时间:2023-08-29 09:20:03
引言:寻求写作上的突破?我们特意为您精选了4篇航空航天的发展范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
中图分类号:V211 文献标识码:A 文章编号:1671-2064(2017)12-0252-02
1 力学在航空航天领域的支柱地位
作为与材料科学、能源科学并肩的航空航天领域三大基础学科之一,力学在航空航天领域拥有无可辩驳的支柱地位。航空航天技术的发展与力学学科的发展有着举足轻重的关系。同样,力学学科的发展也推动了航空航天技术的发展。从航空航天的历史开端,力学便扮演着开天辟地的角色:莱特兄弟发明飞机前的时代,人类的航空器长期停留在热气球与飞艇的水平,人们普遍认为任何总密度比空气重的航空器是无法上天的;而随着流体力学的发展,越来越多总密度大于空气的航空器被发明出来进行试验,而莱特兄弟的飞机即为第一个成功的尝试,莱特兄弟的L洞也成为一个经典(图1)。从此,航空器的发展步入了快车道,各种结构的飞机翱翔于蓝天,从不到一吨的轻型飞机到上百吨的运输机,直至今天我们对机已经习以为常。
时至今日,航空航天的总体设计已由庞大的力学各分支支撑起来,从最基本的方面分类,可包括:飞行器整体气动外形归属于空气动力学;整体支承结构归属于结构力学以及材料力学;复合材料归属于复合材料力学;材料疲劳性能归属于疲劳分析;结构动力特性归属于振动力学;缺陷结构分析归属于损伤力学以及断裂力学。而对于具体的问题细分,则还有如:针对超高速飞行器的高超空气动力学;针对紊流等大气不稳定情况的非定常空气动力学;针对流固耦合问题的气动弹性力学;以及针对非金属材料的粘弹性力学等。此外,还有众多与力学相关的技术被发展起来,如有限元技术(FEM)等。
展望未来,力学发展的源动力在于航空航天综合多学科的交叉与技术。被誉为“工业之花”的航空航天工业,其研发生产涵盖了目前已知的所有工科门类,如此多的学科交叉下,力学的发展势必会与其他学科进行技术交流,这会带来问题的进一步复杂化,同时也丰富了力学的研究内容。
2 航空航天领域力学发展新挑战
航空航天的发展,给力学带来了新的挑战。结构的日趋复杂,给力学计算带来困难;繁琐的理论公式,需根据工程需要进行必须的简化;新材料的应用在航空航天领域最为敏感,在为飞行器降低结构重量的同时,也带来诸多的不利因素如耐热性能差、环境敏感度高等;而在某些关键部件的多物理场耦合问题也将成为重要的研究方向。
2.1 程序化
航空航天器和大型空间柔性结构的分析规模往往高达数万个结点、近十万个自由度的计算量级,这些问题包括但不限于:飞行器的高速碰撞间题,如飞机的鸟撞, 坠撞,包容发动机的叶片与机匣设计,装甲的设计与分析,载人飞船在着陆或溅落时的撞击等。为了解决这种计算量庞大的问题,上世纪50年代初,力学便发展出一门崭新的分支学科――计算力学。伴随着电子计算机以及有限元技术的发展,计算力学取得辉煌的成绩,这也说明了其本身发展潜力巨大。
力学分析技术的发展,特别是对于各种非线性问题(几何非线性、材料非线性、接触问题等)分析能力,是长期存在的。然而在很长一段时间内,受到计算机能力的制约,以及模型建立本身的局限性,力学分析求解停留在解析方法和小规模数值算法中。这对于工程人员的设计工作是一个极大的限制,对于航空航天领域而言则尤甚如此。计算力学的发展,带来的效益是巨大的。首先其可以用计算机数值模拟一些常规的验证性试验和小部分研究型试验,这可以节省很大一笔试验费用。其次,其可以求解某些逆问题,逆问题的理论解往往无法通过非数值的手段得到。最后,从工程管理角度考虑,数值模拟方法大大节省了产品研发的周期,由此单位时间内产生了更多的经济收益。有限无技术分析机翼见图2。
