时间:2023-08-31 09:22:12
引言:寻求写作上的突破?我们特意为您精选了12篇化学科学与工程范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
3.In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation Jeffrey C. S. WU,Chao-Wei HUANG
4.Effects of pressure and temperature on fixed-site carrier membrane for CO2 separation from natural gas Meng WANG,Dongxiao YANG,Zhi WANG,Jixiao WANG,Shichang WANG
5.A stepwise process for carbon dioxide sequestration using magnesium silicates Johan FAGERLUND,Experience NDUAGU,In(e)s ROM(A)O,Ron ZEVENHOVEN
6.Effect of TiO2 loading on the activity of V/TiO2-Al2O3 in the catalytic oxidehydrogenation of ethylbenzene with carbon dioxide Xiaohong LI,Wenying LI
7.The catalytic effect of both oxygen-bearing functional group and ash in carbonaceous catalyst on CH4-CO2 reforming Weidong ZHANG,Yongfa ZHANG
8.The kinetic study of light alkene syntheses by CO2 hydrogenation over Fe-Ni catalysts Yaling ZHAO,Li WANG,Xiwei HAO,Jiazhou WU
9.A mini review on chemical fixation of CO2: Absorption and catalytic conversion into cyclic carbonates Weili DAI,Shenglian LUO,Shuangfeng YIN,Chaktong AU
10.Evaluation of strategies for the subsequent use of CO2 Marc SCHAEFER,Frank BEHRENDT,Thomas HAMMER 11.Assessment of postcombustion carbon capture technologies for power generation Mikel C. DUKE,Bradley LADEWIG,Simon SMART,Victor RUDOLPH,Jo(a)o C. Diniz da COSTA
12.Techno-economic assessment of pulverized coal boilers and IGCC power plants with CO2 capture Y. HUANG,S. REZVANI,D. McILVEEN-WRIGHT,N. HEWITT,A. MINCHENER,J. MONDOL
13."ALL FREE"-a novel design concept of applying partial oxidation process to vehicle engine Ling LIN,Yao ZHOU,Wenshuang LIN,Qingbiao LI
14.Carbon dioxide: a renewable feedstock for the synthesis of fine and bulk chemicals Yogesh P. PATIL,Pawan J. TAMBADE,Sachin R. JAGTAP,Bhalchandra M. BHANAGE
15.Developing a molecular platform for potential carbon dioxide fixing Metre MIKKELSEN,Mikkel J(φ)RGENSEN,Frederik C. KREBS
16.A mini review on chemical fixation of CO2: Absorption and catalytic conversion into cyclic carbonates Weili DAI,Shenglian LUO,Shuangfeng YIN,Chaktong AU
2.Introduction to the special issue on food technology Jian CHEN
3.Effects of sucrose crystallization and moisture migration on the structural changes of a coated intermediate moisture food Tiancheng LI,Peng ZHOU,Theodore P. LABUZA
4.Statistical modeling and optimization for enhanced hyaluronic acid production by batch culture of Sreptococcus zooepidemicus via the supplement of uracil Long LIU,Haiquan WANG,Miao WANG,Guocheng DU,Jian CHEN
5.Investigation of nanostructure of konjac-based water absorbents with atomic force microscopy Shengrong GENG,Ruotai LIN,Mingli CHEN,Shaoyang LIU,Yifen WANG
6.Hydrogen peroxide is correlated with browning in peach fruit stored at low temperature Zhansheng DING,Shiping TIAN,Xianghong MENG,Yong XU
7.Application of high-speed counter-current chromatography coupled with high performance liquid chromatography for the separation and purification of Quercetin-3-O-sambubioside from the leaves of Nelumbo nucifera Shengguo DENG,Zeyuan DENG,Yawei FAN,Jing LI,Rong LIU,Dongmei XIONG
8.Purification of ice structuring protein complexes from winter wheat using Triton X-114 phase partitioning Huaneng XU,Haiying CHEN,Weining HUANG
9.Effect of succinic acid deamidation-induced modification on wheat gluten Lan LIAO,Mouming ZHAO,Haifeng ZHAO,Jiaoyan REN,Chun CUI,Xiao HU
10.Bioproduction of D-psicose using permeabilized cells of newly isolated Rhodobacter sphaeroides SK011 Longtao ZHANG,Bo JIANG,Wanmeng MU,Tao ZHANG
11.Biopolymer-stabilized emulsions on the basis of interactions between β-lactoglobulin and ι-carrageenan Qiaomei RU,Younghee CHO,Qingrong HUANG
12.Effects of fatty acid chain length and degree of unsaturation on the surface activities of monoacyl trehaloses Yue-E SUN,Wenshui XIA,Xueyan TANG,Zhiyong HE,Jie CHEN
13.Advancements in non-starch polysaccharides research for frozen foods and microencapsulation of probiotics Pavan Kumar SOMA,Patrick D. WILLIAMS,Y. Martin LO
14.A review of traditional and novel detection techniques for melamine and its analogues in foods and animal feed Mengshi LIN
15.Changes in structure and functional properties of whey proteins induced by high hydrostatic pressure: A review Xiaoming LIU,Jia NING,Stephanie CLARK
16.The energy consumption in a batch stripper and a batch rectifier Xianbao CUI,Tianyang FENG,Ying ZHANG,Zhicai YANG
17.Selective oxidation of o-nitrotoluene to o-nitrobenzaldehyde with metalloporphyrins as biomimetic catalysts Xinling WANG,Yuanbin SHE
18.Synthesis of p-substituted tetraphenylporphyrins and corresponding ferric complexes with mixed-solvents method Zhicheng SUN,Yuanbin SHE,Rugang ZHONG
19.Preparation and characterization of EVAL hollow fiber membrane adsorbents filled with cation exchange resins Fengli ZHANG,Yuzhong ZHANG,Guangfen LI,Hong LI
20.Experimental study on capturing CO2 greenhouse gas by mixture of ammonia and soil Ying WU,Yifei WANG,Qinghua ZENG,Xin GONG,Zunhong YU
1.Protein adsorption in two-dimensional electrochromatography packed with superporous and microporous cellulose beads Dongmei WANG,Guodong JIA,Liang XU,Xiaoyan DONG,Yan SUN
2.Performance of inverse fluidized bed bioreactor in treating starch wastewater M.RAJASIMMAN,C.KARTHIKEYAN 3.Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic Aspergillus niger and thermotolerant Kluyveromyces marxianus K.MANIKANDAN,T.VIRUTHAGIRI
4.Silver-catalyzed bioleaching for raw low-grade copper sulphide ores Tianlong DENG,Yafei GUO,Mengxia LIAO,Dongchan LI
5.Study on the crystal morphology and melting behavior of isothermally crystallized composites of short carbon fiber and poly(trimethylene terephthalate) Mingtao RUN,Hongzan SONG,Yanping HAO
6.Preparation and characterization of alumina hollow fiber membranes Tao WANG,Yuzhong ZHANG,Guangfen LI,Hong LI
7.Numerical investigation of the influence of kinetics and shape factor on barium sulfate precipitation in a continuous stirred tank Zheng WANG,ZaiSha MAO,Chao YANG,Qinghua ZHANG,Jingcai CHENG
8.FBRM and PVM investigations of the double feed semi-batch crystallization of 6-aminopenicillanic acid Min SU,Lin WANG,Hua SUN,Jingkang WANG
9.Soybean drying characteristics in microwave rotary dryer with forced convection Ruifang WANG,Zhanyong LI,Yanhua LI,Jingsheng YE
10.CFD simulation on membrane distillation of NaCl solution Zhaoguang XU,Yanqiu PAN,Yalan YU
11.Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting Yuxin YIN,Xin TAN,Feng HOU,Lin ZHAO
12.Design, synthesis, and antiviral properties of 2-aryl-lH-benzimidazole-4-carboxamide derivatives Xianjin LUO,Zhonglü ZHANG,Yutian YANG,Fei XUE,Naiyun XIU,Yuanbin SHE
13.Selective epoxidation of linear terminal olefins with metalloporphyrins under mild conditions Xiaoguang BAI,Yuanbin SHE
14.Synthesis and properties of tetrathiafulvalene-fluorescein dyads Guoqiao LAI,Yibo LIU,Yu ZHANG,Jun RUAN,Meijiang LI,Yongjia SHEN
15.Polymer-nanoinorganic particles composite membranes: a brief overview Zhenliang XU,Liyun YU,Lingfeng HAN
16.Review of SO2-4/MxOy solid superacid catalysts Yanni WU,Shijun LIAO
bustion characteristics and kinetics of bio-oil Ruixia ZHANG,Zhaoping ZHONG,Yaji HUANG
2.Kinetic roughening transition and missing regime transition of melt crystallized polybutene-1 tetragonal phase: growth kinetics analysis Motoi YAMASHITA
3.Effect of counter current gas phase on liquid film Shujuan LUO,Huaizhi LI,Weiyang FEI,Yundong WANG
4.CFD based combustion model for sewage sludge gasification in a fluidized bed Yiqun WANG,Lifeng YAN
5.Removal of malachite green from aqueous solution by sorption on hydrilla verticillata biomass using response surface methodology R. RAJESHKANNAN,N. RAJAMOHAN,M. RAJASIMMAN
6.Sulfate digestion process for high purity TiO2 from titania slag T. A. LASHEEN
7.Research on combustion characteristics of bio-oil from sewage sludge Rui LI,Baosheng JIN,Xiangru JIA,Zhaoping ZHONG,Gang XIAO,Xufeng FU
8.Thermal degradation kinetics and lifetime estimation for polycarbonate/polymethylphenylsilsesquioxane composite Jiangbo WANG,Zhong XIN
9.Simulation studies on metastable phase equilibria in the aqueous ternary systems (NaCI-MgCI2-H20) and (KCI-MgCI2-H20) at 308.15 K Tianlong DENG,Baojun ZHANG,Dongchan LI,Yafei GUO
10.Phenolic rigid organic filler/isotactic polypropylene composites. Ⅲ. Impact resistance property Heming LIN,Dongming QI,Jian HAN,Zhiqi CAI,Minghua WU
11.Investigation of electrochemical degradation and application of e-paper dyes in organic solvents Luhai LI,Ming WANG,Yi FANG,Shunan QIAO
12.Microwave-assisted synthesis and antimicrobial activities of 2-aryl-3-(naphthalene-l or 2-yl)-l,3-thiazolidin-4-ones Hua CHEN,Yanan LI,Jie BAI,Lian ZHAO,Xiangguo YUAN,Xiaoliu LI,Keqiang CAO
13.Synthesis, spectroscopic, and electrochemical properties of two dyads consisted of tetrathiafulvalene and carbazole Guoqiao LAI,Yibo LIU,Meijiang LI,Yongjia SHEN
14.β-CycLodextrin promoted oxidation of primary amines to nitriles in water Dongpo SHI,Hongbing JI,Zhong LI
15.One-pot three-component mannich reaction catalyzed by sucrose char sulfonic acid Qiong XU,Zhigao YANG,Dulin YIN,Jihui WANG
16.Photocatalytic degradation of omethoate using NaY zeolite-supported TiO2 Dishun ZHAO,Jialei WANG,Zhigang ZHANG,Juan ZHANG
17.Ionic liquid mediated esterification of alcohol with acetic acid Beilei ZHOU,Yanxiong FANG,Hao GU,Saidan ZHANG,Baohua HUANG,Kun ZHANG
18.Synthesis of magnetic Pb/Fe304/Si02 and its catalytic activity for propylene carbonate synthesis via urea and 1,2-propylene glycol Hualiang AN,Xinqiang ZHAO,Zhiguang JIA,Changcheng WU,Yanji WANG
自然界中的和谐系统比比皆是,大至宇宙,小到原子;地球生态系统是和谐的,动植物群落是和谐的,人类社会体系是和谐的,健康的人体更是一个绝妙的和谐体。所有这些和谐系统遵循着同样的辩证综合的规律,具体可以归纳出三条:1.统一律;2.层次律;3.进化律;所有和谐系统具有同样的性质:1.开放性;2.自组织性;3.非线性;4.无限发展性[1]。当爱因斯坦把大半生致力于统一场论时,其哲学上的需要相对物理学上而言或许要来得大,面对物理学的系统和谐,理论规则的分立是不能令他觉得满意的。而化学工程的发展是不是因循同样的哲学历程呢?
