人工智能带来的思考范文

时间:2023-09-06 09:32:41

引言:寻求写作上的突破?我们特意为您精选了12篇人工智能带来的思考范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

人工智能带来的思考

篇1

美国的报告重点结合人工智能的应用及管理提出四点要求,一是美国政府应该对人工智能加大政策扶持和资金投入力度;二是人工智能对劳动力市场和宏观经济产生影响;三是人工智能需建立全球合作和安全;四是需完善人工智能的伦理以及相关法律法规。英国的报告主要侧重于人工智能对未来宏观趋势和影响的分析,一是人工智能有助于提升生产力;二是人工智能对劳动力市场产生影响;三是应管理和降低人工智能可能带来的风险。

美国的报告重点强调政府、公众,以及社会各界应共同努力来支持人工智能科技的发展,并深思熟虑关注其发展潜力、管理其可能带来的风险。一是重点加强对应用程序开发的监管,采取有效措施既保障公共安全又鼓励创新;二是支持人工智能在基础研究和公共产品方面的应用,并制定相关标准规范;三是应确保人工智能系统可控、公开、透明,且行为与人类的价值观保持一致。

英国的报告重点提出对人工智能的四大判断。一是人工智能可帮助企业和个人有效利用数据资源、简化数据交互方式,从而提高工作效率和生产力;二是人工智能将改变现有的工作类型和所需技能,未来工作将主要是对人工智能技术的补充和完善;三是预警人工智能技术带来的冲击,未来的技术革新会更加频繁,技术变革会导致一些从事特定工作技能和工作类型的人员被淘汰;四是政府需考虑由人工智能进行决策的问责机制,确保问责的透明度。

对我国人工智能发展的启示

人工智能要以产业化应用为根本导向。当前人工智能产业化应用已经在机器人、无人驾驶、智慧城市等细分领域初现端倪,引起了社会各界的广泛关注。无论是资本市场,还是企业和学术界,都加大了对人工智能产业化应用的投入力度,市场潜力将进一步加速释放。只有不断拓展人工智能产业化应用的深度和广度,才能引领市场爆发式增长。美英的人工智能报告均表明当前国内外科技巨头对人工智能的研发和投资正逐步向产业化应用倾斜,我国也应遵循市场的价值导向,抢占未来市场。

人工智能要以协同发展为基础支撑。数据、算法和计算能力是支撑人工智能发展的三大核心要素,三大要素协同创新是人工智能发展的本质需求。美英人工智能报告中多次强调三大要素对人工智能发展的重要性,并指出当前人工智能呈现高速发展态势的根本原因。一是海量数据的出现,人工智能算法训练、深度学习等均需要大量数据提供支持。二是计算能力的提高,尤其是云算的出现,使传统计算模式向并行计算模式转变,大幅缩短了计算处理时间,为深度学习等人工智能技术发展提供重要支撑。三是诸多底层算法开放,先进的算法能够更好地分析和挖掘数据价值。

人工智能要由政府把握关键方向和规避相关风险。综观美英国家的人工智能报告,政府在引领人工智能发展方向,加大政策扶持力度方面拥有绝对主导权,尤其在人才队伍建设方面,人工智能属于典型的智力密集型产业,构建专业人才培养体系、提升高端人才供给能力对政府而言责无旁贷。此外,由于人工智能正逐渐融入到人们日常生产、生活的方方面面,政府有责任也有义务制定相应法律法规,规避和降低人工智能发展带来的道德和法律风险。

篇2

中图分类号:TP18 文献标识码:A 文章编号:1671-2064(2017)01-00218-01

人工智能包含三个层次:计算智能、感知智能和认知智能,讯飞超脑计划是包含模拟人脑的知识表示与推理、类人学习机制与新知识的获取、机器加载专业知识成为专门的教育领域。讯飞超脑计划是基于全球关于人工神经网络的深度学习研究,简单来说就是希望未来讯飞超脑计划能够将人工智能从只是简单地能听会说到能够深度思考相关问题的科技转变。人工智能的不断开拓创新是为了帮助人类能够更好地生活,我们应该注重人工智能的发展推进,将其广泛合理地应用到生活的实际中去。

1 讯飞超脑计划目前取得的阶段学习研究成果

1.1 讯飞超脑计划关于我国现阶段关于高中生学习教育的人工智能成果

随着近年来教育电子多媒体设备的投入普及使用,使目前的高中老师在课堂上更习惯用电子化的教学方式来替代传统的板书课本单一枯燥的教学,与此同时,现阶段高中生也同样具备使用移动互联网的条件,这样就使得科大讯飞超脑计划的教育产品可以形成以下的模式如图1所示。

采用此智能的学习模式可以使我国的高中生接受公平的最好的教育,这就需要借助人工智能的帮助来使老师提高自身的教育水平,使高中生丰富并开阔自身的视野。课堂教学包括了在线课堂、畅言交互式多媒体教学系统以及畅言智能语音等,这种新颖的课堂教学模式使原本单一的教学方式变成了思想上任意遨游的知识海洋;智能考试包含了标准考场、英语四六级网上阅卷、普通话与英语口语测试等方面,智能考试系统从字迹工整的程度、词汇量的丰富度、语法的正确性与通顺性等多个方面来评判考试试卷,加上多年来的不断改进,人工智能的评判方法跟相关专家的人工试卷评判的相似度相差无几,很大程度地增加了试卷评判的效率性与公平性;学习产品与教育评价更是覆盖到了从低到高的各个层面的产品组织结构,更有利于高中生的学习与应试教育的公平性。

1.2 讯飞超脑计划对于提高人类生活水平的成果

随着人工智能技术在经济、教育、文化、娱乐等领域的不断应用,使人们的生活质量水平得到了很大程度的提高,人工智能带来的方便快捷对于人类的发展进化与物质文化的进步产生了不可忽视的作用。随着讯飞超脑计划的推出,一方面,可以把人类从繁重的劳动中解放出来,很大程度地提高人类生产生活的效率与质量;另一方面,人工智能的进步会极大地革新人类的思维方式,使人们能够多角度地认知世界,加深对人类对自身所处的宇宙地位的思考,利于人不断地探索奥秘,进一步推进人类社会的进步。

2 讯飞超脑计划下人工智能对于未来生活的影响及其发展趋势

2.1 讯飞超脑计划下人工智能对未来生活的影响

由于讯飞超脑计划是感知智能结合认知智能的再创新,使得未来机器将会实现高水平的感知智能,具有更多的包括语音识别、手写识别以及图像识别的更多智能感知能力与实现包括智能客服、人机交互等的取代人类脑力劳动的认知智能突破。所以说讯飞超脑计划下的人工智能在未来的教育、经济、文化、社会结构等未来生活的各个方面都会产生重大影响。在教育上,人工智能的应用优化了课堂结构,使学生能够实时接受外界的新知识以及与时俱进的教育模式改革;在经济上,人工智能的高效能与高效率会明显提高经济效益,用人工智能来进行财务管理有助于缩减不必要的人工劳务开支与相关的培训费用,利于经济的变革与提高;在文化上,人工智能对于人类语言文化与图像处理上的优势日益凸显出来,可以确定的是人工智能的发展将会深入到人类生活的各个层面中去。

2.2 讯飞超脑计划下人工智能的未来发展趋势

随着人工智能的不断演进,人工智能从最初能存会算的计算智能阶段,到后来的能听会说、能看会认的感知智能阶段,最后再到讯飞超脑计划下提出的让机器能理解、会思考的认知智能阶段,未来的人工智能在语言理解、知识表达、联想推理以及自主学习等方面都将会取得很大的进展。