上述计算力学给工程设计方面带来的种种好处,都基于一个很重要的前提。那就是力学问题程序化。如何将力学问题转化为一个计算机可以求解的程序,一直是计算力学研究的重点,比如有限元技术就是其中一个典型代表。目前,有限元技术已经涵盖了大部分力学问题,包括:静力学求解,动力学求解,各种非线性问题,以及多物理场耦合等。但值得注意的是,除了静力学以及相对简单的问题外,其余问题所用的算法目前精度仍然有限,相较于工程运用而言仍存在诸多壁垒。对于这些问题算法的更新,是力学问题程序化必须面对的挑战,仍需研究人员不断探索。
2.2 工程化
力学工程化依然是基于计算力学而讨论的。所不同的是,程序化是针对一项力学问题能不能解决,工程化关注的问题是如何使得力学问题的解决过程更符合工程需求。
21世纪的航空航天,已经越来越趋向于商业化,美国已有数家私有航天企业成立,我国的航天科技集团也在进行着一些商业卫星发射。而商业化的工程问题,所追求的目标永远是效益。因此,力学工程化发展也应基于这一要求。航空航天工程的研发工作,一直给人周期长的印象,动辄10年以上的研究周期,对于目前商业化的运营是不适用的。如何快速的给出解决方案,是今后力学工程化的重要考量。随着软件技术的发展,越来越多的数值计算可以通过可视化、图表化等快捷的交互式设计方法呈现出结果,这可以直观地给予工程师设计反馈,从而达到加快设计进程的目的。同时,直观的结果反馈,也能避免数据分析过程出现人为失误,起到规避风险的作用。
2.3 非均质化
新材料往往首先出现在航空航天领域,其中典型代表便是先进复合材料。先进复合材料具有高比强度、高比模量、耐腐蚀、耐疲劳、阻尼减震性好、破损安全性好以及性能可设计等优点。由于上述优点,先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。
复合材料的运用给力学提出了新要求,相比于传统各向同性的金属材料,其各向异性的力学特性使得非均质力学应运而生,代表便是复合材料力学的诞生。非均质化力学需要将材料的承力主方向设计为结构中的主承力方向,而非主承力方向则需要保证一定强度,不至于破坏,这是其主要的设计特点。相比各向同性材料,其理论模型更为复杂,相应的数值求解方法也没有那么完善。同时,实际中复合材料的性能分散性和环境依赖性相当复杂, 设计准则和结构设计值的确定还很保守,导致最终设计结果并没有理论中那么完美,很大程度上制约了工程领域大规模使用复合材料。对于国内而言,复合材料研究工作相比国外则更为落后,无论是设计经验还是试验数据积累都有不小差距。
建立完备的非均质化力学模型,积累足够的原始参数,大胆尝试提高复合材料的设计水平以及用量是今后力学非均质化的主要任务,需要研究人员付出更多的努力。
2.4 多物理场耦合
2.4.1 电磁与力学耦合
新时代下的航空航天材料,已不仅仅局限于提供简单的支承作用,功能化是航空航天器新材料发展的重点和热点,其最终目的是为了未来航空航天器发展智能化目标。
目前,越来越多的具有电-力耦合功能的新型材料正成为航空航天器结构材料的选择。因为在对飞行器的自我检测技术方面,具有电-力耦合功能的材料的受力状态与电磁性能存在特定的函数关系,由此系统能通过检测电磁性能达到检测受力状态的效果,这大大方便了对飞行器的健康监测,也有效保证了飞行器的安全。这其中耦合函数的准确性便成为关键,电-力耦合的发展能促进这些技术的健全,具有十分积极意义。
2.4.2 温度与力学耦合
温度场与力场的耦合主要体现在发动机上,对于发动机内部涵道的设计最优化一直是热力学着力解决的问题。
目前大部分飞机均采用喷气式发动机,包括:涡喷发动机、涡扇发动机以及涡桨发动机。上世纪40年代末,涡喷发动机出现,飞机飞行速度第一次能超过音速,带来了一场飞机发动机的技术革命。由此,包括进气道以及发动机涵道的设计成为发动机研发的一个关键点,早期的涡喷发动机,由于涵道上的设计缺陷,导致燃料燃烧产生热能转化为推进力的转化比很低,同时伴随着燃烧不充分,因此发动机耗油量很高且推力较小。经过几十年的发展,目前无论军用还是民用飞机发动机,大部分均采用涡扇发动机,通过优化得到的涵道形状最大化了单位燃油所提供的推力。图3为民用客机发动机涵道。