在化学工程作为学科开始被重视之前,化学工业已具有了相当的规模,各种具体的工程与工艺都被独立开来,在认识上是被分为各门特殊的知识,因此,当国外高等院校在十九世纪末开始设置"化学工程学"时,开设的课程大多是学习当时化学工业的各种工艺学,"化学工程"的概念在当时还是相当模糊的,在理论上充其量是化学与机械的一种混合(amalgam)。然而这种理论混合的模式在德国人看来却是很正统的,即使在今天,他们也避免专论"化学工程",而是称之为"过程工程"(Process Engineering),这一名称实际上要比"化学工程"的范畴更广,甚至更为准确,凡是涉及一定流程与工艺的领域都是适用的。但我们习惯上还是沿用"化学工程"的名称。
二十世纪开始,化学工业迅猛发展,在社会经济中占的比重越来越大,客观上需要化学工程学科的发展和支持。随着生产力的发展,人们对事物运动规律性的认识也愈来愈深化,愈来愈有概括性。伴随着其他领域科学技术的快速进步,人们逐渐认识到化学工业中各门看似不相干的工程和工艺中存在着共同的物理特性。1901年,美G.E.的Davis《化学工程手册》的发表,初步提出了"化工物理过程"的原理。1900年始,以合成氨、纯碱、燃料等为代表的近代化工厂出现,如1913年,德哈勃-博施法高压合成氨技术的产业化,星火燎原的,化学工业呈现出巨大的发展前景。到了二十年代,美MIT的一些学者提出:不管化工生产的工艺如何千差万别,它们在众多的典型设备中进行着原理相同的物理过程。1920年,美MIT成立了第一个严格意义上的化工系,时W.K.Lewis任系主任。1922年美国化工学会认同了新的见解,引出了"单元操作"(Unit Operation)的概念,这一概念在苏联时期和我国则广泛称为"化工原理"。
1900年始的"分离工程"研究使"单元操作"的概念日趋成熟。被称为单元操作的过程主要有流体流动、传热、干燥、吸收、蒸发、萃取、结晶和过滤等,以这些单元操作作为研究和学习的主要内容,是化学工程学科在二十世纪前半期发展的核心,其理论迅速成为发展化学工业的重要基石。这种把千变万化、千差万别的过程和工艺概括成"单元操作"是生产力发展到一定水平的反映,是化学工程学从"个性"到"共性"的第一个哲学性概括,是在一个系统整体性把握的高度上建立了一门技术科学,体现了系统科学发展的和谐统一规律。
随着"单元操作"概念的确定,另一方面,化学工程学科中重要支柱之一的"反应工程"亦逐渐浮出水面。从最初的德Winkler流化床煤气化炉的应用到德Bergim-Pier三相液化床煤液化工艺的开发,又到1931年丁纳橡胶和氯丁橡胶的投产,化学工业上发展的高峰持续不绝,1940年美国FCC炼油开发成功,成为石油化工的起点。直到1957年,欧洲第一届反应工程会议,明确提出"反应工程"的概念,成为化学工程学科的重要组成部分,是化学工程学的进一步和谐统一。"反应工程"的建立,乃至今日仍备受困扰的"过程放大效应"问题,及从"逐级放大"到"数模放大"的研究都带动了"化工过程系统工程"的发展,并共同体现了系统科学发展的和谐层次律。
就在"反应工程"发展的同时,"单元操作"得到了更加深刻的认识,人们发现各单元操作之间存在着更为普遍的原理,"过滤只是流体传动的一个特例;蒸发不过是传热的一种形式;吸收和萃取都包含着质量的传递;干燥与蒸馏则是传热加传质的操作……"[2]于是单元操作可以看成是传热、传质及流体动量传递的特殊情况或特定的组合。这种认识的深化过程并没有停止,人们进一步又发现了动量传递、热量传递和质量传递之间的类似性。于是从二十世纪50年代开始,人们综合了以往的成果,开始用统一的观点来研究三种传递过程。1960年,美威斯康辛大学(Univ. Wiscosin)的R.B.Bird教授出版了《Transport Phenomena》一书,系统地采用统一的方法来处理三种传递现象,从此化学工程学科的核心过渡到了"三传一反"的系统性概念。"三传"的研究是系统科学和谐进化律的又一体现,使化学工程学达到了一个新的整体性高度,这种高度的和谐统一是对客观世界本质性的认识,并在学科上反映出了系统科学的基本原理和性质,其影响力是普遍性的,是跨学科的,不仅使"传递原理"成为化学工程学的重要基础,同时在生物工程、机械、航天和土木建筑等工程学科上也具有重要意义,并日益成为工程专业共有的一门技术基础课,只是侧重点有所差异而已。
至此化学工程学科自身经历了一系列的演化和发展,并在短短的一个世纪中达到了一个前所未有的高度,涵括了众多的生产和应用领域,如医药、化肥、能源、材料、航天、冶金、日用化学品等,每年为社会提供数以亿吨计的千百万种产品,是人们衣、食、住、行须臾不可离开的物质基础,为社会繁荣作出了巨大贡献。然而事物总是一分为二的,从人类发展最为激动人心的口号"征服自然"到今天庞大的工业化进程,地球自然生态系统遭遇了前所未有的严峻局面,这之中,化学工业是造成大规模环境污染及恶性重复污染的主要过程之一,化学工程学科需要肩负起新的使命。1990年,"生态化工"(Eco-Chemical Engineering)的概念提出来了,相应在化工生产和过程工艺中提出了"清洁化工"和"绿色化工"的概念,因时应势,化学工程学开始了系统科学的自组织过程,这也是和谐系统对立统一发展的需要。在系统科学看来,自组织是和谐系统的基本性质之一,只有自组织系统能通过外部和自身内部的不断协调、整合,在适应环境的同时保持自己的特性并产生新的功能。从自发到自觉地,化学工程学吸收了自组织的理论,不断在广度和深度上充实、完善和发展。
随着新世纪的到来,世界正发生着全球性的变化,经济、社会、环境和技术等领域都面临着新范畴新理念的变更和冲击[3]。化学工程学科需要因应时展而改变传统的限制,不断有新的概念提出来,如化学工程应是伺机而待的专业(a profession in waiting);化学工程师必须"be steeped in technology",能够创新、开发、变换、调控和适应取代;化学工程学科要从"Process Engineering"达到"Product Engineering"再到"Formulation Engineering"。进一步的综合认为,化学工程学关注着同时发生在非常广泛的时空跨度内的现象,必须具备多尺度、多目标的方法来达到过程的总体优化。涵括了五个方面[4,5]:
转贴于 ① Nanoscale(纳观尺度):研究量子化学、分子过程与分子模拟等。
② Microscale(微观尺度):研究微粒、气泡、液滴、控制界面胶束和微流力学规律等。
③ Mesoscale(介观尺度):研究换热设备、反应设备、塔器以及传统的"单元操作"和"三传一反"等。
④ Macroscale(宏观尺度):研究生产装置和生产过程等。
⑤ Megascale(兆观尺度):研究环境过程和大气生态过程等。
于是化学工程学的核心转变到了"多尺度、多目标择优"的概念,化学工程学科又到达一个新的和谐统一的高度,进入了更高层次的系统工程领域。
新的发展的深度促使化学工程学科作出了一定尺度的"分化",然而这还远未结束,人们对世界的认识还在不断探索不断深入,一个更深刻更普遍也更一般的问题已经触到了化学工程学科的神经,触到了化学工程学的认识本质,并促使化学工程学需要有新的"融合"。这一问题就是"非线性及其包涵的混沌原理",相对于"线性"是人类认识客观世界的基本工具,"非线性"则是客观世界的本质特征,是"线性"反映的目的,是从科学角度看待世界的一种和谐统一;而在对"混沌发展"的研究表明,"混沌运动的普遍存在,揭示了自然界中实际系统发展演化的新行为,混沌态的自相似性使这种时间演化表现为一种空间结构,而且以其不同空间尺度上的相似性,揭示了系统复杂运动的统一性。这种统一性是一个观察"整体"的问题,只有在长时间范围(因为混沌运动是一种长时间行为)和更高层次复杂性中才能显现出来。"[6,7]这一问题涵盖了自然科学和人文社会科学的众多领域,具有重大的科学价值和深刻的哲学方法论意义。马克思曾经预言:"自然科学往后将会把关于人类的科学总括在自己下面,正如关于人类的科学把自然科学总括在自己下面一样:它们将成为一个科学。"从这一角度上,"非线性"问题是这种过程一体化的契合点以及整体认识论上的共性[8]。当站在这种整体性的高度上,化学工程学科获得了全新的视野和更强大的分析解决问题的能力,并最终具有了学科融合的基础。
在整个化学工程学科的孕育、诞生和发展过程中,始终交织着学科的"分化"与"融合",除了上述尺度(scale)上的分化以外还有着所谓的石油化工、精细化工、高分子化工等专业上的分化;另一方面,作为近代工程技术,它又是自然科学(化学、物理等)和技术科学(机械、材料等)的融合。正如物理学家普朗克(Planck)所指出的:"科学是内在的整体,它被分解为单独的部分不是取决于事物的本身,而是取决于人类认识能力的局限性,实际上存在着从物理到化学,通过生物学和人类学到社会学的连续的链条,这是任何一处都不能被打断的链条。"事实上,当化学工程学科的核心发展到"非线性混沌系统"时,实现科学的融合已是其客观系统性的需要,它需要强有力的非线性解算能力和综合分析能力。基于人工智能和神经生物学的人工神经网络(Artificial Neural Networks)技术为这种系统性的融合提供了新的思路和途径。人工神经网络特有的信息处理能力在愈来愈多的领域中展现出广阔的应用前景,它具有如下特点[9,10]:
① 学习:神经网络可以根据外界环境修改自身行为,这使它比其他任何方法接受自身感兴趣的外界信息更敏感。
② 概括:经过学习训练后,神经网络的响应在某种程度上能够对外界信息的少量丢失或自身组织的局部缺损不再很敏感,反映了神经网络的健壮性(鲁棒性),即工程上说的"容错"能力。
③ 抽取:神经网络具有抽取外界输入信息特征的特殊功能,在某种意义上可以说它能"创造"出未见的事物。
④ 模拟:神经网络由众多的神经元组成,以并行的方式处理信息,大大加快了运行速度,可以逼近任意复杂的非线性系统。
当然,神经网络并非十全十美,其自身的发展就曾经历过相当曲折的过程,但是,人工神经网络(ANNs)特性的融合将是化学工程学科发展到非线性核心系统的自组织适应和需要。例如采用神经网络设计的控制系统,适应性、稳定性和智能性均较好,能处理复杂工艺过程的控制问题,也使得化学工程师不但也是机械工程师,还首先是系统工程师,并能从最一般的非线性原理出发,解决实际过程的创新、应用、开发、生产等问题。
生产力的不断发展,科学技术的持续进步,人类认识自然和改造自然的不断深化,化学工程学科必将不断"分化"和"融合",体现出和谐系统的无限发展性质。
参考文献
[1] 李立本. 系统的和谐与和谐观[J]. 自然辩证法研究, 1998, 14(5):39.
[2] 韩兆熊. 传递过程原理[M]. 浙江:浙江大学出版社, 1988, 11:3.
[3] 季子林, 陈士俊, 王树恩. 科学技术论与方法论[M]. 天津科技翻译出版公司, 1991, 9:115.
[4] 金涌, 汪展文, 王金福, 等. 化学工程迈入21世纪[J]. 化工进展, 2000,(1):5-10.
[5] 黄仲涛, 李雪辉, 王乐夫. 21世纪化工发展趋势[J]. 化工进展, 2001,(4):1-4.