3 结语

人工智能对于未来生活的影响是多方面的,在未来生活的各个方面都十分显著。与此同时,讯飞超脑计划下的人工智能不断的改革创新与发展,也将更快地推动人类的发展,人工智能与人类的生活是互相影响又相互制约的。人工智能的不断发展给人类的未来生活带来了很大程度的改变,人类在不断开拓人工智能的领域时也应不断提高自身能力与素养,以适应人工智能带来的不断创新和改变。

参考文献:

篇3

近年来大数据、云计算等信息技术飞速发展,人工智能在一些特殊领域(如图像识别、语音识别、自然语言等)不断取得突破性进展。人工智能作为新的技术驱动力正引发第四次工业革命,为医疗、教育、能源、环境等关键领域带来新的发展机遇。人工智能专家预测,人工智能在通用技术领域可能尚不能替代人类,但在一些特殊领域,人工智能将会淘汰现有的劳动力。在国外,许多国家纷纷把人工智能作为国家发展的重要竞争战略,我国学者也密切关注着人工智能的最新理论进展和实践应用,国务院于2017年7月颁布《新一代人工智能发展规划》,明确人工智能发展的重点策略。“人工智能变革教育”的潮流,引发了教育研究领域的“人工智能热”。当前全球范围内,人工智能在教育领域的大量研究和应用催发形成了教育人工智能概念。目前梳理学术上关于研究人工智能与教育的文献主要集中于:

(一)教育理念的革新。“人机一体”将成为未来新的教育方式[1],由新技术和新手段的出现所应运而生的智慧教育[2],将对原有教育进行改进和完善。智能技术在改变教育的手段和环境的同时,还有利于构建出系统解决教育问题的教育新体系,从而真正触及教育的根本[3]。

(二)关注技术的革新。机器深度学习、智能学习的算法、视觉识别以及智能语言识别这些基础技术的突破,为人工智能的教育应用奠定了坚实的基础[4]。

(三)探究教育的应用。人工智能在学校教育中的学业测评、交叉学科、角色变化等应用领域具有巨大潜力,教师角色内涵也将在与人工智能的协同共存中发生改变。AI监课系统能够数据化、可视化评估教师的授课情况,将人工智能技术的运用渗透到整个教学过程中,教师可以根据评分实时调整授课内容,以促进个性化学习,从而提升教学效果。教育深受技术发展的影响,新技术融入教育并促进教育方式的转变已成为必然趋势。一方面技术为教育提供了新的、更加广阔的可能性;另一方面技术具有变革人类的教育方式与学习方式的能力。然而,技术是一把“双刃剑”,如何获取或实现以人工智能为代表的新兴信息技术所拥有的特征、优势与功能,使其在教育中最大限度地发挥其应有的价值呢?人工智能技术如何继续被安全使用到教育领域?如何通过教育变革来促进新兴信息技术在教育教学中的广泛与深入应用,实现教育深层次革命等问题,是目前需要关注和探讨的主要问题。

1人工智能时代下教育变革的背景

1.1人工智能的内涵及具备的强大能力

人工智能最早由美国达特茅斯学院于1956年提出,其研究主要包括机器人、图像识别、自然语言处理、语音识别等,实质是一种自动感知、学习思考并做出判断的程序。人工智能具有自主学习、推断与革新的能力,推动了图像识别、自然语言处理等方面的技术突破。人工智能同时具有理性判断力、超强的工作力,只要电力供应不断,几乎可以无限制地工作下去,而且适应不需要情感投入的工作。它的超强能力,源于三个重要的技术:深度学习、大数据和强算力。

1.2人工智能时代的机遇和挑战

人工智能在精力、记忆力、计算力、感知力以及进化力等方面与人类相比,具有突出优势。在医药领域,人工智能的出现使普通民众可以享受更为高效、稀缺的医疗资源,解决医疗诊断领域诊断质量不均衡、医生资源不足等问题。在教育领域,人工智能促进教学质量进一步提升、教师角色多样化、学生学习能力的提升;为教育研究提供新技术和数据支撑;极大拓展了教育研究新视域;使教育在立德树人方面、教育方法创新方面、教育手段和环境方面以及教育服务供给方式方面均发生改变。然而,看到人工智能以其强大的处理能力带来机遇的同时,也需要正视人工智能带来的新挑战。在人工智能浪潮冲击下,如何借助人工智能发展的机遇推进教育的变革与创新?人工智能技术如何继续被安全使用?首先,人工智能专家大都认为,人工智能将会淘汰大量现有的依靠非脑力劳动为生的劳动力,需要培养人工智能时代的新型劳动力。而且,人工智能技术本身的不太成熟使很多人工智能技术只是应用在儿童教育领域,再者,人工智能潜在的道德伦理问题缺乏法律制度规范。除此之外,人工智能时代将对社会结构以及人的地位构成挑战。综上所述,人工智能时代所带来的机遇是大于挑战的。教育需适应人工智能技术所带来的突破和飞跃,不断调整和更新教育的方向和目标,实现育人成人的发展目标。

2人工智能与教育变革

2.1人工智能与教育目的的变革

人工智能带来的巨变不仅影响人类未来如何发展,而且极大释放了人类的生产力,这些在一定程度上使得人类需要重新思考教育是何目的。人工智能影响教育目的的变革主要表现在:第一,人工智能可能会使人类陷入精神危机。这源于两方面的结果:一方面,人工智能将取代大部分人的工作岗位,工作的丧失将会导致人的价值和尊严丧失。另一方面,人工智能技术的发展将可能导致所有基于自由主义的想法破产,转而人类所拥有的价值和尊严可能转化为一种“算法”,人工智能带来的职业替代风险在教育领域同样存在,主要是对教师角色的挑战。第二,人工智能有利于培养人的学习能力。从某种角度上讲,人工智能剥夺人的就业机会,但同时,人工智能助教机器人将协助教师实现个性化指导,从而有利于将学习的过程视为寻求自我价值和意义的过程。除此之外,人工智能有利于使教育注重培养人的精神能力,这种精神能力大致包括实践动手能力、价值追求能力以及创造能力,从而有利于学生知识以便于更好地完善自我、丰富自我,使教育跳脱“知识为本”的陷阱,发挥“立德树人”的正向作用。

2.2人工智能与学习方式的变革

第一,深度学习。深度学习也称为深度结构学习或者深度机器学习,是一类算法的集合。深度学习概念的提出,一方面尊重了教学规律,另一方面也是应对人工智能时代下的挑战。深度学习在机器学习、专家系统、信息处理等领域取得了显著成就,提倡学教并重、认知重构、反思教学过程,进而达到解决问题的目的。第二,个性化学习。个性化学习区别以往传统班级课堂授课,尊重学生的个性发展,因材施教。人工智能技术与大数据的应用有利于学生享受个性化的学习服务,可提供个性化的学习内容,可视化分析学生的学习数据,快速提高学生的学习效率。第三,自适应学习。自适应学习是指人工智能基于对个体学习进行快速反馈的基础上,根据学习者特征,为其推荐个性化的学习资源和学习路径,从而最大程度上适应学生的学习状态,是实现个性化学习的重要手段。人工智能技术有利于快捷、科学地判断学生的学习状态,进行学习反馈;持续收集学生的学习数据,其中包括学习目标、学习内容;高效地为学生提供海量的学习资源。