我国的飞机发动机工业水平距离世界领先水平仍有较大距离,特别是在大涵道比的商用发动机研发上。发展热力学,对热-力耦合问题进行更深入的研究,是发展我国飞机发动机事业的奠基石。
2.4.3 流固耦合
流固耦合是飞行器研制最基本的问题之一。几十年的发展历程中,基于流固耦合研究的飞机外形设计取得了诸多进展,包括整体机身外形的优化,翼梢小翼的出现等。随着飞机飞行速度的不断提高,特别是军用飞机机动性的要求,出现了许许多多新的流固耦合问题。比如针对飞机在大攻角飞行时(一般出现在军机上),传统小攻角气动表示法、稳定理论等均不再适用。因此,解决大攻角非定常问题,需要从飞行器运动以及流动方程同时出发,建立多自由度分析和数值模拟模型。这是典型的流固耦合问题。
同时,以往旧的流固耦合理论,在先进复合材料大量运用的今天,显然已经不再使用。对旧有理论进行必要的修正,也将成为流固耦合问题亟需完成的工作。
3 结语
当前,国家大力发展航空航天事业,作为高精尖产业,其所运用的理论与技术绝不能落后。力学作为一门古老而又应用广泛的学科,其对航空航天事业的发展起着举足轻重的作用。为符合未来航空航天领域发展,航空航天领域的力学应着力向着程序化、工程化、非均质化、以及多物理场耦合化综合发展。
参考文献
[1]杜善义.先进复合材料与航空航天[J].复合材料学报,2007(2):1-11.
一、制定航空航天产业促进法的必要性
航空航天产业是一个投资数百上千亿元的庞大国家项目,是一项庞大的系统工程,其具有投资规模大、持续时间长、科研推动力高等特点,应该说我国自70年代成功研发“两弹一星”成果的后就已经开始进入航空航天领域,系列火箭的研发,国际卫星发射业务,再到新世纪神州系列飞船升空、商飞集团组建等,我国在航空航天产业领域也开始了自己的布局与发展,三四十年来我国的航空航天产业从无到有,从小到大蓬勃发展,但是不可否认的是,当前我国的航空航天产业还是政策主导型,政策为主,法规为辅是当前主要的情况。政策作为行政决策的结果有着高速反应,灵活机动的特点,能够较好的切合每个时期的情况。但是航空航天产业自身研发周期长,投入大的特点,又恰恰需要明确目标坚定不移,如果太多受政治经济因素的制约只会产生更多的运十悲剧。
在过去的几十年中我国的航空航天产业的发展中两个重大的问题一直在困扰,其一是我国曾经未把航空工业技术列入国家高科技领域;二是航空工业要不要有强大的科研工作体系,预先研究在航空工业发展中占有什么样的位置①。而这些问题本身就与政策的不断变化有关系。而相比较于其他航空航天产业大国,我国在航空航天产业方面的立法相当滞后,有学者做过统计,截止2011年,美国现有《美同联邦航空条例》等法律法规,同时还有国家航天政策等产业政策及专项措施,已基本形成了以法律法规为主,产业政策为辅,专项措施为补充的呈“倒金字塔”型的航空航天产业政策体系,不仅体系健全,而且具有较强的权威性、强制性和针对性,极大地推动了美国航空航天产业发展②。与此相对应我国从法规的角度来说只有《民用航空法》,其他的绝大部分都是类似于指导意见,白皮书,中长期规划等政策性文件,整体缺乏稳定性、权威性和强制性,与美国的状况相类比的话可以称之为“正金字塔”型,这样的布局和特点对于航空航天产业的发展显得助力不足,因此为了更好地布局航空航天产业发展,推动该领域的进步,有必要制定规范明确的航空航天产业促进法。
二、航空航天产业促进法制定的可行性