[6] 张生心, 梁仲清. 从量子混沌再看物理学的统一性[J]. 自然辩证法研究, 1996, 12(10):8.
[7] 苗东升. 系统科学精要[M]. 中国人民大学出版社, 1998, 5:20.
中图分类号:G642.0?摇 文献标识码:A 文章编号:1674-9324(2012)05-0027-02
“化学工程基础”是理科院校化学专业的专业基础课程,主要内容为化学工程的基本原理和化工生产的各种单元操作,包括化工过程的动力学原理、热力学原理、能量守恒与转换原理、质量传递原理以及相应过程的控制机理、操作方法、影响因素、设备结构和工艺过程等,具有与生产实践紧密联系的特点,应用性很强,是理科化学类专业唯一的一门工程技术课程。
一、人才培养的要求
当代化学工业对化学化工类人才的培养提出了更高的要求。如何培养基础理论知识扎实、工作适应性强、具有创新能力的人才,是综合性大学化学化工教学改革面临的重要课题。目前,综合性大学化学与应用化学专业每年都有相当一部分毕业生进入化学、化工和制药等企事业单位业从事研究开发或工程技术工作,这种趋势还会随着创新性国家的建设而逐年增长。化学工程基础是综合性大学化学专业的专业基础课,也是唯一的一门工程技术类课程,该课程的教学改革与实践对于理工学科交叉与学生综合素质的培养是综合性大学化学与应用化学专业其他课程所不能替代的。在充分发挥综合性大学基础理论研究优势的同时,通过对理科专业化学工程基础课程教学内容的更新、充实和调整,为化工类企事业单位培养和造就具有开拓创新精神、胜任科学研究与工程技术工作、适应性强的化学化工专业人才。
二、教学内容与教学方法的优化
以创新教育思想为指导,研究改革化学工程基础课程教学内容和教学方法,建立培养学生创新能力的化学工程基础课程内容新体系。动量传递、热量传递、质量传递与化学反应工程(“三传一反”)仍将是化学工程基础教学的核心内容,应不断充实更新才能反映学科发展现状和适应社会经济需求。化学和化学工程学是支撑物质转化相关工业的学科,前者研究分子之间发生反应的可能性、必要的条件和产物的结构,后者研究物质的流动、质能传递及其对反应过程与产物的影响。
1.优化更新教学内容,反映体现学科发展与技术进步。化学工程基础作为理科化学专业的工程技术课程,其教学内容除了动量传递、热量传递、质量传递与化学反应工程以外,还应当及时反映和体现学科的发展与技术进步。根据授课学时,突出教学重点,优化教学计划,精选教学内容。以化学工程学的基本观点、基本原理和基本方法为核心,结合典型化工过程,理论联系实际,使学生在有限的教学学时内,掌握本门课程的基本知识,熟悉研究与应用对象,为今后从事化学化工专业技术工作打下坚实基础。在其他科学技术的带动和社会需求的推动下,化工分离技术近年来取得了很大进步。新技术不断涌现,膜分离和超临界流体萃取等新型分离技术就是其中的代表。我们在教材的编写和课堂教学中,有意识地加入这些内容,便于学生从课堂上了解新的科学知识,拓宽学术视野。
2.引导学生建立工程技术与技术经济观点,提高学生综合素质。科学与技术的交叉和渗透,要求我们培养的学生不仅要掌握扎实的基础理论知识,还要学会运用所学的理论解决工程实际问题。综合性大学理科化学专业的学生基础理论知识比较扎实,在课堂教学中,我们根据教学内容,结合工程实际,启发学生从工程实际问题出发,强调工程实际的特点,突出工程实践的技术经济问题,灌输学生节能减排与绿色环保的理念,训练学生综合运用数学、物理与化学等多学科知识,综合分析化工单元操作与工业装置中涉及的复杂问题,培养学生的工程技术思维方法与工程设计等综合素质。
3.改进教学方法,提高教学效率。化学工程基础课程的课堂教学内容涉及化工单元操作与工艺过程。综合性大学化学专业的学生一般没有见过真实的化工设备,对化工厂与化工设备和装置缺乏感性认识,通过多媒体教学技术和传统课堂教学方法,可以促进学生感知与思维、理论与实践的结合,提高学生对化学工程基础的学习兴趣,激发他们的学习热情,使他们由不熟悉、不了解化工企业与装置转变为喜欢应用学科、乐于进入与应用密切相关的教师实验室开展业余科研。为此,我们一方面利用多媒体的优点,在课堂教学中放映一些设备的实物图像。另一方面,在有关课程中增加了实习参观环节,组织学生到石油化工厂、有机化工厂和精细化工厂等企业参观实习,增强学生对加热炉、精馏塔、泵、换热器等主要化工设备的感性认识。
三、教学团队与课程体系的建设
以先进的教学理念为先导,以高水平的教学团队为根本,以科学的课程新体系为核心,以优良的规划教材为保障,强化教学团队的建设,使所有主讲教师成为教学改革的高水平运动员和创新教育的优秀教练员。
1.建设高水平教学团队。从事课堂和实验教学的主讲教师也要承担高水平的科研项目,提高教师的科研水平。我们承担“化学工程基础”的主讲教师都具有教授职称并担任博士生导师,承担了一些科学研究项目。同时,也积极思考和实践课程的教学改革,奠定了学生创新能力培养的坚实基础。没有高水平的教学团队,不可能进行教学改革的实践,更不可能培养出具有创新精神的学生。
2.构建工程教育、创新教育的课程体系。夯实基础,将理科化学知识和工程知识有机结合。理科化学基础课程、化工过程开发、化学工程基础及多门专业课程的开设,可将学生所学知识形成知识链。重视对学生业余科研和毕业论文的指导,吸引对化学工程有兴趣的同学来实验室和博士研究生、硕士研究生一起进行科学研究,培养学生的创新意识和对科学研究的兴趣。通过毕业论文阶段的培养,加强了学生对知识的掌握和运用,特别是对“应用”和“工程”概念的强化。近年来,来我们化工实验室进行业余科研和毕业论文的学生每届都在十人以上,占理科化学专业学生的5%作用。
3.将科研成果向教学实践转化,形成教学促进科研、科研反哺教学的良性循环。构建应用学科人才培养、现代科技发展相适应的“基础性、综合性、工程性、创新性”体系。我们承担了国家和企业的一些化工类科研项目,特别是在水与废水处理、化工分离和国防化学等方面取得了一些科研成果,我们注意将教师的科研成果和科研实践融入课堂教学。从事课堂教学的主讲教师与实验课指导老师一起合作,将“渗透汽化膜分离”编入了实验教材和开展了教学实验,受到学生的欢迎。
化学是实验性很强的学科,化学工程作为一个共性的工程学科,我们应充分利用科学技术发展和教学改革带来的机遇,加强化学与化学工程的结合,为国家培养更多复合型创新人才。
参考文献:
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)04-0104-03
《化学反应工程》是化工工艺专业的核心课程,也是其他相关专业的重要课程,化学反应的工业化实施、反应器的设计和优化等一系列化学工程问题都离不开它的指导。可是,在教学过程中,我们发现不少学生认为该课程难度大、理解困难、不容易掌握,是大学中最难学习的课程之一。这种现象产生的原因:一方面,该课程涉及先期多门课程知识,知识点零散,难点较多,学时数少,要在较少的学时里系统掌握这一门课程,对部分学生来说不是件容易的事情;另一方面,这门课程在大四上学期开设,而这一阶段的学生考研或就业压力比较大,这也使他们不能在学习中投入全部的精力。因此,如何在有限的教学时间内提高学生的学习兴趣、掌握课程内容、培养工程能力、构建创新思维成为《化学反应工程》教学的重点改革内容,我们在教学过程中进行了积极的探索及实践。
一、强化课程重要地位,提高学生学习兴趣
兴趣是最好的老师,学生只有对课程产生极大的兴趣和重视,才会有信心去学好这门课程,才能积极主动地克服学习中遇见的困难。这就要求教师在第一堂绪论课上下工夫。教师应对课程内容有透彻的了解和丰富的教学经验,准确回答好“课程的性质和地位,课程的结构和内容,学好课程的思路和方法”等基本问题。同时教师要把该学科发展前沿的技术和应用现状介绍给学生,让学生一开始接触,就能深刻感受到该课程在生产中的具体应用及重要性,从而激发学生对课程重视程度和学习兴趣。为了完成这一目标,每学期上课之前,针对如何上好绪论课,我们课程组教师要进行一次集体备课,根据各位老师前面上课反馈的信息和经验,对于可能存在的问题和如何能够解决这些问题,大家相互交流,从而互相提高。有相关科研课题的教师根据自己的科研实践,用浅显生动的语言、具体实际的数据结果,回答绪论课中需要解决的问题,有些老师则从化工生产应用和学生化学实验的实验现象来回答上述问题。经过集体备课后,教师们走上讲台,在对本课程内容准确把握的基础上,通过丰富的实际应用事例和充满激情的表述,使学生们能领会到本课程的性质和重要性,同时明白学习本课程应该具备的知识点。由于对第一堂绪论课的高度重视,为学生学好本课程打下了良好基础。
二、理顺课程基本线索,精选课程主要内容
本科《化学反应工程》课程的教学目标要求教师应从教材内容的组成,章节的编排体系,各部分内容的份量和侧重等方面,依据不同专业学习的特点,对课程进行适当的梳理。我校现用教课书为陈甘棠主编的“十一五”国家级规划教材《化学反应工程》第三版,此书内容系统,易于掌握。同时还选择李绍芬教授编写的“九五”国家级重点教材《反应工程》作为教学参考书,此书最大的特点是编入大量生产实际反应的例题和习题,这种理论联系实际的题型,能提高学生的学习兴趣和联系实际的能力。这两本书的编排体系有所不同,学生在学习过程中可以通过比较,更深地理解反应工程的实质。在教授内容的选择上,《化学反应工程》的基础知识,教师应该重点讲授,教学上可安排较多学时,为后续的学习打下坚实的基础。在其他课程学习过的内容如化学反应速度等概念,教师应做概括性介绍,把主要精力放在新知识和学过知识的应用拓展上。部分章节学生可在教师的安排指导下有目的、有计划地在课外进行自学。生化反应工程基础等章节则可以完全不讲。与此同时,学校还根据我校煤化工的特点,以讲座形式聘请客座教授为学生授课,列举典型生产实例进行讲解和分析,提高学生分析和解决实际生产问题的能力。应用化学专业进行科研实践周活动,让学生在科研实践周里熟悉反应器的选型与优化操作。通过对课程内容的精选和课程线索的梳理,使学生在学习过程中具有很强的针对性,大多数学生都能很好的掌握课程的重点内容和要求。
三、精心组织教学方法,采用多种教学手段
《化学反应工程》内容繁杂,难点较多,有基本的概念描述,也有枯燥的公式演绎。为了保证学生对基本概念能准确理解,基本方法能学以致用,就要对教学方法和教学手段进行改革。教师要精心研究教学方法,采用多种教学手段,满足少学时多内容的教学任务,做到各章节重点和难点突出,使学生易于理解和掌握。首先,在讲课方式上,应用不同的教学方法,充分体现教师“启发引导”和学生“积极主动”的现代教育基本原则。采用启发式教学法,使学生在学习过程中始终处于积极的思维状态。在启发式教学的基础上,针对不同章节可采用对比法、归纳法、提问法等方法来调动学生的学习积极性和主动性。如通过具体事例的讲解,应用对比与归纳法结合的方法对均相反应器型式和操作方法进行评选。对于某些有难度同时又在几种情况下反复出现的概念,采取学生和老师现场探讨形式,而后由学生自己总结结果。这样活跃了课堂教学气氛,提高了教学效果。再次,采用灵活多样的教学手段是教学方法改革的重要措施。根据授课内容的特点,有选择性地使用多种手段进行教学可以起到事半功倍的效果。多媒体在教学上应用,可以将工厂一些实际例子和生产现场搬到课堂,学生通过逼真的影像资讯不仅可以看清楚反应器的内部结构,同时也能了解反应器内传质与传热状况,对于反应器的设计、放大与优化建立必要的感性认识。如对合成氨反应器内部结构和流体流动的展示,激发了学生对反应工程课程的学习兴趣和学习热情。经过近两年多位老师的共同努力,本课程多媒体教案制作完成,经过课堂的使用,同学们反应良好,可以明显地提高教学效率。
四、加强工程技术观念,做到理论实践结合
重视理论和实践结合将是提高教学质量的一个关键过程。因此在理论教学中,我们必须积极引导学生树立和强化工程观念,加大理论和实践相结合力度。学生在课堂上领悟到所学知识的用武之地,就会表现出更高的学习热情,收到意想不到的学习效果。在教学过程中我们在这方面进行了改革尝试,具体做法是:一方面,教学内容和实际生产相结合。在教学过程中,我们注意选择实际生产中与基本教学内容密切相关并具有代表性的事例进行剖析、讲解,帮助学生对《化学反应工程》课程的理解。例如我们以淮化集团合成氨生产工艺为例,通过有针对性地对生产过程进行分析,使同学们对所学理论知识有了更深的理解和巩固。另一方面,教学内容与科研、专业实验相结合。我们利用专业实验和教师的科研活动,把课程教学从较为抽象的理论变成易于理解和直观的实际过程,加深学生对概念和原理的理解,加强学生的工程观念。有些授课教师把自己的科研与课程有关内容紧密地结合起来,将一些案例引入课堂教学,让学生学习反应工程科研思路方法,并且让部分学生参与到自己的科研活动,学生通过自己动手更深地体会本课程的精髓。近年来,随着我校“对甲酚催化氧化制对羟基苯甲醛研究”、“软化学法制备共掺杂二氧化钛光催化剂的研究”等课题研究的深入,在参与科研工作中,学生大大提高了感性认识和动手能力,培养了学生构建创新思维的能力。不少学生通过参与科研工作这个活动,对《化学反应工程》课程产生了浓厚的兴趣,并且通过自己的努力,在化学工程方向继续进一步的深造。
《化学反应工程》是一门最能体现化学工程与工艺特点的学科,让学生在短时间内掌握并运用它并非易事。只有激发学生的学习兴趣,在教学内容和教学方法上不断进行探索和改进,不断强化工程观念和使用多种教学方法、手段,才能提高学生的学习能力,培养学生的创新能力。我校反应工程专业的教师在近两年的教学活动中进行了初步尝试,并取得了一定的效果,今后我们将进一步进行《化学反应工程》课程改革的探索,提高学生学习《化学反应工程》课程的能力,掌握课程内容,为国家培养更多的化工创新人才。
参考文献:
[1]许志美,张廉.倡导科学思维方法,培养工程分析能力——“化学反应工程”教学研究[J].化工高等教育,2003,(1):66-67.