2.3人工智能与学习环境的变革

首先,有利于搭建灵活创新的学校环境。不仅可以使空间规划更具弹性,而且可以调节性增强物理环境。其次,人工智能时代的教育区别于以往传统教育强调的统一秩序,更注重个体的用户体验。创客空间、创新实验室等学习环境的不断增加以及人工智能技术的不断发展,个性化的空间环境与学习支持将改变目前学习的学习空间环境。除此之外,随着对话交互技术的逐渐成熟与不断普及,有利于实现虚实结合的立体化实时交互。VR、AR等技术的同步协作也有利于搭建新的学习环境,满足学习者的一系列要求。脑机互动技术的突破有利于实现将人工智能植入人脑,从而改变人类自然语言的交流方式。最后,人工智能通过即时、准确、高效的大数据分析有利于进行精准且个性的学习评价与反馈。人工智能将综合收集所有同学的学习记录,互相比对、优化,从而进行综合提升。更为重要的是,人工智能的人脸识别以及语音识别技术可以运用到教师的教学过程中,进行学生的学习情绪感知,学习状况的了解,从而促进学生学习的科学化;智慧校园、智慧图书馆等的出现,为教学环境的建设提供重要参考。

3人工智能在教育领域的应用

篇4

近些年来我国科学技术的快速发展给人工智能提供了很大的助力,人类利用人工智能技术开拓了更多的领域,创造了一些新的经济增长点,很大程度上促进了我国经济的发展。面对着人工智能广阔的发展空间,我们在利用人工智能获得高质量发展的同时也要看到人工智能带来的风险,例如有些不法分子会借助人工智能产品的使用或者是开发实施一些危害社会的犯罪行为,给人们带来较大的经济损失。基于此,相关部门应该充分认识到人工智能所带来的刑事风险的巨大危害性,进而加强法制建设,全面做好应对,使人工智能充分发挥它积极的一面。

一、关于人工智能以及人工智能产品的概述

(一)关于人工智能的概述

人工智能这个概念提出比较早,大约在20世纪的四五十年代,但是人工智能概念提出后却没有得到较快的发展,主要是因为当时的信息技术以及互联网技术的发展水平还处于较低的阶段。在此后的一段时间,人工智能几乎处于一种停滞的状态,直至2016年韩国的一场人机围棋大赛让全世界的目光再次聚焦在人工智能上。各个国家也意识到人工智能将是改变世界的一种重要力量,纷纷加大对其研究力度,进而成为各个国家竞争的新领域,由此世界逐渐进入了人工智能时代。人工智能时代在给世界带来强大发展活力的同时也出现了一些超越法律范围以及法律理念的问题,对这些问题不能忽视。在人工智能时代我们更需要站在法律的层面严格审视其发展过程中存在的风险以及做好各方面风险的应对。特别是最近几年一些关于人工智能的刑事案件引起了人们的关注,鉴于此,对这个方面进行深入研究有着很大的现实意义[1]。

(二)人工智能产品的类型

人工智能产品根据其内部算法的不同可以分为两种类型,一种是人工智能产品,另一种是弱人工智能产品。通过对人工智能产品的深入研究发现,其本质是基于内部算法,并具有独立思考以及解决问题的能力。我们看到人工智能主要依据内部算法发挥作用,内部算法是人工智能的技术内筒,如果对这个技术内筒的运作再进行分类存在着很大的难度,同时也不具备较强的可操作性。针对这个问题,在法律层面对人工智能产品进行分类主要依据的是产品是否具有控制能力以及辩证能力。虽然我国的人工智能发展较快,但是从发展水平来说还处于弱人工智能时代。弱人工智能时代的产品虽然具有一定的自我意识并能思考以及解决问题,但是这些能力在很大程度上是研发人员意识的体现,是研发人员利用程序表达出来的一种判断和决策。在科学技术发展的推动下我国也会进入强人工智能时代,这个时代的产品具有较强的控制能力以及辨认能力。它与弱人工智能时代产品的最显著区别是其可以突破设计人员编程的控制,真正实现自我意识、自我判断、自我决策。这种产品会给世界带来极大改变,同时也会带来很大的风险[2]。

二、人工智能刑事风险所具有的特点

(一)与传统犯罪相比具有较高的危害性

随着人工智能的不断发展,其与人们的生活会越来越密切。人们在获得人工智能产品提供服务的同时也存在着一些风险,加之人们对这些风险缺乏辨别力,导致人工智能刑事风险产生的危害较大。如今我们在一些媒体上会发现一些不法分子利用人工智能开展各种形式的犯罪活动,不仅具有很强的隐蔽性,而且给人们带来很大的损失。随着社会的进步,科技的发展,人们的生活和工作对人工智能的依赖性会越来越大。在这种情况下利用人工智能开展犯罪活动会越来越普遍,严重危害社会的可持续发展,甚至还会给社会带来毁灭性的灾害。为了确保社会的和谐稳定,相关部门必须要采取措施遏制人工智能犯罪活动的开展,特别是在法律层面做好保障。否则任其发展必然后患无穷。通过对一些人工智能刑事违法案件的调查,我们看出很多不法分子利用人工智能获取企业的私密信息,不仅损害了企业的利益,同时还会引发行业的不良竞争,影响我国经济的高质量发展。

(二)增加了很多的犯罪形式

人工智能时代犯罪有了更多的形式,这些形式带有人工智能显著的特点。现在越来越多的犯罪分子青睐人工智能犯罪是因为借助它可以轻松获取大量的数据信息,进而利用这些数据实施犯罪活动。人工智能这一高效获取数据的功能如果加以正确利用,不仅可以加强我国的精神文明建设,同时还会极大促进社会的发展。但是一些犯罪分子瞄准了人工智能这一特点实施一些新型的犯罪活动,违反了人工智能发展的初衷,同时也不利于社会主义市场经济的稳定发展以及和谐社会的构建。面对人工智能时代出现的各种新型犯罪,要从根源上确保信息的安全性,避免被不法分子通过非法途径获取[3]。

(三)人类对其控制能力较弱

人工智能时代一些技术的使用很难利用一定的标准评价它的道德性以及合法性,相关人员对此要有清醒的认识。人工智能产品一个显著的特点就是不具备控制能力以及辨别能力,基于这样的特点很难对其程序进行管控,从而降低了人类对它的控制。例如操作人员利用人工智能技术操纵机器人开展某项活动,如果在一些环节采取了具有违法性质的操作,但是机器人并不能自动发现这种不法指令,进而拒绝执行。这种弱人工智能给犯罪分子留下了犯罪机会,同时也给人工智能的利用带来很多的安全隐患。随着高科技以及人工智能技术的不断发展,相关人员在对人工智能进行深入研究的过程中探寻到一些技术可以实现机器人自主学习。机器人的自主学习能力原本是为了抑制智能机器人,但是在一些特殊情况下当这种能力不断积累,机器人在执行各种命令时有可能违背人们的意愿。这种情况不仅会影响机器人正常作用的发挥,甚至还能做出一些危害人类的举措。在一些极端的情况下,机器人的行为完全不受人们的控制,那么对社会将会产生极大的冲击,后果不堪设想。以上说明的种种情况都是在人工智能时代极易发生的一些刑事风险,这些刑事风险具有巨大的社会危害性,因此要引起人们的高度重视。相关部门及人员应该对人工智能时代的刑事风险进行深入分析,并对现有的法律不断进行完善,从而达到对这些风险进行有效控制的目的。另外,人们在利用人工智能时也要加强风险控制意识,使自身的行为符合法律的规定,从而充分发挥人工智能的价值造福社会,避免一些犯罪分子利用人工智能危害社会[4]。