事实上,提出制定航空航天产业促进法(振兴法)这样的动议并不是今天才有的话题,资料显示,早在1991年七届人大四次会议期间,110名人大代表联名提案,要求国家尽快制定《航空工业振兴法》,人大财经委和国务院法制局把该法(条例)列入国家立法计划③。但是上世纪九十年代正是我国由计划经济向市场经济转型的时候,无论是产业规模,国家经济科技实力或者是国际环境都还不成熟,因此在当时虽有必要性,却无可行性。时至今日,我国经济总量已经跃居世界第二位,一大批科研院所已经建立,特别是在比较薄弱的航空领域组建了商飞集团公司,积聚了大批有生力量,航空航天产业立法具备了条件。关于航空航天产业促进法立法的可行性,总体而言笔者认为有以下三条:
(一)、国际通行惯例是立法先行;虽然说立法总体具有滞后性,是对已经产生的规则的总结,但是产业促进法本身具有特殊性,产业促进法本身就是为了指导和促进航空产业的发展,例如美国在上世纪二十年代,飞机刚刚发明运用不久就制订了航空邮件法和商业航空法为新生的航空产业指明了发展方向,极大的促进了该产业的发展,我国目前流行的立法模式可以总结为成熟一个,总结一个,归纳一个,制定一个。
(二)、我国航空产业具备一定的条件;在政治经济学中有一个基本定理就是经济基础决定上层建筑,航空航天产业是基础,产业立法是上层建筑,上世纪九十年代,虽然也有很多人大代表提出要立法,要促进,但当时我国几乎所有的民族工业无论是规模还是实力都有所缺失,此时需要的不是统一的法律,而是全面发展,寻找出路,因此在当时立这个法不合适,但到如今,我国航空航天产业的发展初具规模,正在进入一个高速发展的时期,此时全面开花各行其是的发展模式已经不适合于需要,制定航空航天产业促进法指明产业整体的发展方向有现实的需求。
(三)、经济社会发展提出现实需要;随着交通的日益发展,通用航空和外层空间旅游走入寻常百姓家有了现实的期待,正如同汽车的普及催生了汽车产业的发展一样,通用航空及外层空间旅行的普及必要也会推动航空航天产业的发展,但是必须指出的是航空领域及外层空间与国防安全息息相关,企业能做什么,不能做什么不能指望企业家能够在各类繁杂的法律文告中寻找规定,制定统一的航空航天产业促进法能够有效的为企业指明规范。
三、关于产业促进法立法的建议
对于制定航空航天产业促进法,笔者有以下三条建议:
(一)、立足于兼顾产业管理和组织运行;从国外实践的经验来说,政府对于产业扶持对于产业的促进具有十分重要的意义,因此我国的航空航天产业促进法不能撇开产业管理,而从现代企业管理制度的角度而言规范组织运行同样十分重要,因此笔者建议我国的航空航天产业促进法应当兼顾产业管理与组织运行。
(二)、制定法规而不是部门规章;当前关于是否应该制定航空航天产业促进的相关法律在业界依然趋于共识,但是具体制定什么位阶的法律意见分歧较大,有部分学者提出根据《立法法》制定一部法律要经过四个步骤:提出法案、审议法案、表决和通过法案、公布法律。
如果制定一部具有航空工业基本法地位的法律的话,那么短时间内恐怕难以完成,因为我国目前的客观情况还未达到制定这样一部法律的时机④。
(三)产业促进法要有足够的前瞻性;正如上文所讲述到的,产业促进法不用于传统意义上的民商法、刑法,它不是对已经形成的价值规范的总结,它最大的作用是为产业的发展加油助力,因此它必须具备前瞻性,具有超前立法的思维,对于规则的制定应当是整体性的或者可推演性的,而不是具体的规则。这样能够保证法律的稳定性。
航空航天产业的发展对国计民生有着至关重要的作用,我们必须以谨慎的态度,十足的热情,百分的努力驱动产业的发展,促进产业的进步,而笔者认为产业促进法将在其中发挥了至关重要的作用,产业促进法的制定势在必行。
参考文献
[1]吴大观,对航空工业两个重大历史问题的思考,航空发动机,2001.1
[2]王先林,产业政策法若干基本问题初探,经济法前沿问题研究,中国检察出版社,2004
[3]覃北云,李卫东等著,叩“关”指南――关贸总协定与商贸实务咨询.广西师范大学出版社,1994
注解
①吴大观,对航空工业两个重大历史问题的思考,航空发动机,2001.1:2
那么,航天专业有着怎样神秘的内涵?若想投身于航天事业,应该选择什么专业?在大学时代要做好哪些职业准备?航天专业毕业生的就业前景又如何呢?