[2]周涛,谭军,叶红齐,钟宏.化学反应工程裸程教学向容和课程体系改革[J].化工高等教育,2006,(3):26-28.
[3]粟海锋.化学反应工程课程教学实践的一些体会[J].广西大学学报,2006,(2):99-102.
精细化工门类众多,品种繁杂,技术进步迅速,产品更新频繁,是一门典型的工程技术科学.精细化工课程是以市场需求为导向,以专业技术应用能力培养为主线,以适应培养应用型精细化学品生产技术人才的需求而设置的专业核心课程,内容主要包括无机精细化学品、表面活性剂、食品添加剂、胶粘剂、功能高分子、电子信息材料、涂料等典型精细化学品的制备技术及相关知识.本课程以典型精细化学品的生产方法为主线,综合应用精细有机合成单元反应、化工原理等相关知识及能力,理论密切联系实际,突出典型精细化学品的合成与复配.课程教学按制备原理与工艺应用机理产品介绍研究进展四大知识模块顺序进行.课程讲授中注重产品开发思路的引导,通过本课程的学习,可使学生受到创新精神的熏陶,对培养学生的创新意识和能力以及将来的就业、工作能力有着重要的积极作用.课程的教学环节除了包括课堂讲授,还应有学生自学、习题课讨论、实验、答疑、课堂测试和期末考试.通过上述基本教学步骤,要求学生掌握和了解精细化工发展的重点及本学科的主要研究方向和内容,能打下精细化工工艺学的深厚基础,使学生受到良好的基本功训练,拓宽学生的知识面和增强其独立思考问题的能力.
2教学内容与学习兴趣
在教学内容的选取上,基于课程开设的对象并考虑到教学内容要具有科学性、知识性和趣味性,以增强学生的学习兴趣,在具体的教学内容中,应按制备原理与工艺、应用机理、产品介绍及研究进展四大板块进行,即以典型精细化学品的生产方法为主线,综合应用精细有机合成单元反应、化工原理等相关知识及能力,理论密切联系实际,突出典型精细化学品的合成与复配.(表略)是本课程的主要教学内容.在具体的教学过程中,教学内容还应紧随时代脉搏,不断充实与更新,体现其先进性,并以贴近生活的实例进行化学知识的导引.在介绍表面活性剂时,应多介绍表面活性剂的用途,比如当用作药物制剂的辅料时,它可以作为载体、乳化剂、润湿剂或渗透剂、增溶剂及助溶剂等,赋予药剂以必要的物理、化学、药理和生物学性质,有的还可以直接作为药物.在介绍食品添加剂时,除了一些重要的应用,还要着重介绍对食品添加剂的认识误区,即人们往往认为天然的食品添加剂比人工化学合成的安全,实际许多天然产品的毒性因目前的检测手段、检测的内容所限,尚不能做出准确的判断,而且,与已检测出的结果比较,天然食品添加剂并不比合成的毒性小.让学生正确看待食品添加剂的必要性、安全用量以及有毒的添加剂的危害.再如讲到合成材料时向学生介绍现在人们已合成具有光、电、磁等特殊功能的合成材料、隐身复合材料等,如在讲到农药和化肥时,要讲清农药和化肥的使用,对农业的高产起到重要的作用,又要强调农药和化肥的大量使用会导致土壤退化及水、大气和环境污染等问题.以社会生活实例为背景介绍相关的精细化学品及其应用,有助于提高学生的学习兴趣,同时还能够达到理想的教学效果.
3教学方法与手段
本着“服务是宗旨,就业是导向,倡导做中学,走产学结合的路子”的教育教学新理念,充分体现“理论与实践相结合,重视学生的技能培养”的精神;在教学过程中依据以教师为主导,学生为主体的原则,教师适时讲授,引导学生积极思维,组织学生活动、讨论;运用多媒体教学,做到理论联系实际.依据课程要求,在吃透教学资源基础上,教师应熟悉本课程教学的教学重点、难点.本课程的重点是典型精细化学品的作用原理以及主要用途.通过合理设计教学内容和环节,平时评价考核与集中评价考核相结合,教师评价与学生评价相结合突出重点.难点是培养学生理论联系实际的能力、创新能力、配方分析能力、查阅手册资料并运用其数据资料的能力.通过教师精讲、应用观摩、学生实验突破难点.课堂教学应废除灌输式,采用启发式和讨论式教学,不断把学科最新成果引入教学,精讲多练,循序渐进,用提问、启迪、讲授、探讨、总结的方式教学,最好采用举例法,引导同学们与实际联系起来,做到理论联系实际,达到教师与学生双向互动,激发学生主动学习的热情.运用板书教学及多媒体辅助教学相结合的手段,使难于理解的反应机制通过图像、图片、数据及动画结合融为一体,直观地表现出来,激发学生的学习兴趣,让学生学习更轻松愉快.同时,应用多媒体教学要体现以教师为主导、学生为主体的教学思想,提高多媒体教学水平,合理使用多媒体课件进行课程教学,提高教学效果.
4培养目标与考核方式
根据人才培养目标要求和当今社会以及学生个人发展的需要,结合我国精细化工课程的现状和发展趋势,制定本课程的教学目标如下.
随着社会的发展对食品科学与工程应用型人才的需求加大,而传统的分析化学实验教学内容是根据分析化学理论课教学内容为中心,实验项目多以基础性、验证性实验为主,实验内容陈旧、重复、简单[3]。验证性实验对学生的要求并不高,仅要求其在规定时间内,学生按照老师讲的实验目的、原理、内容及步骤进行实验操作,这些重复机械性的基本操作技能训练,忽视了实验内容的综合性和创新性[4]。在整个实验过程中,学生一直处于被动状态,实验后不易留下深刻印象,使分析化学实验缺乏对学生足够的吸引力,这种教学不利于激发学生的创造性思维及培养学生的实践能力,导致学生缺乏创新意识,分析问题和解决问题的能力减弱,难以适应学科发展要求和社会人才要求。体现在见习过程中,学生连最常用的试剂都不会配制,最基本的仪器调试也不会,不知道从何下手独立开展实验。也无法满足社会对创新性、应用型人才的需要。
1.2教学方式程序化,学生缺少主动性
一般地,分析化学验证性实验都是教师拟定好实验题目,从实验目的、实验原理、实验材料与仪器到实验步骤,以教师讲授为主,学生是被动的听课者。往往就是学生根据老师的讲解机械的进行操作,记录实验数据,无需进行思考、改进和创新。这种教学方式虽然对培养学生严谨的科学学习态度和过硬的实验技能是必要的,但也严重地束缚了学生的想象力,削弱了学习的积极性和主动性,与培养食品科学与工程创新型、应用型人才是背道而驰的。
1.3实验内容未突出专业特色,不能满足食品科技发展需要
目前,分析化学实验主要由定量分析实验和定性分析实验组成。现行的分析化学实验教材对“仪器分析”涉及较少[5]。其实,随着食品科技的发展,教学内容应侧重对实用技术操作能力的培养。近年来许多先进的仪器设备如原子吸收光谱、原子荧光、气相色谱、液相色谱仪以及荧光分光光度计已经在食品分析过程中得到了广泛的应用。可以说,“仪器分析”已经成为现代分析化学学科的重要组成部分。但现有的分析化学实验教学内容与专业特色结合过少,还停留在培养操作技能的基础实验,学生不能及时了解本专业方向相关的典型测定或分析实验,及时了解先进的仪器,掌握其分析原理和分析方法。
1.4学生被动实验,热情和兴趣不高
传统分析化学实验一直都是教师的实验准备过分包办,造成学生一些基本知识和技能缺失。仅为实验而做实验,不能充分调动学生的实验积极性,且过分强调了基本技能、基本操作的正确性,不仅将许多学生带入机械操作的误区,而且还误认为是教师要求这样做的。使他们感到做实验就是机械的操作,每次均按早已编排好的程式进行,毫无压力,导致其轻视实验课,热情和兴趣不高。一学期下来,学生感到没学到多少东西,动手能力和分析问题的能力也难以提高。不少学生知道如何配制溶液但是不知道为什么这么配制溶液,一些实验操作,知道这样操作不知道为什么要这样操作,不知道如果不这样操作会出现什么结果,导致很多学生知其然不知其所以然。所以,这种教学模式限制了学生专业素质的提升,影响了学生就业能力,不利于培养适应时代要求、具有创新能力的高素质人才。
2分析化学实验课程的改革和建议
2.1更新实验内容,突出专业特色
传统的分析化学实验教学内容已经不能适应应用型人才培养的需求,同时食品科学与工程专业在人才培养方案上也有相应的要求,综合考虑必须对原来选取的实验内容进行适当修改调整。对部分经典实验内容予以保留,如“酸碱滴定”“金属离子的连续鉴定”“离子鉴定”“恒重称重法”等经典分析方法在整个实验课程内容要保留其重要地位。根据食品科学与工程专业对人才素质培养的要求,针对性地更新部分实验内容,如将“水果中还原糖的测定”“奶粉灰分的测定”“罐头或白酒的总酸度测定”“蔬菜中农药的残留分析”等训练型、提高型和设计型实验内容引入本专业的学习中。除此之外,我们应增加现代仪器分析实验的教学内容和教学课时,如利用高效液相色谱法确定化合物的含量、离子色谱仪检测饮用水中金属离子等。实验教学的目的不仅要使学生熟练掌握这些仪器分析实验的原理和操作方法,更要让学生清楚在实际工作中如何选择和使用这些仪器和分析方法。因此,应让学生及时了解先进的仪器,掌握其分析原理和分析方法,从而扩展学生的专业知识面,激发其探索科学的动力和兴趣[6]。这种方式促使学生夯实实验基础理论和技能,并做到学以致用,对学生专业实验水平的提高有明显的促进作用。
2.2改革教学方法,提高教学效果
分析化学实验涉及的操作细节多,知识繁杂,而传统教学方法大多是教师讲解理论,在实验前黑板上写满实验目的、原理、步骤等,教学方式往往比较单一,枯燥乏味,很难调动学生主动学习的积极性[7]。为了克服以上弊端,必须对教学方法进行改革。在分析化学实验教学中采用多媒体教学,播放实验操作标准化视频和课件,让师生双方边教、边学、边做,丰富课堂教学和实践教学环节,做到理实一体化,增强了实验教学的直观性,提高实验课教学效果。使用实验操作标准视频进行教学,可以对实验操作细节部分图像放大,并反复播放,因此能够有效的解决教师演示实验无法在课堂重复操作的问题,并且可以让学生们学习到的统一的标准化操作方法,有利于学生准确掌握标准化的实验技能。例如,在讲授盐酸标准溶液的配制和标定实验时,使用混合指示剂甲基红-溴甲酚绿进行酸碱滴定,需要控制滴定管放出四分之一滴溶液才能准确到达滴定终点。教师仔细讲解如何确定滴定终点的要点,并利用实验视频将终点前、近终点、终点、终点后的颜色变化展现给学生,这种理实一体化方式能够使得实验操作的关键技术点直观地展现给学生,能有效提高该课程的教学效果。
2.3开放实验室,培养学生的综合能力
