,紧接着设置了第七章“直线和圆”,从第七章的内容提要中我们看出这样设计是有良苦用心的。内容提要如下:“人们对于事物的认识和理解,总是要经过逐步深化的过程和不断推进的阶段。对于空间的认识和理解,就是先有实验几何,然后推进到推理几何,理推进到解析几何。在第六章,我们引进了平面向量,并且建立了向量的基本运算结构,把平面图形的基本性质转化为得量的运算和运算律,从而奠定了空间结构代数化的基础;再通过向量及其运算的坐标表示,实现了从推理几何到解析几何的转折。解析几何是用坐标方法研究图形,基本思想是通过坐标系,把点与坐标、曲线与方程等联系起来,从而达到形与数的结合,把几何问题转化为代数问题进行研究和解决。”并且在后面直线的方程、直线的位置关系点到直线的距离几节中都自然而然的延续了向量的思想和方法,使直线的学习连惯、完整、深刻。而普通教材将第一册(下)的第五章设为“平面向量”,在第二册(上)的第七章才设置“直线和圆的方程”,中间隔了不等式一章,并且在内容上,也没有将向量与直线方程联系起来,关于法向量、点直线点法式方程都没有讲,只是随后设置了“向量与直线”的阅读材料简单介绍法向量、直线间的位置关系。
四、重视数学思想方法,深化数学教材改革
1、在知识发生过程中渗透数学思想方法
这主要是指定义、定理公式的教学。一是不简单下定义。数学的概念既是数学思维基础,又是数学思维的结果。概念教学不应简单地给出定义,而是应引导学生感受或领悟隐含于概念形成之中的数学思想方法。二是定理公式介绍中不过早下结论,可能的话展示定理公式的形成过程,给教师、学生留有参与结论的探索、发现和推导过程的机会。
2、在解决问题方法的探索中激活数学思想方法
①注重解题思路的数学思想方法分析。在例题、定理证明活动中,揭示其中隐含的数学思维过程,才能有效地培养和发展学生的数学思想方法。如运用类比、归纳、猜想等思想,发现定理的结论,学会用化归思想指导探索论证途径等。
②增强解题的数学思想方法指导。解题的思维过程都离不开数学思想的指导,可以说,数学思想指导是开通解题途径的金钥匙。将解题过程从数学思想高度进行提炼和反思,并从理论高度叙述数学思想方法,对学生真正理解掌握数学思想方法,产生广泛迁移有重要意义。3、在知识的总结归纳过程中概括数学思想方法,以数学思想方法为主线贯穿相关知识
概括数学思想方法可以从某个概念、定理、公式和问题教学中纵横归纳,反过来也可以以数学思想方法统领相关知识,
总之,数学思想方法是数学的灵魂和精髓,我们在中学数学教材中,应努力体现数学思想方法,不失时机的向学生渗透数学思想方法,学生方能在运用数学解决问题自觉运用数学思想方法分析问题、解决问题,这也是素质教育的要求。
参考文献:
王传增初中数学教学中的数学思想方法教教学与管理2001年4月
李艳秋发挥义务教材特点,培养学生数学素教育实践与研究2002年8月
曹才翰章建跃数学教育心理学北京师范大学出版社2001