三、人工智能刑事风险的刑法应对

(一)建议《刑法》增设滥用人工智能相关罪名

在我国人工智能发展的前期,大部分人未能意识到人工智能会带来刑事风险,因此相关的法律存在着一定的欠缺。随着我国人工智能发展水平的提升,人工智能给人们带来了更多新奇的体验,同时也给不法分子更多的犯罪机会,而且这些犯罪大部分是刑事犯罪,严重影响人们的学习和工作,甚至还会引发社会恐慌。基于人工智能的特点,其所产生的刑事风险在短时间内无法得到较好处理。由此可见,人工智能时代的刑事风险不仅具有较大的危害性,同时其危害还具有持久性。鉴于此,相关部门应该针对此问题进行深入研究,采取措施最大化做好人工智能产品的刑事风险控制工作,并高质量进行刑法应对。随着人工智能刑事犯罪案件数量的增多以及其具有较大的社会影响力,人工智能刑事风险防控以及刑法应对受到了社会的广泛关注,同时加强刑法应对也是完善我国法治体系的一个重要内容。我国社会发展前期人工智能水平较低,这类刑事案件不多,所以《刑法》中没有滥用人工智能相关罪名。但是随着我国人工智能的不断发展,利用人工智能进行刑事犯罪的可能性增大,所以在我国《刑法》中增设滥用人工智能相关罪名有很大的现实意义。这样在一定程度完善了法律,同时对相关人员滥用人工智能开展犯罪活动有一定的打击作用。当今我国社会各个方面处在一个较为稳定的发展阶段,加之我国要实现经济高质高效发展必须有一个稳定的社会环境,由此看出维护社会的稳定对我国的重要性。我们要充分认识到,一些不法分子滥用人工智能,给我国社会造成了极为恶劣的影响,严重危害了社会的稳定,对我国社会的发展造成了很大的阻碍作用。我国社会的发展一方面需要人工智能提供较大的推动力,另一方面还要防范一些人员滥用人工智能,确保社会整体发展的稳定性。如果不能对人工智能的刑事风险加以管控,同时也未能全面做好刑法应对,那么无疑给我国社会发展埋下一个巨大隐患。如果相关部门不能采取有效措施对这个隐患加以管理,在许多因素的共同作用下会引发一系列社会问题,将会严重制约我国社会更好的发展。为了使我国既能充分利用人工智能积极的一面促进我国社会各个方面的发展,又能有效规避利用人工智能犯罪行为的发生,需要相关部门借助法律的力量来达到以上目的。通过《刑法》增设滥用人工智能相关罪名,进而规范人们利用人工智能的行为,确保其在法律规定的范围内进行,同时能够使人们明确如何合理合法利用人工智能,对于我国社会发展具有很大的积极意义。之所以建议在《刑法》中增设滥用人工智能相关罪名还由于《刑法》比起其他法律对人们更具威慑力,对人们约束性更大,对一些滥用人工智能的行为会发挥出更大的警示作用。国家相关部门在使用刑罚时如果剥夺了犯罪人员的一些权利,那么这种权利的剥夺不具有可逆性,对犯罪人员来说需要付出更大的代价。《刑法》的这种特点对犯罪人员的威慑力会更明显,使人们更加深入了解滥用人工智能的严重后果,从而不敢利用人工智能实施犯罪活动。人工智能犯罪与其他形式的犯罪相比具有更大的破坏性和危害性,不仅会对人们造成财产危害,还会威胁人们的生命安全。人们对人工智能的刑法风险以及犯罪要有充分的认识,并积极利用刑法这个有力武器避免人工智能犯罪行为的发生,进而弱化它的影响力。另外,相关部门还要根据社会和市场的发展优化处理人工智能带来的刑事风险,维护我国社会的和谐稳定[5]。

(二)建议《刑法》增设人工智能事故相关罪名

首先,在进行人工智能技术研发前,研发人员要明确自身的义务,在研发人工智能技术的过程中严格约束自己的行为,确保每一个研发环节都符合人类社会的道德体系,最根本的是符合我国相关法律的规定,从源头上避免人工智能事故的发生。其次,人工智能产品开发后需要有一段时间的调试。研发人员在调试的过程中也要确保符合道德以及法律的要求,否则在调试阶段出现一些问题容易导致人工智能事故的发生,从而在后期人工智能技术的利用中引起更大的危害性。最后,对于人工智能产品的研发也要提供有效的保障,一方面要确保智能化产品在数据安全方面的技术保障,另一方面还要采取措施避免人工智能产品在应用环节出现的一些数据错误情况,使人工智能产品以及技术为人类提供更加安全以及高效的服务,避免其发挥消极作用对人类以及社会产生危害[6]。

四、结语

随着人工智能技术的不断发展,我国的人工智能化水平也相应提高。在如今越来越智能化的时代,我们不仅需要进一步开发人工智能的价值,还要重视它所带来的刑事风险,并提前做好完善的刑法应对来更好地处理人工智能刑事犯罪。相关部门要深入分析人工智能刑事风险,从而在开展刑法应对时更具方向性和目标性,最优化做好人工智能刑事风险的控制,实现我国社会的平稳、健康发展。

参考文献

[1]唐蜜.人工智能时代的刑事风险与《刑法》应对研究[J].法制博览,2021(35):43-45.

[2]刘宪权.人工智能时代刑事责任与刑罚体系的重构[J].政治与法律,2018(3):89-99.

[3]陈文,姜督.人工智能的刑事风险及刑法应对[J].南京社会科学,2020(1):99-105.

[4]王志祥,张圆国.人工智能时代刑事风险的刑法应对[J].上海政法学院学报(法治论丛),2019,34(2):97-107.

篇5

中图分类号:G642.0文献标志码:A文章编号:1674-9324(2019)41-0144-02

一、人工智能课程伦理考虑的基本内涵

人工智能课程中进行伦理考虑,是在人工智能课程中有针对性地加入道德教育的元素。在方式上,可以借用西方的“隐形教育”方式。在内容上,必须符合中国的人工智能发展态势,更要受中国社会主义核心价值体系的引导。目前中国的人工智能课程,过度偏向于技术性。尤其是许多社会机构提供的课程,更是偏向于功利性,目的在于让学习课程的学习者快速获得工作。因此,必须从源头入手,对这些社会机构进行一定的约束和规范,对人工智能课程内容进行整体的架构。

二、高校人工智能课程中伦理考虑的必要性

(一)我国对于科技工作者职业道德建设的要求

首先,科技工作者的职业道德建设是促进社会治理体系现代化的必然要求。加强社会治理制度建设,一靠法治,二靠德治。中国正聚焦力量加强自主创新,科技是第一生产力。基于当代中国语境下,科技工作者的职业道德建设就至关重要。科技工作者对自己的社会责任与伦理责任应该有着充分的理解,在科研活动中既要着眼于为社会提供科学技术上的新成果,同时也要强调在伦理道德建设中起到应有的作用。

其次,从长期看,科技工作者的职业道德建设利于国家科技的发展,利于促进科技难题的解决。发展是连续和间断的同一,科技发展不能一蹴而就。在面临科技瓶颈问题时,就更要求科技工作者具有坚韧不拔的品质和无私奉献的精神。这些精神都是进行职业道德教育中的重要内容,也是科技工作者承担的社会角色中必不可少的特质。

最后,高尚的职业道德是科技工作者奋进的不竭动力。一个科技工作者只有站在最广大人民的立场上,奉献自我才能成就事业。随着全球化的发展,受西方“享乐主义”的负面影响,科技工作者只有更加坚守自我、承担社会责任,才能具有不断前进的精神支柱。