以专业对人才素质培养的要求为目标,围绕学生创新精神与实践能力的培养,我们探索对食品科学与工程专业的分析化学实验课程采用开放式教学模式进行实践。开放式实验教学是一种以“学生为主体”的实验过程的开放性与学生参与的自主性为特点的实验教学模式[8]。根据实验项目、实验内容、实验课题采取不同层次的开放实验模式,在实验教学过程中,既培养了学生的定量分析基本技能和基本分析方法能力,又要达到培养学生的创新能力的目的[9]。为更好地利用实验室资源,对开放时间和实验项目进行一定的限制。(1)学生根据自身专业需要和课余时间,选择感兴趣的实验项目,向开放的实验室进行申请,经审批同意后在实验室定时开放的时间内去完成实验。(2)申报和参与大学生创新创业计划项目的学生,学生通过查阅资料,制定设计方案,经学校立项后,对实验室进行预约,在开放实验室内完成创新项目。(3)学生可以根据自己的实际情况参与一些教师的科研项目,根据课题要求和需要预约开放时间。(4)毕业班的学生可以在进行毕业论文的课题研究工作时,采用全天的开放实验模式,集中进行毕业论文课题的研究。同时,学生可以根据自己的实际情况参与一些科研项目,了解研究的过程,熟悉科研的环境,思考实验原理,达到培养学生实验技能、独立思考能力和创新能力的目标。开放实验室,为学生提供一个宽松的理论联系实践的空间,鼓励学生开展小型多样的课题研究,或与教师的科研课题相结合,或与学生的双创项目结合,将实验内容和他们感兴趣的课题结合起来,让学生充分发挥想象力和创造力,有目的、有步骤地去设计与完成实验任务。
3结语
分析化学实验教学与理论课教学相辅相成,是分析化学课程教学中非常重要的一个环节。在教学实践中,必须要紧紧围绕人才培养方案,不断总结和探索,转变传统的教育思想和观念,创新、优化教学方法和手段,才能提高实验教学质量和人才培养质量。通过开放实验室激发学生对实验课的浓厚兴趣,提高学生的综合素质,有助于学生创新意识和自主学习的培养。通过分析化学实验教学的改革能加强大学生实践能力的培养,但这是一项长期的工作。今后将继续深入对分析化学实验教学改革,围绕食品科学与工程专业的培养计划,更新实验教学内容,改进实验教学方法,加强对学生综合实践能力的培养,为培养既有扎实的专业理论基础,又有较强综合素质的应用型人才继续努力。
作者:蓝峻峰 方毅林 单位:广西科技师范学院
参考文献
[1]杨妍,包晓玉,张廉奉,等.“521”应用型本科《分析化学实验》教学改革的实践与思考[J].南阳师范学院学报,2016,15(3):55-57.
[2]林兴桃,王小逸,白广梅.提高实验教学质量推动创新人才培养[J].中国现代教育装备,2012,7:108-110.
[3]周华,周永恒.分析化学实验教学改革探讨[J].开封大学学报,2015,29(4):72-74.
[4]高雅.改革化学实验教学,培养大学生创新能力[J].山东化工,2017,46(2):91-92.
[5]李秀霞,葛永红,吕长鑫,等.基于创新型人才培养的现代食品检测技术课程教学模式改革研究[J].食品与发酵科技,2016,52(1):68-71.
[6]王桂霞,胡少强,杨红兵.对分析化学实验教学现状的一些思考[J].洛阳师范学院学报,2014,(2):51-53.
双语教学是在非语言类学科中以两种语言作为教学语言的教育[1],其中一种是学生的母语,使学生掌握非语言类学科知识。研究者将双语教学模式分成三类[2],第一类,学校只使用一种非学生母语的语言进行教学,即浸入型双语教学;第二类,学生进入学校后部分或者全部使用母语,然后逐步转变成只使用第二种语言进行教学,这种模式称为过渡型双语教学;第三类,学生刚进入学校是使用母语,然后逐渐地使用第二种语言进行部分学科的教学,其他学科仍然使用母语教学,这种模式称为保留型双语教学。
采用双语教学具有多方面的意义。首先,双语课程多采用国外原版教材,通过课程的学习,学生在掌握该课程内容的同时,可自然习得外语的运用,提高外语的应用能力。其次,外语学习的目的在于应用,在高校中往往花费诸多的学时在外语课程上,而学生的外语运用能力往往不理想,在运用外语进行交流的场合,往往很难表述自己的想法,涉及到专业用语,更是不知如何表达,外语的学用脱节问题严重。双语教学的开展无疑可以有效地解决这一问题。双语教学把课程知识的学习和外语的学习有机结合在一起,使学生真正运用自己的外语技能实现课程知识的学习,切身感受到外语的重要性,实现学以致用。并且,国外原版优秀教材的采用,使得课程教学体系与国外一致,从而可以吸纳国外同类课程的精华。再者,通过双语教学,使更多的学生既具有较强的专业知识,又具有很好的外语运用能力,从而可以促进国际间的交流,推进对国际先进科技与创新理念的理解与接受。
2、《化学反应工程》课程的双语教学实践
我校《化学反应工程》课程选择国外名校教材《Chemical Reaction Engineering》(Octave Levenspiel 主编,3rd ed.,John Wiley & Son,Inc.,该教材2002年由化学工业出版社作为国外名校名着引进出版)进行教学,该书文字流畅,内容简明,条理清晰,较适合作为双语教学的教材,但是内容上与我们的教学大纲不完全相符,我们在授课中根据需要对课程内容做适当取舍或调整。主讲教师均具有较好的英语基础,教师专业水平较高,均已取得博士学位或者正在攻读博士学位。教师授课时,板书为英语,起始时以汉语讲授为主,在学生能够接受的前提下,采用部分英语授课,随着时间的推移,逐渐加大英语授课的强度。按照教学模式分类,本课程属于保留型双语教学。
教师授课过程中,绝大部分时间讲解课程知识,根据学生的英语掌握情况,提示部分专业词汇或者讲解部分英语段落、语句。授课过程中,具体采用多大份额的英语讲授,每次课不同,根据学生掌握知识点的情况来调整,以大部分学生能够掌握主要知识点为准。
课程作业为英文教材所配备的习题,对学生提交作业的语言不作硬性要求,英语表达能力强的学生可以采用英文,英语表达能力差的学生可以采用部分英文部分汉语的方式,鼓励学生尽可能采用英语。考试采用英文试卷,答题语言也不作硬性规定。
教学方式上除了教师授课、学生听课、记笔记的常规形式,还采用了很多灵活的形式。例如,在一次课结束时,对下一次课要讲的内容提出一些问题,要求学生预习,再上课时,由学生就这些问题发表意见,甚至给同学讲课,之后教师进行评价、讨论。采用英文教材需要学生付出更多的精力来阅读、理解,这种教学方式可以增加学生阅读教材、分析问题的积极性。又如,为了增强学生对知识点的掌握,每次课前均对上一次课所讲授的知识点进行回顾,讲清各知识点之间的前后联系。同时每个阶段我们均进行小结,把该阶段的内容前后联系起来,每一阶段均配合相应的综合练习题,巩固已学知识。
同时,我校《化学反应工程》教学网站已于2006年建成,上传并了许多重要的教学资源,如课程信息、授课课件、教案、电子版参考资料(着作、论文)、拓展资源等,并经常更新,学生可以利用网络,浏览教学资源及下载。该网站的建成,对《化学反应工程》双语课程的日常教学起到了很好的辅助作用。
教学实践的结果表明,大部分学生阅读、理解教材的能力明显提高,能够基本上掌握课程的主要知识点。每次课程结束,均对学生进行调研,结果表明,学生认为该双语课程讲授的内容充实,信息量大,能及时反映学科前沿内容,对该双语课程的教学方法基本满意,该课程的学习,对英语应用能力的提高有很大帮助。校教学巡视员对《化学反应工程》双语课程的教学也给予了高度评价,一致认为课程组教师讲授知识准确,教学方法和手段先进、合理,理论联系实际。
3、双语教学中存在的问题
在《化学反应工程》课程教学实践中,我们也逐步认识到了双语教学中存在的一些问题。
首先,在本课程的教学中,常常不能完整地完成教学大纲规定的全部内容,这是由于双语教学中需要花费一定的时间来帮助学生对语言的理解,以保证学生对知识的接受,所以会损失一部分教学内容。这一问题的存在也是必然的,因为我们的语言大环境是汉语环境,学生对于外语所表达知识的接受存在较大的障碍。要想完全解决这一问题,目前存在较大的困难,需要从我们的语言环境着手,增大外语的运用力度。我们考虑可以充分利用现代化的交流手段,例如通过网上质疑和答疑,增强学生课后复习和预习的强度;同时提供合适的中文参考书供学生参考,把教学内容的损失减到最低。
其次,教师本身的外语运用能力有待进一步提高。优秀的双语教师应该不仅可以用外语进行流利的日常会话,而且精通专业内容、学科专业英语,能流畅自如地应用双语进行教学。在教学中我们已经认识到教师本身存在的一些不足,尽管我们进行双语教学的教师都是英语基础较好的优秀教师,但是毕竟不是以英语为母语,要想实现流利的英语授课尚存在一定的困难,需要加强双语教师的培养与培训。目前我校也采取了一些措施,例如选送双语课教师由外教进行强化训练并短期出国培训,已取得了一些成效,但仍需进一步加强这一方面的工作内容。
中图分类号:G642 文献标志码:A 文章编号:1674-9324(2016)15-0271-02
随着我国经济迅速发展,社会对对化工人才培养提出了更高的要求。本科院校工科教育的主要目标之一是培养高素质的工程技术人才,使学生在获得专业知识和技能的同时具备较高的综合素质和创新能力。教育部“卓越工程师培养计划”明确提出“……改革工程教育人才培养模式,提升学生的工程实践能力、创新能力和国际竞争力……”。强化学生工程能力的培养已成为高校工科专业人才培养的核心任务。化学工程与工艺专业肩负着培养高级化工人才的使命,专业工程性质突出。培养学生的工程能力,不仅要加强实践环节建设,更要重视理论课教学特别是专业课教学的指导作用。化学工程与工艺专业主要面向的工业部门是化学工业,属流程工业,往往涉及一系列物理、化学和生物加工过程。化工产品的生产是各种化学单元反应和化工单元操作的有机组合和综合应用。化工工艺学是根据化学、物理、物理化学、化学工程原理和其他科学的成就,研究综合利用各种原料生产化学产品的方法原理、操作条件、流程和设备,以创立技术先进、经济合理、安全环保的化工生产工艺的学科,被认为是架在实验室研究与工业生产中的一个桥梁。课程工程性强,存在许多与实践环节的关联点,是培养学生工程能力的适宜载体。关于化工工艺学课程教学已由不少报道。黄美英[1]等对强化课堂教学、加强实践与理论教学相结合以及强化学生工程观念等方面对《化工工艺学》课程教学方法的改革进行了探讨;邱玉娥等[2]指出该课程教学应加强工程意识和创新意识的培养,并尝试采用“传统型、技改型、创新型”案例教学法强化培养学生的技改创新意识。王钧伟等[3]认为可通过精选教材内容、强化实践教学、追踪学科发展、开设专题报告、加强绿色教育等方式,提高学生学习热情,锻炼学生的实际动手能力,培养学生的创新意识,增强教学效果。本文介绍了在化工工艺学的课程建设和教学中突出学生工程能力培养的一些新尝试。