专业设置特点
航天是个令人向往又神秘的职业。为了推出本期专题,记者在做了充分案头准备后进行了调查采访,现在,就让我们按照航天器的发射程序走进航天类专业。航天器升空的每一个步骤都涉及很多交叉学科与专业,本文中所列举的,是每一个步骤所对应的比较重要的专业之一,其中有些专业既涉及航空类,也涉及航天类。
小贴士:载人飞船升空分几步?
第一步,随着倒计时口令,点火升空。逃逸塔分离。
第二步,助推器分离。一、二级分离,一级坠落。
第三步,整流罩分离,船箭分离。5次变轨控制后,航天器进入预定椭圆轨道。
第四步,太阳能帆板打开。
第五步,航天员执行空间任务。
第六步,返回大气层。
航空和航天有着密不可分的联系,又有所区别。前者是研究近地面飞行环境及物体的,而后者是研究大气层外高空飞行环境及物体的。航空航天类专业主要研究飞行器的结构、性能和运动规律,培养把飞行器设计制造出来并送上太空的工程技术专业人才。无论是飞机还是航天飞行器,都是综合科学技术的结晶,因此从广义上讲,材料科学与工程、电子信息工程、自动化、计算机等都是航空航天技术不可或缺的学科基础。随着航空航天事业的迅猛发展,近年来又催生出航天运输与控制、遥感科学与技术等新兴专业。
中国有7所国防院校,11家央属国防企业集团。涉及航天领域的专业,排名前三位的高校分别是哈尔滨工业大学、西北工业大学和北京航空航天大学。其中尤属哈工大的航天专业实力强,毕业生中有很多已成为各领域的专家和骨干,如中国航天科技集团副总经理马兴瑞、中国空间技术研究院院长袁家军、海王集团总裁张思民等。
“关行器设计专业,一共包括三个方向:卫星、火箭和导弹。最开始觉得火箭和导弹都比较‘暴力’,所以高考填报志愿时,我选择了与航天工程紧密相连的卫星方向。”北京航空航天大学宇航学院大四的小和介绍说,北航宇航学院下设三个专业:飞行器设计与工程专业、探测制导与控制技术专业和飞行器动力工程专业。其中,飞行器设计与工程专业的学生主要学习飞行器设计方面的基本理论和基本知识,并受到航空航天飞行器工程方面的基本训练;探测制导与控制技术主要负责航天器送入太空后,对其进行制导和各种变轨姿态调整控制;而飞行器动力工程主要负责研制火箭发动机。据宇航学院的学生介绍,这三个专业中,飞行器设计与工程专业最热门,而选择探测与动力专业的人数则要少一些。
航天专业的学业与素质要求
航空航天类专业对学习者的要求是“厚基础、强能力、高素质、重创新”。学生要学习和掌握航空航天技术的基础理论和知识,接受航空航天飞行器工程方面的系统训练,通过各种实践性教学环节,可具备坚实的理论基础,良好的实践能力和分析、解决问题的能力、以及创新能力。毕业生在数学、物理、力学、计算机等方面的基础比较扎实,在逻辑、分析、空间想象力、推理等思维上优势明显,知识面宽,适应力强,发展潜力大。本科毕业生考取研究生的比例很高,申请国外大学奖学金的成功率也较高。
如果你想学习航天专业,那么,除了一腔热情外,还需要做好哪些心理上的准备呢?