(二)对解决人工智能伦理困境的源头性作用

随着人工智能应用领域的广泛化,以及应用群体的普及化,难以避免的带来一些伦理问题上的困境。例如伦理学中经典的“电车难题”,在当代科技发展中也出现了在人工智能领域的“无人车难题”。无人车产生事故的责任归属与分配就是目前很多学者在关注的伦理问题。人工智能的发展对当前的法律规制,还有现存的人伦规范都产生了挑战。人工智能的未来发展方向,在操作性上要避免技术鸿沟,在设计过程中要坚持算法公开化、透明化,并且在出现数据漏洞时应尽快地进行自我修复。这对于科技工作者自身的素质提出了很高的要求,不但要求科技工作者自身的知识素质与知识能力过硬,而且要求科技工作者要严于律己,具有较高的思想道德素质。要求科技工作者对于人工智能的发展保持理性的态度,坚持为国为民。许多科幻电影和小说中都体现了未来人工智能发展到一定阶段时,人与机器产生的情感迷思。作为科技工作者,在设计与调整过程中都应保持情感中立,勇于承担社会责任。目前我国正处于人工智能发展的初级阶段,人工智能尚不能拥有自主意识,人工智能的行为责任必须要找到其背后的拥有自主意识的人。无论是现阶段还是未来,作为人工智能产品开发者与设计者的科技工作者树立正确的价值观和承担相应的社会责任是十分必要的。科技工作者的知识层次与道德品质在某种程度上说,是研发人工智能产品的起点。因此,对科技工作者的成长过程中进行持续的道德教育,使其树立高尚的道德观念,对于解决许多人工智能带来的伦理困境都具有源头性、基础性的作用。

三、高校人工智能课程与伦理道德教育的结合方式探索

(一)高校人工智能课程资源的充分运用与更新

从资源形态上看,实物化资源与虚拟化资源,线上资源与线下资源都应充分运用。随着智能校园的普及,有基础条件的地区与校园可以充分运用好身边的人工智能。人工智能课程是一门理论与实践相结合的课程,因此课程的内容也不能仅停留在理论层面。除了对于学术资源的运用,也应当结合实体的人工智能产品进行学习。但因为人工智能的发展程度还没有普及化,人工智能机器人也远没有达到触手可及的程度。因此运用新媒体技术,通过虚拟现实的手段进行在教学过程中的知行结合是可以尝试的路径。VR技术在网络设备硬件教学中可以节约成本,便于人工智能课堂的普及化。在理论教学中,可以通过与虚拟机器人的交互增强趣味性。VR技术有3个最突出的特点:交互性、沉浸性和构想性。课程设置者可以充分借助VR的沉浸性设置相应的场景,让课程学习者通过对特定道德场景的判断引出思考。这种新媒体手段既可以更新原有课堂知识的教学教法,更适合作为伦理教育走入人工智能课堂的重要媒介。

从资源时态上看,人工智能课程资源必须随着人工智能的发展而不断更新。从现实角度来看,最初开设人工智能课程时,其教学目标还是相对简单的——即培养学生的创造性与知识能力。但随着人工智能的普及应用,产生了许多人工智能语境下的道德困境。从指导思想来看,我国逐步走向世界舞台,随着实力增强指导思想也是不断变化的,新时代会提出新目标,为了实现中华民族的伟大复兴,课程内容的丰富也是十分必要的。因此,人工智能课程若要符合时代需要,就需要不断地更新课程资源。人工智能这一学科是具有学科交叉性的,与之相关各个领域的最新前沿问题都需要结合相应的道德教育,只有这样才能适应时代的发展。

(二)高校人工智能课程内容的合理架构

对于不同年龄层次的人工智能课程,必须考虑到不同群体的教育规律。提出合理的教育目标,用不同群体可以接受的方式方法才能达到最优的教学效果。我国人工智能课程目前的课程架构中,已经有学者进行了分年龄层次的研究。人工智能课程可以规划为专业性逐渐增强的、从边缘到中心的课程层级系统。对于高校本科生和研究生来说,人工智能课程设置内容必须具有专业性。在上文的课程体系建构中添加了艺术、文学、哲学等内容,其中包含对于人工智能伦理学的思考与认识。但在某种意义上这些青年的社会价值观就代表了未来科技工作者的社会价值观。因此在这一阶段,人工智能课程的架构与实施,国家应加以引导和监督。一方面需要建立统一标准的高校人工智能课程体系,另一方面在應对课程具体内容的落实方面给予一定程度的监督。

(三)在高校人工智能课程教学过程中充分运用案例

篇6

算法是指由计算机执行的一系列独立的指令和动作。从初始状态和初始输入开始,这些指令描述了完整的计算步骤――通过一系列有限的、确切的指令,产生并输出答案和数据,最终止于结束状态。

人工智能的算法是一套利用机器智能解决问题的复杂手段。过去,我们给计算机下达规则式的指令来解决问题;现在,我们只要告诉计算机想解决的问题,它就可以自行选择算法来解决问题――这便是人工智能带来的根本性变革。

人工智能最重要的是学习能力,即根据机器以往的经验来不断优化算法。第一次人工智能的浪潮始于上世纪70年代,当时的人工智能算法采用的是符号逻辑推理规则,以实现知识表征。由于缺乏自我学习能力,那时的人工智能无法解决新领域中出现的问题。第二代人工智能虽然在学习和感知能力上表现更佳,但由于当时的机器学习模型不具备大量吸收训练数据的能力,与人类的水平仍有很大差距。

算法的发展

大约在10年前,深层与结构化机器学习,或称为深度学习的新范式,让人工智能算法的智能程度越来越高。传统的机器学习方法让电脑学习的“知识”,要由人来设计并输入,因为需要掌握大量的专业知识,导致特征工程成为机器学习的瓶颈。深度学习打破了这一瓶颈,通过多层结构算法,机器对数据集的“特征”进行筛选和提取,通过反复训练,最终获得了提取抽象概念的能力。

篇7

人工智能l展将经历三个阶段:第一个阶段是逻辑智能。该阶段智能以模拟人的逻辑思维为主,可凭借强大的记忆力、存储力在完全信息下执行单一领域的任务并达到顶尖水平。阿尔法狗(AlphaGo)就是典型的例子;第二阶段是抽象智能,该阶段智能以模拟人的抽象思维为主,具备经验推理能力和归纳总结能力,在已知领域里,即使信息不完备,也能做出正确判断或最优决策;第三阶段是灵感智慧,该阶段智能以模拟人的灵感思维为主,尽管在未知领域,仍可以触类旁通,瞬间直抵事物本质或产生新思想。可见,人工智能对脑力劳动的替代逐级深入,对产业的冲击也将逐级增强。即便如此,现阶段产业发展的核心仍然是人才,面对人工智能的逐级替代,产业发展更需要重新审视人才培养的逻辑与重心,塑造以高阶智力为主导的人才核心竞争力。

一是培养向机器学习的能力。目前人工智能已在第一阶段取得突破性进展,未来会呈现人机协作、各有所长的局面。人机沟通将是日常生产所需的基本技能。不仅如此,机器的计算、记忆、搜索、识别等功能远远超过人类,人们需要设法向机器学习,高效归纳人工智能的计算结果,并尝试利用人工智能的计算结果开发全新的思维方式,重新思考产业发展的模式和规律。

篇8

总体而言,人工智能(AI)和物联网将同时改变互联网和全球经济。在未来5年内,我们可以预期人工智能和机器学习将会被整合到各种各样的技术中,这些技术包括数据交换和分析。这将带来巨大的机遇,如全新的服务和科学突破,人类智力的提升,以及它与数字世界的融合。

在人工智能领域存在相当大的不确定性,如决策转由机器执行,缺乏透明度,技术变革将超过治理和政策规范的发展。自动化可能会深刻地改变行业,影响就业和公共服务的交付。政府和社会需要为其影响做好准备:

经济和社会必须为人工智能以及物联网带来的颠覆做好准备。

在人工智能的设计和部署中,必须优先考虑伦理问题。

人工智能和自动化将带来全新的社会经济机会,但对个人和社会的影响和取舍还不清楚。

人工智能正改变着我们的决策方式,我们必须确保人类仍然处于“驾驶座”的主导位置。

在社会内部和社会之间,人工智能的益处分配将不均衡,进而加剧当前和未来的数字鸿沟。这种现象发生的风险极高。

人工智能世界的治理与伦理问题

人工智能引发了对伦理问题的广泛担忧。技术人员表示,这项技术需遵从人类的价值观,在人工智能系统的设计、开发和部署的每一个阶段,都必须优先考虑伦理层面的问题。

目前,人工智能和相关技术正在开发和部署,短期内将需要大量的投资和努力,以避免对社会和人类造成意想不到的影响。在未来,我们需要把焦点放在研究上以及有效的管理架构上,以确保人工智能技术带来的是契机,而不是损害。目前,开发算法的工作仍然由人类完成。对我们所做的事,我们仍拥有些许控制。

然而,如果我们把这类工作拱手相让给中介机构,而中介机构又让算法来设计算法。那么在五年内,开发算法的工作可能就不是人类在做了,而是人工智能在掌控。是否将出现这样的前景:我们打交道的中介机构将被人工智能替代。

此外,人工智能引发的重要考虑事项涵盖了隐私、透明度、安全性、工作性质,以及整体经济。例如,基于面部识别技术可以提升用户在社交媒体上的体验。但同样的技术也可以用来提升监视效果,牺牲个人隐私。亦或是,如果人工智能成为社交媒体网络和在线平台的永久功能,在这些平台上,算法被用来管理在线体验、有关自由选择和偏见的问题将会加剧。人们将对数据收集和决策的透明度和责任性感到担忧。这种担忧将会加速伦理原则的制定。而这些原则的作用是什么?用以指导人工智能的设计和部署。

一个社会如果完全以数据收集为基础,那么从商业角度来看,在没有适当的民主监督和平衡的情况下,将助长社会过度依赖监督。机器提供了太多自动选择,人类无需过多思考,从而失去了某些自我决策的机会。

数据分析技术产生的自动化将对人类行为和决策产生更大的影响。

政府将如何应对人工智能带来的更大的经济和社会影响?政府是否具备这样做的能力和资源?在政府内部,由于政策的制定和调整越来越多地受到数据的驱动,人工智能可能会带来一种根本性的决策调整。此外,人工智能可能成为未来政策选择的一种决策工具,而且使用起来可能会草率而不透明。

物联网和人工智能的发展将为政府决策提供科学依据,并帮助它们快速应对民众的需求。

许多人预见,未来几年将展开一场激烈的竞争,以争夺商业人工智能领域的霸主地位。尽管这可能会推动创新,并有可能颠覆当前的市场结构,但也存在竞争方面的担忧。预测者认为,在可预见的未来,如今的领先科技公司将会控制人工智能市场。

人工智能对互联网经济的影响

一些人认为,预测人工智能是一种营销炒作,但很多业内人士和政府都在为人工智能的普及做准备。CB Insights估计,2016年超过50亿美元的风投资金流向了人工智能创业公司,比前一年增长了62%。人工智能为创造新工作、新产业和新沟通方式提供了巨大机遇。

随着人工智能和自动化在各个行业推动重大结构变革,工作的本质将发生改变。随着人工智能获取用户数据,改变产品和服务的交付方式,许多现有的工作岗位可能会被取代。如何适应变化的步伐将是未来一项重大的全球性挑战。

与人工智能和物联网相关的项目引领了我们很长一段时间,提升了我们现有的技术,让普通人生活更加方便。

人工智能系统和技术可以改变工作的性质,让员工能力得到提升,从而减少人类之间和国家之间的不平等。人工智能让我们承担和解决更大的挑战。正如一份调查报告所显示,“人们的大脑和互联网之间的距离会变得越来越近,而两者之间的交叉会变得越来越复杂。”

机器与机器之间的通信增加了成本压力,人们正在被取代。这只会随着时间的推移而不断增加,这对经济有好处,但会对就业提出挑战。

人工智能为科学研究、交通运输和服务提供带来了巨大潜在收益。如果可访问性和开源开发胜出,人工智能有可能给发达国家和发展中国家带来红利。例如,依赖农业生产的国家可以利用人工智能技术分析作物产量,优化粮食产量。在医疗保健领域使用人工智能可能会改变低收入地区的疾病检测方法。

人工智能是一种创造性的毁灭,它将淘汰许多工作岗位,但也将创造新的角色和工作岗位。

但是,社会本身是否已经准备好接受这种变化,我们是否为新型经济做好了充分的准备?对于发展中经济体而言,新技术总是能创造出更多的可能性,尽管部署人工智能(以及物联网)的基础设施非常重要。人工智能的好处也可能不均衡:对于依赖低技能劳动力的经济体,自动化可能会挑战它们在全球劳动力市场中的竞争优势,并加剧当地的失业形势,影响经济发展。

用于管理制造业或服务业的智能和服务,可能仍集中在发达国家。人工智能可能会在很大程度上加剧数字鸿沟,这将会带来政治上的影响。

确保互联网技术创造市场就业机会,且不会对就业市场造成损害,这是未来5年必须解决的一个挑战,也是国际上一个紧迫而严重的问题。

人工智能对互联网安全和网络智能的影响

算法开始做出决策,它们比人类决策更快,并且可以代表我们的意志。此外,系统越来越不透明。我们不知道他们在哪里,他们在做什么决定。

虽然安全与信任对人工智能的未来至关重要,但这项技术也可以帮助解决安全挑战。随着网络和信息流变得越来越复杂,人工智能可以帮助网络管理人员理解交通模式,创建识别安全威胁的方法。在基本的企业层面上,人工智能可以执行由IT帮助台执行的任务,比如解决员工的电脑问题。

篇9

人工智能逐渐演变为一种社会需要,机器也不再是人们眼中冰冷的工具,而是拥有自我意识的机器。

 

作为科幻作品中很大的母题,人工智能经常在科幻电影中出现,比如《我,机器人》《黑客帝国》《机械姬》,其中人工智能往往扮演反叛者的角色,对人类造成伤害。结合现实来说,这样的事情会不会发生?

 

清华微电子专业毕业后在外资企业从事半导体研发,这只是江波的工作之一。更令人瞩目的是,作为中国更新代的科幻作家,从处女作《最后的游戏》到《时空追缉》,再到恢弘磅礴的《银河之心》三部曲,他用冷峻而优雅的文字、超越寻常的想象力以及对人类未来发展的终极关怀征服了一众科幻爱好者。江波认为,“将机器赋予文明,将文明赋予机器。这是人类的使命,也许是最后的使命。”这是他对人工智能的期待和展望,也是未来人工智能科技发展的方向。

 

生物智能与自我意识

 

回答这一问题,首先要提到生物智能。生物智能是目前已知唯一产生了自我意识的智能,所以它是人工智能唯一的参考。将人类和蚂蚁做比较,人类是智能生物,蚂蚁是本能生物。所谓智能,就是可以设计出各种方法适应环境;所谓本能,就是生来具有的一种能力,诸如蚂蚁生来就能筑巢觅食。

 

为什么把这两种生物放在一起比较?如果把所有人类重量和蚂蚁重量都相加起来,在天平的两端,蚂蚁和人类的总质量是差不多的。所以从这个意义上来讲,两种同样成功的生物可以用来做比较,人类在分类学上属于哺乳纲灵长类人科,蚂蚁属于昆虫纲膜翅目蚁科,在纲目科属种的分类上,可以用同样的“科”级衡量。人科人属人种,事实上只有一种,但是蚂蚁有11 700余种,从这个意义上来说智能相对于本能的好处是以一敌万,一种智能生物通过调整行为方式,可以适应地球表面上的任何地形地貌,但是蚂蚁为了做到这件事情却用了11 700多种,这是智能带给生物的好处。

 

生物形形,怎样去衡量它的自我意识?生物学家采用了“镜子实验”——就是让生物照镜子,如果它能够从镜子中辨认出影像就是自身,就通过了测试,可以认为它具备自我意识。“镜子实验”有很多模糊的地方,不算非常客观标准的测试,但作为目前研究自我意识的一个参考,它可以代表自我意识的存在。

 

黑猩猩、鲸鱼、大象诸如此类可以通过镜子测试,像蚂蚁、水母等神经系统很简单的生物,不可能存在自我意识。也有两种生物在关系上和人类比较接近,一种是猴子,一种是猩猩,它们的镜子实验是什么结果?