一、课程教学目的再认识
从化工生产工艺角度出发,运用化工过程的基本原理,阐明化工工艺的基本概念和流程组织、物料衡算、热量衡算的通用方法,介绍典型产品的生产原理、典型流程、关键设备、工艺条件。典型产品生产工艺的讲解重点放在分析和讨论反应、分离部分的工艺原理、影响因素、确定工艺条件的依据、反应设备的结构特点、流程的组织等;同时对工艺路线、流程的经济技术指标、能量回收利用、副产物的回收利用及三废处理运作进行一定的论述。使学生获得广博的化学工艺知识,培养工程能力,以便在生产与研究开发工作中开拓思路,灵活运用,不断开发应用新技术、新工艺、新产品和新设备,更好地满足社会需要。为强化工程能力培养,要重视本课程对专业实验、课程设计、生产实习等实践环节的指导作用,教学活动与实践环节有机关联,画龙点睛,有的放矢。
二、课程教学资源建设突出学生工程认知、工程设计、实验操作
依据课程实践性、综合性、复杂性,为提高学生的工程认知能力和感性认识,基于FLASH和网页制作等软件工具,开发了多功能的化工工艺学资源库,包括:例题分析、图形演示、生产装置实际录像和图片、实习现场实际教学录像和图片等。学生可随时通过网络观摩这些资源。学生将工业生产装置和工艺展示的视频看作理论联系实际的视觉纽带,访问的积极性高。《化学工艺学》中流程图较多,如果采用学生自己看书本中的流程图,然后老师讲解的教学方法,很容易让学生感觉枯燥无味,所以本课程特别重视直观、丰富多彩的多媒体教学方式的高效应用,课件可通过网课程络平台自由访问。在绘制工艺流程图时,尽量使用动态画面,如把物料的流动做成动画,管道、设备、阀门等做成立体图,不同的物料及公用工程用不同的颜色区分,力求逼真、醒目。固体燃料气化制备合成氨原料气的间歇造气过程的操作循环的动画演示就很受学生欢迎。在本课程的建设安排了课程设计,其中大约■的设计题目与授课内容直接相关,如合成氨、芳烃分离、天然气制甲醇等,着重培养学生分析问题、解决问题的综合能力,锻炼和提高其对工艺路线的设计、设备选型,以及车间布置和管道布置的能力,培养正确、熟练查阅工艺设计规范、手册及参考书的技能。将教师科研项目、社会正在建设的工程项目等引入教学,强化学生的应用意识和工程观念。化工专业综合实验中设置乙苯脱氢、反应精馏、喷雾干燥、空气分离等与化工工艺学授课内容直接相关的实验项目。
三、课程教学突出培养学生的“当代工程观”
工程观是人们关于工程活动的基本理念,是认识和进行工程活动的指南。工程观念的强弱和趋向直接影响着从业人员的实践能力。在当代学科交叉渗透的趋势下形成的当代工程观[4]是对传统工程观的扬弃和超越。当代工程观视生态环境为工程活动的内生因素,认为工程活动不但受生态环境的制约,而且应按照生态规律重塑生态活动的方式[4]。化工工艺学是培养学生工程意识的良好媒介。在绪论部分,我们强调工艺技术不同于实验室制备技术,工艺路线评价要突出理论上的正确性、技术上的可行性、操作上的安全性、经济上的合理性,还要突出环境及生态相容性。讲解具体产品的生产工艺过程中,将原子经济性(AE)[5]、环境商(EQ)[6,7]的概念进行具体计算、剖析。比如氯醇法与乙烯环氧化法制备环氧乙烷路线的比较就是用案例教学提高学生对可持续发展的责任意识和创新素质的生动素材。
四、授课过程强化与实践环节的联系
在授课过程中,我们适时引入后期开设的专业实验、课程设计的题目,提高学习的针对性,如介绍乙苯脱氢时让学生思考专业实验将重点考虑的问题:降低体系分压的方法、测定乙苯转化率和苯乙烯收率的方法、采用色谱定量时苯乙烯的出峰顺序等;在讲解物料衡算、热量衡算、工程图纸视图、流程组织时强调在课程设计、毕业设计中的实际应用;在介绍特殊设备布置时强调设计发展,如介绍合成氨工艺技术时引入废热锅炉的适度倾斜布置;适时介绍生产实习中遇到的工艺技术问题,并启发学生分析、解决这些问题,引导学生建立工程应用意识;授课期间带学生去观摩校内实验及中试装置,突出情景式教学,使理论学习与实践环节无缝统一、相互促进。
五、授课过程突出原理-条件-流程-设备一条主线
为强化工程意识,使学生形成做工程就是做细节的理念,在介绍氨、C8芳烃、甲醇、苯乙烯、环氧乙烷、丙烯腈、氯乙烯等产品制备技术时,用整体一条线的思想组织教学:按照产品性质、用途―生产原理(含主副反应、热力学和动力学分析)―催化剂选择―工艺条件讨论─工艺流程比较―设备分析的顺序,由浅入深,渐入佳境。
强化学生工程能力的培养已成为工科高校实践和理论教学的核心任务,通过化工工艺学教学培养学生工程能力是课程建设的内在要求。强化与工程认知、工程设计、实验操作相关教学资源建设,授课中贯彻当代工程观,授课过程与实践环节紧密结合,用原理-条件-流程-设备整体一条线组织教学等是在化工工艺学教学中培养学生工程能力的有效措施。
参考文献:
[1]黄美英,梁克中,赖庆柯.对《化工工艺学》教学改革的探讨[J].重庆三峡学院学报,2007,(3):122-124.
[2]邱玉娥,张秀玲,等.化工工艺学应注重工程素质和创新意识的培养[J].化学工程与装备,2009,(5):214-216.
[3]王钧伟,官叶斌,孔学军,等.《化学工艺学》教学改革探索与实践[J].广东化工,2012,(4):233-234.
[4]汪应洛.当代工程观与工程教育[J].中国工程科学,2008,10(3):17-20.
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)37-0128-02
物理化学课程是高校化学专业最重要的一门基础课程,该课程内容丰富、前后连贯、逻辑推理清晰、理论性强,不仅可对化学、化工、环境专业学生开设,也可为生物、材料、食品、水建等专业学生设置。随着社会的发展和科学技术的进步,高等学校不断深化教学改革,全面提高教学质量,对物理化学学科的课程讲授和发展也提出了更高的要求。结合我校的实际情况,以及我们近几年在建设校级精品课程的探索与实践,重新审视材料科学与工程专业物理化学课程的教学内容、教学方法和教学环节,发现目前我校材料专业物理化学课程教学中还存在以下的问题:
1.现行的教学计划中,无机化学相关课程以及后续一些专业课,与物理化学授课内容中有一些重复之处。
2.教材中抽象理论太多,造成了学生对这门基础课程产生了比较枯燥无味的感觉;加之内容多,课时量有限,老师在课堂讲授中不能针对某一化学原理或原理推导过程进行深入的剖析和讲解。
3.与之配套的物理化学实验课,经常采用多个班级集中循环进行试验的模式,有时理论部分未讲授到,但实验课程因为循环时间到,又必须开始,即实验内容超前于理论教学的进度,或者理论课早已讲授完毕,而实验课程却推后进行,学生不能及时将理论和实验相联系,无法达到预期的教学效果。目前我校物理化学的实验内容,基本以验证基础理论为主,缺少综合性、设计性及性能测试试验,因此物理化学实验体系缺少培养学生创新思维的意识以及提高学生动手能力的舞台。
因此,需要积极推进课程体系改革,充实和更新教学内容、改进教学方法、丰富实验教学,从而全面提高物理化学课程的教学质量和效果。
一、优化整合相关学科内容,打破学科壁垒,构建新的教学体系
对于我校材料科学与工程专业,按照2013版教学大纲的要求和已制定的教学计划,其中包含的课程,如无机化学、无机非金属材料、催化作用原理、胶体与界面化学等专业课,它们都与物理化学课程密切相关,有些课程如催化作用原理和胶体与界面化学,直接是从物理化学的大体系中划分出去的。由于我院材料专业招生时间不长,而这些课程总是不同的教师授课,教师之间就授课内容未来得及进行充分的交流,经过几年的授课,发现同一知识点的简单重复难以避免。因此,建议课程组就这一现象,加强教师间的交流与合作,将这些课程的内容进行有效的整合,突破原来以学科和专业来划分的粗放型的课程体系,建立起适合于自己专业的有效课程体系,是目前我院物理化学教学改革的一项重要任务。
我校材料学科专业物理化学课程采用的是南京大学沈文霞主编的《物理化学核心教程》第二版教材,主要的授课内容包括热力学(热力学第一定律、热力学第二定律、化学平衡和相平衡)和动力学部分(包括化学反应速率、电化学、表面现象和胶体化学),共56课学时,大学二年级上半年授课;而无机化学,同分析化学一起共48学时,无机部分主要讲授热化学(热力学第一定律)、稀溶液的性质、胶体溶液、化学平衡及化学反应速率;根据教学大纲的安排,胶体和界面化学、催化作用原理这两门课程各安排24个学时,在大学三年级下学期开展。通过几年授课,经老师观察和学生反映不难发现,以上所述这些课程,在知识内容上相互之间都存在着一定的重复性和交叉性。
针对课程内容重复的问题,为了避免盲目浪费学时数,有效改善不同课程之间的重复授课,充分利用大学课堂掌握更多的知识,使我们在课堂上的几十分钟内有效地完成教学任务,这里提议对材料系开设的几门相关课程教学内容进行整合,使每门课都有其侧重点,建议组建一个全新的教学体系,同时要照顾到这些学科知识的完整性和独立性。例如,讲授无机化学课程时,建议把化学热力学和化学平衡作为重点内容详细讲授,而其他内容,如电化学、相平衡和化学反应速率这些内容作为物理化学课程的授课侧重点。物理化学理论课程中的胶体、表面现象则可放在胶体和界面化学以及催化作用原理这两门课程中主要讲授,物理化学课程就不讲授这部分内容。这样既节省了时间,又突出了重点,不仅使教学内容独立而完整,还可以适当减轻因课时量小带来的物理化学的教学压力,弥补了物理化学课程内容多、课时少的矛盾,老师在授课的过程中再也不担心时间不够用而只能浅显的表述;对于学生来说,仍然是掌握了整个物理化学的原理,而且更加坚实。