由于航天职业的特殊性,从事航天职业需要三种精神。
1. 刻苦学习精神
航天专业要求高、课程多、任务重,要成长为一个合格的航天人,除了工科的基础课程之外,还要学习诸如发动机设计、自动控制理论、数字电路等专业课程。
以北京航空航天大学飞行器动力工程专业为例,该专业一个本科生成长为博士生,仅力学就要学习20几门,学生们每天自习到11点已是习惯性作息。
同工科专业一样,航天工程对学生的实践能力要求也很强。学生除了修完课程、掌握理论,还要懂技术。因此,动手能力强、有组织协调能力的考生学这个专业很适合。
2. 吃苦奉献精神
“特别能吃苦、特别能战斗、特别能攻关、特别能奉献”被誉为“载人航天精神”。神舟成功发射,被大众熟悉的只有少数几个人,但是背后有数以万计的航天人在默默无闻地工作着。“飞行工作更多的是辛苦,而不是神秘。工作人员需要比较强的抗压能力,以及良好的心理素质。”一位在航天一院702研究所做航天测试测量技术与设备的工作人员告诉记者,他们的工作时间上朝九晚五,但是来了试验任务,就要加班加点不分昼夜地把它完成。具体到个人的职业,航天火箭与飞船的设计制造需要反复测试某些零部件、程序的稳定性及安全性,比如像飞机上的“黑匣子”之类的东西,以保证飞行器、导弹等执行任务时万无一失,并获得飞行中或执行任务时所需要测量的参数。
此外,航天工作人员会经常去酒泉、西昌的靶场执行任务,而靶场是炮弹爆炸或飞船起飞、卫星发射的地方。
3. 团队协作精神
航天系统内部分工精细,一个课题需要众多研究者协作完成,团队协作精神在航天领域体现得更为充分。航天系统内部分工精细,一个课题需要众多研究者协作完成,有的时候自己的成果仅为别人做嫁衣裳而已,因此,在航天领域里少不了团队协作精神,一个人只能完成更多的任务,但是绝对不可能包揽所有的工作。正如一位在航天一院工作的孟先生所说:“航天是一项既神秘又平凡的事业,航天事业是一个巨大的系统工程,需要许多行业、许多不同专业的工程技术人员及科研管理人员共同协作,需要每个人都具有协作意识、吃苦耐劳精神以及奉献精神,安于自己平凡的岗位,做一个螺丝钉,不要太计较个人得失。”
需求趋势与就业前景
近几年,随着神舟飞船的频繁发射,航天专业进一步升温。有媒体报道,最被看好的12类专业中,航空航天专业名列其中。
据哈工大招生就业处负责人介绍,该校航天专业的学生在入学时成绩在全校是数一数二的,录取分数在全校最高,集中了校内的“尖子生”;在就业方面去向也非常好,主要给中国航天科技集团公司和航天科工集团公司输送航天人才。学生毕业时国内的航天科研院所都抢着要。
复旦大学力学与工程科学系博士生导师唐国安教授预测,我国飞行器可供开发的空间很大。载人火箭发射成功,意味着我国准备开始对外空间进行和平开发,航空航天科技工业极具发展前景,对人才的需求会持续旺盛。北京航空航天大学宇航学院党总支书记孟庆春介绍说,我国飞行器可供开发的空间很大,许多应该用到飞行器的民用领域目前还未开发利用,在私人使用上也几乎是空白,因此,飞行器设计与工程专业的人才会是我国将来急需的人才。
航空航天产业将引发对航空航天人才的巨大需求,包括航空航天经营管理、航空航天飞机总体设计与研发、发动机研发与制造、零部件研发与设计、航空航天新材料研发等方向,其中航空航天产品光电通信技术、能源系统设计、力学及环境工程、计算机、仿真、可靠性技术等领域在内的专业人才缺口巨大。
“我想以后在航天五院好好发展,做一名总体设计师。”学飞行器设计与工程专业的小和2012年6月份从北京航空航天大学毕业,去了航天五院深造,完成了他儿时作为一名航天工作者的梦想。