 

一只非常强壮的银背大猩猩,看到镜子当中的自己,认为是另外一个对手直接撞上去,所以它失败了。

 

一只猴子从镜像中发现了自己脸上的红点,也就是说它已经通过了镜子测试。而实际上猴子是没有自我意识、不能通过镜子测试的,这只猴子的确通过了,它是怎么做到的?这只猴子是2015年中科院神经科学研究所最新的研究成果,通过某些程度的训练,让原本不具有自我意识的猴子产生一定的自我意识,从而能够辨认出镜子中的自己。

 

这个研究说明,自我意识的边界具有模糊性,并不存在非黑及白的世界。从没有自我意识跨入到自我意识并没有截然的边界,最有可能的情形是这个过渡是连续而模糊的,这点非常重要。

 

通过以上的实验和研究可以得出结论:自我意识并非高级智能的神秘功能,变化的环境不断推动智能向着更复杂的方向发展,当智能复杂到能意识到本体的存在,自我意识便自然产生,它是复杂智能的伴生物,学习是获取智能的唯一途径。

 

现在的拟智能与未来的可能性

 

既然学习是获取智能的唯一途径,那么人工智能的学习就是通过对外界环境的认识来改变自己的内在逻辑。如果这个智能体设计当中本身有一个变量是2,通外界刺激之后我认识到是6,把2改成6这不叫逻辑变换,这只是变量的变换。逻辑变换的意思是,通过环境刺激到神经系统最后接受最佳答案,对机器来说就是它的学习。

 

有了对学习的定义之后,就可以定义什么是拟智能了,Google的自动驾驶汽车、亚马逊的无人机、微软小冰,这些都可以称之为拟智能,是所有不通过学习得来的智能。这些智能通过预先编制的程序锁定了它的行为是什么,它很强大,但因为是不通过自主学习得来的,所以它不会产生自我意识。

 

我们生活中广泛存在的智能被称为拟智能,如果拟智能不能产生自我意识,它就不是我们担心的对象,那么什么东西是我们未来的可能性?

 

第一种未来的可能性是神经网络。2004年初,Google以4亿美元(约合26亿元人民币)价格收购了一家做算法的公司,简单地说,这个算法的任务是玩游戏。一个大屏幕上方有些不断落下的方块,这个算法所控制的是一个方块,这个方块在屏幕下方前后左右可以移动,游戏目的是延长生存的时间,这个算法当中如果上方出现一个方块,叫做输入,引起下方一个动作之后这个游戏就失败了,这个神经网络能够记住这一点,在下次游戏当中尽量避免这样的动作。

 

同样,如果一个输入引起动作之后,这个游戏能够延长更长的时间,它就可以获得奖励,在下一轮游戏当中,它还有可能采用同样的动作,这个就是学习的过程。它用分层结构对人类神经系统进行了很好的模拟,在神经网络深度学习的过程中,没有人预先告诉它该往哪边走,它通过不断地试错最后得到自己的最佳策略。

 

未来的另外一种可能是人脑芯片,大概意思是指根据神经元的结构组合成大脑皮层,科学家已经用物理芯片实现了,它用56亿个晶体管大概模拟了100万的神经元,有2.56亿个突触。这种人脑芯片是突破性的成就,但还有两个方面的问题:第一是规模,100万的神经元听起来很多,对比140亿神经元是人脑的神经元数目,人脑的突触以万亿记,这个规模只有人脑的万分之一,但是规模一旦提出来就是时间问题。还有一个问题,算法,怎么让人脑芯片工作?一般的智能需要预先编制好它的行为方式,但是这块芯片需要的是和认知世界一样的方式,通过外界刺激修正内部逻辑编程。从这两方面来说,人脑芯片还有很长的路要走。

 

赋机器予文明

 

人工智能的发展会带来很多问题,一旦人工智能和人类并存在世界上,就面临一个问题,什么样的人工智能可以融入到人类社会?

 

科学家们想到了“图灵测试”——让一个机器跟人对话,如果30%的人认为他是人,他就是人。图灵测试实际上有两端,目前认为人工智能的产生是单向性,一旦跨过一个界限达到一定复杂度就变成了人,将来社会中一旦人工智能跟人类并存,它是否是人就要交给人来判断。

 

通过对以上内容的分析,我们可以给出这样的结论:人工智能的自我意识只是一个时间问题。那么,科幻电影当中出现的灰暗的现实有一天会变成真的吗,人类该怎么办?

 

回顾18世纪的工业革命,人类在工业化的道路上狂奔,从来没有停止过,不断发明各种各样的机器充实人类文明,发明各种各样让大家生活得更好的物质,这个过程可以称为“赋文明予机器”,不断用机器填充文明。

 

拥有自我意识的机器必然是能够学习的机器,因为学习是自我意识的源泉,就像一个孩子,刚开始就是一张白纸,如果教给他的是暴力、战争、侵害,那么他学会的也是这些,如果教给他的是和平、爱、仁慈,那么他学会的也将会是这些。而“赋机器予文明”,可以通过一些方法方式来规范引导将要产生的人工智能,从而避免科幻电影中描述的黑暗未来。

 

人工智能的终极影响会怎样

 

人工智能指研究、开发并扩展人的智能的新学科,既是计算机科学的一个分支,也指能以与人类智能相似的方式作出反应的智能机器。说穿了,人工智能是对人的意识、思维过程的模拟。尽管它不是人的智能,却能像人那样思考,能完成财务查账、疾病诊断、危险操作,甚至使盲人恢复阅读能力……随着大数据的运用,将其与相关算法结合,人工智能便具备了深度“ 自我学习”的本领,可以模仿人脑神经元处理海量数据,“ 自己教自己”如何去执行一些过去只有人脑才能完成的任务,如驾驶无人飞机与汽车等。这就给警醒的人类带来了很大的疑虑:发达的人工智能技术对人类社会的终极影响将会怎样?