二、掌握专业知识框架,改革教学方法
通过对物理化学课堂的观察,发现学生们刚开始对这门课还保持有神秘感,大多数同学对这门课还是很有兴趣的,加之从师哥师姐们那里听说这门课容易挂科,因此学生们刚开始上课的时候都很认真。但是随着课程的深入,部分同学开始松懈,开始排斥这门课程,以至于后来干脆放弃学习。经过细心调查分析发现,学生们在失去学习兴趣后,慢慢迷失在这门课程中。尽管老师在课堂上一再强调要理清楚各章节之间内容的联系,重点记忆关键结论,但大部分同学仍然做不到,不能掌握物理化学课程的知识框架,也没有选择性的记忆关键问题,总是被动地接受课堂上讲授的内容,甚至被很多的数学推导过程迷惑。而实际上这门课程内容衔接紧密,逻辑性很强。把各章节之间的知识框架理清楚之后,就坦然的接受和明白了各章的结论,也有利于知识点的重点记忆。在教学过程中,注重课程之间的联系,通过知识点的连接和相关内容衔接相关的课程,及时引导学生把所学的内容纳入到学科的框架中,帮助学生建立较完整的知识框架,不要迷失在盲目的理论推导中。
物理化学这门课理论性很强,内容较多而抽象,公式又多,学生接受很困难,这就对老师的课堂教学提出了更高的要求。为了能够进行有效的课堂教学,激发学生的学习兴趣,常把日常生活现象中涉及的物理化学原理介绍给学生。比如,举例高温下食物容易变质的问题,联系化学动力学的理论加以说明;讲解温度对反应平衡和反应速率的双重影响时,例举合成氨工业中如何选择最佳温度;涉及讲授表面化学的理论时,可以例举农民锄地能防止水分蒸发的现象,或者小气泡、液滴、呈球形的现象,加以解释后,学生就会对表面性质有清晰的认识;讲授渗透压的时候,联系渗透压的作用,提问为什么肥料用多了农作物会“烧死”?打吊瓶时为什么会感觉到疼痛?让学生带着问题听课,面对生活中各种现象去思考,多问几个为什么,自己到物理化学中去寻找答案,激发学生学习这门课程的兴趣,也就达到了提高教学质量的目的。
除此之外,在课堂上还可以采用小班讨论或者Seminar讨论式教学模式,以教师和学生为共同的教学主体,就某些共同关注的问题,在和谐的气氛中进行讨论,加强教师和学生之间的交流和沟通。课下,利用我校教务处网站的网络教学平台,与学生进行课下的交流和习题讨论、小测验等,与传统的课堂教学模式相比,它具有互动性、合作性、学术性的优势。
三、强化配套实验教学
实验教学在物理化学课程的教学中占有十分重要的地位,它与物理化学课程紧密配合,巩固和加深对物理化学原理的理解,提高学生对知识灵活应用的创新能力,还培养了观察和分析问题的能力。
为了避免实验课程超前理论课程,建议在学习完物理化学相关理论后,及时在学期后半学期开设实验课程。课程组已经设置独立的实验课并计算学分,如:配合表面现象,开展了液体表面张力的测定实验、粉体粒度分析实验;为了巩固反应速率反应章节的学习,开设蔗糖反应速率常数、乙酸乙酯反应速率常数的测定实验等。同时,也应鼓励学生根据所学理论,合理设计实验项目,开展综合性创新实验,增加设计研究型实验,根据设计实验的题目、要求等内容,让学生查阅相关资料,并利用学过的理论知识,选用相关的仪器、药品,分析实验中的难点和关键步骤等,自行完成实验内容、并上讲台讲授实验,以培养学生发现和解决问题的能力。
经过几年的探索和实践,我院化学化工学院材料专业物理化学课程的教学改革将有助于提高学校物理化学课程的教学质量和效果,促进了物理化学这门校级精品课程的建设和发展。
参考文献:
[1]王彬.冶金与材料专业物理化学课程教学方法的探讨[J].教学研究,2013,(7):60-61.
[2]孙春艳.化工专业物理化学课程教学改革与实践[J].广州化工,2013,41(18):180-181.
作者简介:李保庆(1962-),男,山东泰安人,泰山医学院化工学院,讲师。(山东 泰安 271016)
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)31-0119-02
化学是理工类专业的重要基础学科之一。特别是近年来随着信息科学、材料科学、新能源和分子生物学等先进学科的迅速发展,为国民经济和科技水平提升提供了广阔的发展空间,化学在这些学科中的重要性更加突出。化学学科作为一个基础学科,如何既给理工类相关专业的学生作出整体介绍,又能在教学中介绍化学与不同专业的紧密联系,从而构建出一套对理工类不同专业适用的医学化学基础课程体系,以适应目前科技﹑经济发展对人才培养模式的需要是非常重要和刻不容缓的。笔者在多年的医学化学教学中对于理工类不同专业的学生都进行过座谈,就目前医学化学教学的授课内容、学生的满意和认可等方面做了调查,对医学化学的教学内容进行了改革实践。
一、医学化学课程在泰山医学院的现状
泰山医学院(以下简称“我校”)前身是单学科的医学院校,医学化学是普通基础课,医学各专业的要求和授课内容都是一样的。学校现在已发展为多学科的医学院校,虽然医学化学是普通基础课,但医学和理工等专业差别大、跨度大,专业人才培养要求也不同,应该进行相应的改革。目前,我校在医学和理工类等专业都采用医学化学同一本教材,在应用物理学、医学影像学、生物工程等专业开设了医学化学课程,学时在30~80学时不等,占3~4学分,理论和实验课的比例约为3∶1,课程基本都在大学一年级进行。
从历年学生学习的情况看,生物类专业大部分学生能认真对待学习,但不知怎样去学;非生物类专业部分学生认为医学化学对自己的专业没什么用处;更有一些学生仅仅是应付学习,能通过考试拿到学分就行。近年来,随高校规模和新上专业的增加,怎样培养适应社会发展需要的人才,怎样让学生成材,也是各专业教师应有的责任和使命。笔者近年来在理工类专业的医学化学教学中进行了一些教学内容的改革探索,取得了积极的效果。
二、医学化学课程应包含的主要内容
医学化学课程的内容包括物理化学、无机化学、有机化学和分析化学。近年来,随着各新兴交叉学科发展的需要,新的分支学科正不断涌现,化学各分支学科的研究内容也在不断扩充。如何在医学化学教学中,做到从化学学科内在知识结构的要求出发,将化学学科系统而又不失重点地传授给理工类专业的学生,确实是一个值得重视的首要问题。
在几代化学教育家和广大教师多年的教学实践中,在各综合性大学目前的化学教学中,教师普遍认为,将化学学科以理论化学(结构化学与物理化学)、化合物的合成制备与性质(无机与有机化学)及化合物的测量与表征(分析化学)为主要线索来介绍化学知识是符合目前科技发展和经济发展的趋势和要求的。因此,大学医学化学的教学也应遵循这样的原则,也就是以化学原理、制备与性质、测量与表征为医学化学教学的主要内容。
三、医学化学的教学如何适应理工类等相关专业
医学化学在我校授课的专业主要有应用物理学、医学影像学、生物工程等专业。这些专业的医学化学教学与一般大学理工科的化学教学,无论内容和难度及要求都是不同的。如何做到既能系统地将化学学科的基础知识介绍给学生,又能考虑到各专业学生的培养目标和特殊要求,这应是大学医学化学教学的基本思路。不同专业人才培养要求不同,教学内容应因专业不同而在难度和重点方面有所不同。如结构化学、化学热力学和化学动力学是物理化学的主要内容,也是化学学科的理论基础和知识框架。过去在原先医学化学的教学中,一直都属于略讲或不讲的部分。也正是由于这种状态,使上述专业的学生对化学不感兴趣,实际上起了削弱化学学科重要性的作用。
1.应用物理学(医学物理学方向)
应用物理学(医学物理学方向)本科专业是以培养面向医学为主的应用型人才,对于该专业的医学化学理论教学内容,应遵循理论够用,应用为主的原则。在参照教学大纲的前提下,在《氧化还原反应与电极电势》一章增加了化学传感器的内容,这在医学诊断和环境检测中都有重要的应用;在《滴定分析法》一章中,增加部分仪器分析的内容,这部分内容涉及仪器的正常使用维护,是物理学的主要应用,对保证仪器灵敏度、准确度、选择性等指标非常重要,例如电化学分析与光谱分析中如何降低信噪比等等。《有机化学的对映异构》一章涉及物理学光学的应用,要重点讲解,其它内容一般了解即可。以下是本专业修订后的医学化学理论授课内容,见表1。
2.医学影像学专业
医学影像学专业是以培养面向医学理论与应用并重的理、工、医多学科结合的专业人才为目标,除了按医学化学的教学要求教学外,还涉及较多的物理学的理论知识,实际应用中又要使用各种现代先进诊断仪器。因此在教学中,第一要突出物理化学中动力学的内容。因影像专业要接触放射性同位素,要熟悉其物理化学变化规律。第二,无机化学教学内容中要突出配合物的内容,因涉及肿瘤病人的化疗使用的配合物类药物,如顺铂和卡铂类化疗药物。第三,影像诊断经常使用的造影剂大多是有机化合物,所以有机化学的内容重点应讲基本有机物的性质,主要是药物性和毒性方面的知识。第四,要增加分析化学的仪器分析内容。因为医学影像专业是以诊断为主的专业,常用磁共振、CT等大型先进仪器,因此学生应对现代分析手段有所了解﹑熟悉,才能更好地掌握仪器的正常使用和维护。以下是本专业修订后的医学化学理论授课内容,见表2。
四、结束语
总之,在理工类不同专业医学化学的教学中,在内容多学时少的情况下,应首先选择具有广泛应用价值的基础知识、基本技能和基本原理来介绍,然后再根据不同专业的需求有所侧重,使医学化学的教学更贴近专业,更有利于提高学生学习的兴趣。几年来,在上述几个不同专业的理论教学中都作了尝试,效果明显。通过学生网上课程评价,得分96.6分(百分制),学生绝大部分是满意的。通过新修订的医学化学的理论授课内容的学习,学生更加清楚了医学化学哪些内容与自己专业更密切,不再是仅仅为完成学分而学习,学生主动学习本课程的积极性也明显提高,使医学化学的学习突出了与学生就业、专业成才紧密结合的教学理念,适应了现代社会科技﹑经济发展对专业人才的需求。
参考文献:
[1]刘磊,陈鹏,赵劲,等.化学生物学基础[M].北京:科学出版社,
2010.
[2]傅献彩.大学化学(上下册)[M].北京:高等教育出版社,1999.