据小和介绍,宇航学院的本科生毕业之后也能找到工作,比如他们班当年就有人去了航天火工、东航、西安飞机强度研究所、北京现代、东风日产、陕西鼓风机等企业。也有很多本科生选择继续深造,读研或读博,并且几乎都去了十大航天院所,如航天一院、二院、三院、五院和八院、沈飞、成飞、西飞等等。“飞行器设计专业是国家自建国以来持续扶植的产业。我国的火箭技术相比于美国俄罗斯还比较落后,为了日后的载人登月计划,必须研制出更强大的火箭。我很看好本专业的就业前景。”
未来十年是我国航空航天事业发展的重大战略机遇期,需要更多更好的人才。为了加强对航空工程骨干专业技术人才的引进和培养,建立高水平、高素质的航空专业技术队伍,航空工业第一、二集团公司在北京航空航天大学、南京航空航天大学、西北工业大学等院校设立了航空奖学金,金额每人每学年7000~11000元不等,以支持立志投身祖国航空事业的学子顺利完成学业,这对于家庭经济比较困难的同学无疑是很好的选择。
同时,除了飞行器设计与工程、飞行器动力工程、飞行器制造工程、飞行器环境与生命保障工程等专业外,航空航天事业还涉及信息、能源、制造等技术的综合专业。随着我国国民经济的发展和综合国力的提高,航空航天高科技领域的成果已不仅仅应用于航天飞船上,也在逐渐向电子、机械、汽车等领域渗透。也就是说,学习航空航天类专业的同学一样能在其他领域大展才华。
报考注意事项
航天人才≠杨立伟
高校航天专业的培养目标都是航天工程领域的技术与管理人才,而非培养宇航员。形象地说,航天专业出来的人才可以当戚发轫这样的总设计师或袁家军这样的总指挥。要是想当杨立伟一样飞上太空的宇航员,现阶段在我国只能报考飞行员。
身体条件要求
中图分类号:V261.34 文献标识码:A 文章编号:1672-3791(2017)01(b)-0077-02
τ诤附蛹际趵此担主要是利用加热以及加压的方式来将同性或者是异性的工件产生原子间的结合,从而来完成零件的加工以及工件的连接。焊接技术可以用于技术焊接,同时在非金属焊接中也将会得到广泛应用。尤其是在航空航天大型工业制造中,在材料的加工以及连接方面将会得到广泛应用。为了保证航空航天的焊接质量,那么必须要采用先进的焊接技术,以此来提升焊接的效率。
1 电子束焊
现今来看,在科学技术不断发展的过程中,航空航天事业得到了很大发展,在航空航天制造中,焊接技术是十分重要的一个环节,能够有效提升制造的效率,促进航空航天事业的发展[1]。对于电子束焊来说,主要工作原理就是在真空的环境下,利用汇聚的高速电子流来进行工件接缝处的轰击,这样会将电子动能转化为热能,将其溶合成一种焊接方式,这也是高能束流加工技术中重要的组成部分。电子束焊的主要优势就是能量密度较高,同时焊接的深宽比比较大,焊接变形较小,其控制的精确度比较高,焊接的质量稳定较为容易实现,自动控制的优点也比较明显,电子焊接技术在航空航天等工业领域中将会得到广泛应用,同时也会对其的发展产生巨大影响。在航空制造业中,电子束焊技术的应用会在很大程度上提升飞机发动机的制造水平,将发动机中的一些减重设计以及异种材料进行有效焊接,同时为一些整体加工无法实现的零件制造提供加工的途径,以此来提升加工的质量。同时电子束焊自身将会有效提升航空航天工业中焊接结构高强度以及低重量、高可靠性的关键技术问题,保证航空航天材料的焊接质量。所以现今在航空航天领域中,电子束焊技术是最为重要的焊接技术之一。
2 激光焊接技术