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)33-0060-02
《化工过程设计与优化》课程是化工类研究生专业课中的一门综合性强,知识面广泛的化学工程专业课,可以培养化学工程专业学生的工程实践意识,受到国内化工专业高校的重视。合肥工业大学化工学院制定了《化工过程设计与优化》的研究生课程计划,学院经过研究,决定从2006年开始在化学工程专业研究生中开设《化工过程设计与优化》选修课程。经过几年的教学实践,改进了教学内容和教学形式,开课取得成功。在近6年的校本部研究生及企业研究生班教学过程中,我们对课程内容和教学方法进行了一些有益地尝试,逐步形成了一套适合本校学生特点的教材,培养了学生的化学工程实验意识和工作能力,毕业学生受到用人单位好评。
一、分析取舍国内外相关教材的教学内容
“优化”已成为一门系统的数学理论性学科。国外的一些原版教材或译书箱大多涉及优化的数学模型建立、因素分析和计算等理论,或者介绍Aspen Plus和PRO/II等软件的应用等。教材的数学理论性强,难度大,与化学工程关联度偏小,难以直接用于本校化学工程专业研究生的教学。国内出版的化工过程与设计方面的教材较多偏重工艺描述,与化工优化知识的结合点少,不能直接采用。我们从国内外的教材中进行选取,注重各章知识点完整性和连贯,强化工程实践意识的培养。经过几轮教学效果比较和学生反馈,最终确定总学时32,主要教学内容分为:①优化基本理论及概念;②优化理论在化工领域的应用;③项目立项及化工厂设计;④化工过程优化与设备选型;⑤化工与优化专题讨论。近年来,通过与华东理工大学、天津大学等高校的调研与交流,收集整理相关的图书资料,我们还对现有教学讲议及PPT课件进行了一些充实和完善,最终形成包含有化工基础知识,管路及设备选型,工艺路线优化,各种操作单元设计优化与组合方法,公用工程设计,计算机辅助设计基础知识,可研性报告编写,技术经济分析,绿色化工过程等适用合肥工业大学的生源状况的教学讲义及PPT,解决了课程缺少合适教学资料支持的问题。
二、改革教学方法,因人施教
随着研究生招生人数的增加,合肥工业大学化工学院研究生的生源发生较大变化。2012年度,“211”以上生源占33%,其他大多为阜阳师范学院、合肥学院,皖西学院等本省非工科背景生源。这些学生中,有的缺乏化工基础知识,有的实际工作经验丰富,但理论功底薄弱。针对生源情况,我们在教学中注意适当补充一些基础化学工程知识点,通过化工与优化专题讨论教学过程,布置相关章节阅读作业,补充理科或师范生源学生的化工管路,流体输运机械,反应釜,搅拌器类型,板式塔或填料塔等知识点。通过教学方法上的设计,通过4~5个学生搭配组成的学习小组,共同完成一个设计型课题,让非化工专业背景学生掌握化工设计的基础知识。对基础好的学生,则布置Aspen Plus、PRO/II和ChemCAD软件应用专题,让学生通过工艺过程,掌握计算机辅助设计、模拟及优化系统知识,参加化工项目设计竞赛。在教学过程中,教师把与企业合作中得到的感受向学生做生动地讲解,并结合企业中的化工优化与化工厂设计实例,课堂气氛活跃,师生有所互动,受到本校学生及企业研究生班学员的好评。
三、培养学生的化工经济分析和绿色化工思想
近年来,国家对化工项目申报和实施过程有了法定程序,如项目经济分析,可行性论证,安全与环境评估及社会影响等流程。一些用人单位反映,相当多的化学工程专业研究生不会编写项目可研性报告,不了解项目的设计―评估―施工―验收―冷模―中试―生产整个流程。中国化工学会理事长等专家在合肥工业大学做学术报告时,曾呼吁化工学院应对研究生增设化工项目的可行性报告编写,项目经济分析,平立面优化设计及绿色化工等课程。因此,教学过程中,我们以化工学院与合肥安邦化工有限公司合作开发的“2000t/a溶剂法TAIC交联剂的清洁生产技术研究及产业化项目”为范例,从项目建议书开始,在课堂上把科研报告,环评,安评,总图设计,施工图设计等资料展示给学生,讲评化工厂建设的资料编写技巧,使学生对化工厂设计过程有了认识。在安徽省化工设计院的帮助下,结合该项目的设计图纸,补充学生化工设计制图、识图知识及化工产品的分类等国家标准。
四、在教学过程中丰富教学内容,改进教学方法
《化工过程设计与优化》属于新开课程,考虑到缺少教材和教学经验,化工学院把《化工过程设计与优化》课程定位为研究生的专业选修课,进行教学实验。在2006学年选课过程中,研究生导师和学生对这门课不太了解,选课的学生只有5人。起初,我们从图书馆查阅有关优化和化工设计的图书资料,从20多本相关图书中寻找出相关的教学素材。例如考虑到化学工程专业学生的理论数学基础较弱,我们避开严格的数学推导过程,直接采用应用数学的优化结果,如求取极值和黄金分割法等一些优化方法,来处理化工领域的一些工艺优化问题。我们将管路计算,污水处理,工艺参数,换热器,精馏塔的设计与优化作为第二章。课程结束后,布置一些化工过程的优化专题课外作业。在承担的教学过程中,先后补充了常见化工单元操作优化与设备造型,化工识图,化工经济评价,绿色化工设计等内容。随着选课人数的增加,我们在教学方式上进行了改进,增加专题讨论环节。将学生分为若干个专题组,让学生根据所学知识,通过查阅文献,对管路设计及优化,项目建议书,搅拌器形式与选型等某个单元进行演讲和讲评,调动了学生的工程实践意识,活跃了课堂学术气氛。我们对学生的专题作业进行总结,从中选定一些新的知识点,补充到课件,用于下年的教学。
《化工过程设计与优化》课程处于发展与完善阶段,涉及的内容多,教学内容起点高,国内各个高校还没有相对固定或成熟的教辅资料。从师资上讲,教师的工程实践经验不足,难以把握教学内容。拟通过与同行交流学习,完善教材内容和教学形式。
参考文献:
[1]何小荣.化工过程优化[M].北京:清华大学出版社,2003.
[2]刘道德,等.化工设备的选择与设计[M].长沙:中南大学出版社,1991.
[3]陈声宗.化工过程开发与设计[M].北京:化学工业出版社,2005.
[4]胡上序,等.化工过程的建模/仿真和优化[M].杭州:浙江大学出版社,2006.
[5]祝湘陵,郭海敏.高等教育综合化与工科研究生创新型人才培养[J].长江大学报(社会科学版),2007,31(1):117-119.
[6]李柏林,张建伟.“石油化学”课程改革与实践[J].中国电力教育,2010,(28):93-94.
[7]刘敏,罗婕,戴玉春.仿真技术在《化工原理》教学中创新应用与实践[J].河北化工,2010,33(9):71-73.
1前言
化工原理课程是综合应用数学、物理和化学等基础知识分析和解决化工与制药生产过程中各种单元操作的工程技术学科,也是化工与制药类专业学生接触工程实践的第一门槛,起着自然科学与应用科学的搭桥作用。[1]制药工程专业教学指导分委员会制定的制药工程本科专业规范(讨论稿)中,明确规定了化工原理课程的学时数最高可达160学时,可见该课程对制药工程专业学生的重要性。
2阐明制药生产与化工生产间的内在联系
由于化工原理是一门专业基础课程,一般安排在三年级上学期开始讲授,此时同学们刚学完公共基础课,尚未正式接触专业课程,即对专业将来所从事的工作对象及相应的知识需求均不甚了解,故初学化工原理且感觉与药学知识相差较大时,学习的积极性与能动性均难以充分调动,甚至还易产生消极抵触的情绪。[2]因此,在开始化工原理课程的正式讲授前,教师不仅应先扼要地介绍该课程的研究对象及拟解决的问题,同时还宜向同学们着重阐明该课程与制药实际生产之间的内在联系,指明制药与化工两类操作间的异同点,以便消除同学们内心的疑惑,即为什么制药类专业的同学也要学习化工学科的相关知识。制药生产与化工生产虽属两个不同的工业门类,但其操作的过程机理却十分相似,区别主要表现为前者较后者的操作要求更高、产品指标更加苛刻等。换言之,制药生产是一种高标准、超精细化的化工生产过程,故习惯上又多被视为精细化工生产的一个分支。诚然,这种提法尚有失偏颇,不够准确与全面,但亦较好地表达了制药与化工两类生产过程间的密切联系,因此相关知识点间的贯穿与交叉势必在所难免。有关这一点,可通过相应的教学短片向同学们进行表达。
3制药工程专业人才培养目标和化工原理课程体系
高等教育的大发展,为把我国建设成为创新型国家奠定了人才基础,同时也使毕业生的就业压力与日俱增,将会有更多的高校毕业生面向基层,服务于地方经济建设。我校制药工程专业是的定位是面向基层,面向生产第一线,服务于地方经济建设。根据这一定位制订的培养目标是:德智体全面发展,具有制药工程专业的基本理论、基本技能和创新精神,能够在医药、农药、精细化工和生物化工等行业从事生产、研发、分析检测及管理等方面工作的应用型工程技术人才。要实现以上培养目标,除了学习数理化基础、政治、外语和计算机知识外,我们必须重点加强工程技术基础课程教学,加强实践训练。我专业目前开设的工程技术基础课程主要有:化工制图、化工原理、制剂工程、制药工艺学和药物制剂设备与车间设计等课程,与制药工程本科专业规范(讨论稿)一致。在制药工业生产中,除了部分专用药物制剂设备外,其他工程技术知识和设备主要是在化工原理课程中介绍。化工原理课程兼有科学和技术的双重特点,具有较完整的理论体系,学习化工原理课程并不等于实践。为此,我们在优化制药工程专业课程体系的基础上,重点探索了以加强实践教学为主的化工原理课程体系,并对教学内容进行了探讨。因为课程体系是从宏观上把握本科生的培养目标和规格,而课程内容的更新和改革则是从微观上保证学生的质量。在该课程体系中,大多数课程都在学校完成,专业实习则在我系的实习基地和其他有关制药、化工企业和新产品研究开发单位完成。
4化工原理实验教学创新与实践
化工原理实验的目的在于使学生了解理论产生的测试手段、过程,培养学生运用学过的知识,通过动手、动脑去验证已知的理论,进一步探索未知,训练学生掌握科学思维方法,同时还要熟悉实验装置、仪器设备及其性能。化工原理实验与其他实验(如有机和无机实验等)不同,它的特点是具有工艺性和工程性,也是学生第一次接触工程装置的实验。每一次实验课之前,指导教师应做好充分的准备工作。实验前的准备工作是保证实验质量,提高实验效率的有效保障。首先,作为指导教师必须写出富有启发性的指导提纲,总结本次化工原理实验的内容。就本次实验所涉及的相关理论知识做详细简要总结,整理出基本概念和基本理论、重点和难点及相关理论。[3]其次,教师必须对所指导的实验做好充分的预备工作。学生刚进入化工原理实验室对于所看到的装置往往会感到既新鲜又好奇,但一旦面对实验装置,要求进行实验时往往会觉得无从下手,因而化工原理实验前的预习对于学生来说就显得特别重要。[4]学生在进入实验室前一定要对实验讲义进行认真的预习,了解实验所要验证的理论知识,对实验装置图有一定的了解,同时对实验的注意事项和操作步骤做简要的了解。强调实验前的预习有利于学生复习课堂教学已经学过的理论知识,同时有利于锻炼学生逻辑思维和构思组织能力。学生进入实验室后(可以提前到实验室),对照装置图逐一查明实验装置的每一部分,熟悉实验流程,按照讲义熟悉操作步骤,对于装置中一些阀门的开关和注意事项要完全掌握,不明白的要请教老师。在开始实验之前一定弄清楚实验要测量的数据,千万不要稀里糊涂地着急开始做实验,以免出现问题时才手忙脚乱。为提高同学们参与化工原理实验课的学习热情,教师应在保证流阻测定、离心泵性能、过滤、传热、吸收、精馏及干燥等常规实验教学学时的前提下,要自主开发和增设了若干与制药生产联系密切的开放性实验项目,如药物结晶、空气净化及纯水制备等,从而实现了由纯化工实验教学向制药化工实验教学的转变。这一举措,不仅有效激发了同学们参与实验研究的主动性,反过来也极大促进了该课程理论学习的积极性。
教师在实验教学过程中要培养学生的实验技能和科学研究能力,引导学生利用化工过程技术与设备、实验方法学、现代测控原理等理论知识,分析和设计化工过程单元操作并独立完成实验,掌握先进的测量手段和计算机控制技术及计算机在化工原理实验教学中的应用,进而全面提高学生的创新能力和综合素质。
4结语
总之,随着计算机和流程模拟软件的发展,为解决许多复杂的工程计算问题提供了有力的工具手段。在《化工原理》教学过程中注意采用灵活多样的教学方法,理论紧密联系实际,既可以提高学生分析问题和解决问题的能力,又有利于学生工程素质的培养,使学生对于今后从事的化工行业有较强的环境适应能力、技术改造能力和科技攻关能力,成为生产、建设等技术应用和管理、科技服务等方面的复合型人才。
参考文献:
[1]王桂荣,王淑芳,王桂赞,赵新强.在化学工程与工艺专业教学中强化工程意识的培养[J].化工高等教育,2005,1:116-118.