对于激光焊接技术来说,也是一种较为重要的焊接技术,主要工作原理就是利用偏光镜反射激光,从而来产生光束,将光束集中聚焦在装置中,产生较大的能量光束,如果焦点逐渐靠近工件,那么工件将会在瞬间熔化以及蒸发,该方式将会用于焊接的工艺[2]。激光焊接的焊接设备装置较为简单,并且能量的密度也比较高,变形较小,其焊接的精确度比较高,同时焊缝的深宽比也比较大,这样将会在室温以及一些特殊条件下进行焊接,对于一些难熔材料的焊接具有很明显的优势。激光焊接主要是应用在飞机大蒙皮的拼接上以及机身附件的装配上。在美国激光焊接技术在航空航天的应用较广,其中已经利用15 kW的CO2仿激光焊接弧光器对飞机中的各种材料以及零部件进行全面的交工,以此来保证其工艺的标准化。同时在很多领域激光焊接技术都得到了广泛应用,其生产制造成本也将有所降低。
3 搅拌摩擦焊接技术
对搅拌摩擦焊接技术来说,这是一种新技术,主要是利用一种非耗损的搅拌头,并且利用高速旋转的压倒待焊接的截面,这样在不断地摩擦与加热中被焊金属面将会产生热塑性,同时在压力、推力以及挤压力的作用下来对材料进行有效扩散连接,这样将会形成较为致密的金属间固相连接。同时不需要对其进行气体的保护,一些被焊接的材料损伤比较小,并且焊缝热影响区也较小,焊缝的强度也比较高。该技术具有很大的优势,因此被誉为是当代最具有革命性的焊接技术。在美国等很多航空公司都进行了广泛应用,在飞机蒙皮与翼肋以及飞机地板等结构件的装配中都得到了广泛的应用,这样将会在很大程度上提升连接的质量。利用搅拌摩擦技术提升连接的质量,同时也降低了成本,提高了生产效率,因此其存在较大的应用开发潜能[3]。
4 线性摩擦焊
对于线性摩擦焊来说,主要是在焊接压力作用下,利用被焊工件做相对线性往复摩擦运动,从而来产生热量,最终实现焊接的固态连接。在焊接压力的作用下,其中一个焊件将会对另外一个焊件沿直线方向利用一定的振幅以及频率来进行直线的往复运动,这样将会利用摩擦生热的方式来加热待焊接部位的表面,在摩擦表面达到粘塑性的状态时,则要迅速停止摩擦运动,之后对其进行顶锻力的施加,从而来充分完成焊接。该方式具有较大的优势,工作效率较高,并且质量优势比较明显,具有较高的节能价值[4]。经过相关研究人员的不断研究,最终将线性摩擦焊接主要用于发动机整体钛合金叶盘制造中,并且其焊接的质量也比较高,优势较为明显。
5 扩散焊接技术
对于焊接技术来说,也就是所谓的扩散连接,可以将2个或者是2个以上的固相材料充分紧压在一起,这样将其在真空以及保护气氛中进行加热处理,让其保持在母材熔点以下温度[5]。对其施加压力,导致其连接界面围观塑性变形,从而来达到紧密接触的状况,之后利用保温、原子相互扩散等进行牢固结合,从而来实现焊接以及两个工件之间的连接。对于该方式的主要优势就是接头质量比较好,并且在焊接之后不需要进行加工处理,焊接变形量也比较小,一次可以进行多个接头,其优点较为明显[6]。在科学技术不断发展的过程中,扩散焊接技术已经应用到了直升机的钛合金旋翼、飞机的大梁以及发动机机匣与整体的涡轮等方面,经过不断应用,取得了较大成果。
6 结语
随着社会的不断发展,科学技术的不断进步,在航空航天领域中,焊接技术得到了很大应用,发挥了较大作用。焊接技术必须要充分保证各个零件的运用,能够针对一些特定的工件来进行焊接技术的选择。现今有很多先进的焊接技术逐渐应用到航空航天领域中,这在很大程度上提升了焊接的质量,并且提高飞机工件生产的效率,有效降低了成本,充分实现了高效生产。所以,在航空航天事业不断发展的过程中,我国的焊接技术也会得到迅速发展。
参考文献
[1] 李亚江,吴娜,P.U.Puchkov.先进焊接技术在航空航天领域中的应用[J].航空制造技术,2010(9):36-40.
[2] 王亚军,卢志军.焊接技术在航空航天工业中的应用和发展建议[J].航空制造技术,2008(16):26-31.
[3] 张颖云,李正.先进焊接技术在飞机制造中的应用[J].西安航空技术高等专科学校学报,2008(26):8-11.