 

客观地分析,目前人工智能技术仅局限于某一具体领域的特定能力,能“形似”地模拟人脑,但不具备范围广泛且灵活变通的人类思维能力,也不具备人类的自主性、欲望与情感。但科学的进展是难以预测的,毕竟人工智能正在飞快地向自我学习、自我决策等高级认知层次演进。有朝一日机器是否会拥有比人类更灵敏的认知能力?拥有与人类冲突的利益观?甚至主宰人类……难怪霍金也会提出:人工智能可能是一个 “真正的危险”。

 

直面迅猛发展的人工智能,激起人们对其负面效应的谨慎和担忧是毫不奇怪的。毕竟,人工智能须接受人类伦理的监督,其研发者虽无法预见所有情形,但至少要做出在危急时刻能及时终止设计的超前安排,这是科学工作者必须具备的人文精神。我们并不赞同因对人工智能的过度忧虑而导致研究上停滞不前,在关注人工智能可能带来危机的同时,还要看到其无可估量的学术价值和经济效益。预见问题总比视而不见更理智。

 

延伸阅读:

 

过去20年,这4次“人机大战”载入史册

 

从第一台计算机问世以来,人们就梦想造出一种可以完美模拟甚至超越人脑的计算机系统。过去20年中,有4次“人机大战”给人们留下格外深刻的印象,也成为人工智能发展的绝佳注脚。

 

深蓝——蛮算的“硬汉”

 

1997年,美国IBM公司的“深蓝”超级计算机以2胜1负3平战胜了当时世界排名第一的国际象棋大师卡斯帕罗夫。“深蓝”的运算能力当时在全球超级计算机中居第259位,每秒可运算2亿步。在今天看来,“深蓝”还算不上足够智能,主要依靠强大的计算能力穷举所有路数来选择最佳策略:“深蓝”靠硬算可以预判12步,卡斯帕罗夫可以预判10步,两者高下立现。

 

浪潮天梭——以一敌五的“铁人”

 

2006年,“浪潮杯”首届中国象棋人机大战中,5位中国象棋特级大师最终败在超级计算机“浪潮天梭”手下。中国人发明的这项充满东方智慧的模拟战争游戏,被中国超级计算机独占鳌头。

 

从那场比赛开始,象棋软件蓬勃发展,人类棋手逐渐难以与之抗衡。

 

沃森——察言观色的全才“学霸”

 

2011年,“深蓝”的同门师弟“沃森”在美国老牌智力问答节目《危险边缘》中挑战两位人类冠军。参赛者需要大量历史、文学、政治、科学及流行文化知识,还需要解析隐晦含义和谜语等。虽然比赛时不能接入互联网搜索,但“沃森”存储了2亿页的数据,包括各种百科全书、词典、新闻甚至维基百科的全部内容。

 

“沃森”最终轻松战胜两位人类冠军,展示出的自然语言理解能力一直是人工智能界的重点课题。

 

AlphaGo——有棋风的“深度思考者”

 

围棋一直被看作是人类最后的智力竞技高地。据估算,围棋的可能下法数量超越了可观测宇宙范围内的原子总数,显然“深蓝”式的硬算在围棋上行不通。

 

篇10

刘慈欣:1997年IBM的超级计算机“深蓝”战胜了国际象棋冠军弗加里・卡斯帕罗夫;2015年10月“阿狗”以5:0战胜欧洲围棋冠军樊麾;这次“围棋人机大战”中“阿狗”再度力克世界冠军李世石。实际上,前两次的比赛就已经能够证明计算机在棋类方面超越人类,结果属于意料之中。虽然围棋在复杂程度和组成数量上远超国际象棋,它最多有3361种局面,这个数字大概是10170,比已观测到的宇宙中的原子数量还多。但不管怎样,计算机下棋的思维方式没有发生根本变化,可以说本质上是一样的。

计算机在很多方面超越人类已经是不争的事实,这点毋庸置疑。相较于前两次人类与计算机的对决,这次比赛的进步之处在于计算机的处理速度、数据库容量、检索和分类速度都有巨大提高。但总体来看,仍属于量变,而不是质变。对于人工智能技术而言,想要实现计算机模拟人的意识、思维以及信息判断,还需要计算机技术从本质上发生变化。举个例子,人工智能技术中包括模式识别功能,当前计算机能够识别出人的面孔,但是还不能理解表情,更无法通过人的肢体动作获取人类内心的想法。

网友提问:据谷歌公司介绍,“阿狗”已经拥有了极强的学习能力。“围棋人机大战”中,面对李世石“奇招”,“阿狗”从容应对,似乎看出它除了有超强的计算能力之外,还具备了一定的学习能力。如果它具备了这种能力,那成熟的人工智能技术离我们还远吗? 李世石(中)

刘慈欣:从“阿狗”的表现来看,它主要展示出的能力还是计算机基本逻辑推理能力,至于谷歌所说的学习能力还没有得到完全验证。从人工智能的角度来讲,计算机最需要向人类学习的能力是基于有限信息基础上所产生的想象力和判断力,当计算机的逻辑推理能力和这些能力实现完美结合时,才意味着人工智能进入成熟阶段。

当前距离实现成熟的人工智能技术还很遥远,甚至可以说,未来能不能实现还是个谜。因为有两个重要的技术屏障无法突破,一是当前冯・诺依曼型计算机还不具备模拟人脑的强大能力;二是脑科学的发展速度仍然缓慢,人类对于自身大脑详细的深层结构和运作方式知之甚少。如果脑科学无法实现重大突破,那产生真正意义上的人工智能就是天方夜谭。

如《三体》中所说,当半人马座α星人发现地球存在生命体后,派出智子将人类的基础科学锁死,因为只要基础科学不能实现重大突破,那么应用型科学的发展是有瓶颈的。同样,人工智能技术的发展也遵循这个道理,在人工智能技术之下还有更为基础的计算机科学、脑科学等领域,只有这些科学技术取得重大突破后,人工智能技术才能迎刃而解。

另外,有些网友对人工智能心怀恐惧,这是大可不必的。假如有朝一日成熟的人工智能技术真的诞生了,人类还是有很多办法可以对它进行约束的。 李世石专心参赛

网友提问:作为人工智能程序的“阿狗”还需要进一步提升、完善,谷歌公司的负责人也表示,希望通过“围棋人机大战”找出它的弱点。不过经此一战,人类已经见识到了人工智能技术的强大能量,那么未来当这种技术成熟后,人类生活会发生哪些变化呢?

刘慈欣:这个现在还无法进行预测,不过可以肯定的是,人工智能的出现,意味着人类所做的很多事情都可以完全被计算机、机器人所替代。而且可以断定,计算机、机器人能凭借它们强大的能力帮助人类做出更多出色的成绩。到那时,机器人会走入家庭,像朋友一样与人类相处,甚至还可能为成为人类家庭中的一员。

将思路拉回现实,“围棋人机大战”再次让科技成为舆论热点,并引发公众对基础科学的高度关注,对于科学推广与普及有着积极的意义,会让越来越多的人真实感受到科学技术的魅力,从而产生浓厚的兴趣。同时,对于国家一直以来倡导的科技创新理念也有助推意义,相信人工智能技术会因此受到各方面的关注,吸引更多国家、企业与个人投入力量进行研究。

延伸阅读:

AlphaGo赢了之后 人工智能的必然

20年前,IBM的计算机“深蓝”打败了国际象棋世界冠军卡斯帕罗夫,当时引起不少讨论与关注。而被视为“智力巅峰”的围棋,却是计算机所遇到的一个壁垒,一直无法攻破。如今历史终于被打破,当学习了人类职业棋手和顶尖棋手上万份的棋谱,并且进行了上千万场次自我博弈的AlphaGo出现时,不得不说这是一次质的飞跃。《自然》杂志总结了AlphaGo具备的四套重要算法,如走棋网络、快速走子、估值网络、蒙特卡罗树搜索等,已然具备了高水平的智能决策。

有人质疑AlphaGo没有情感,没有创造力,那么试想如果在比赛前不告诉人类,他对战的是AlphaGo,人类多半会肯定对方棋手的创造力。因为此前,机器的创造力一直不被人类认可,它们看上去死板而且麻烦。但是随着技术的发展,它们变得越来越简易而又快速,甚至成了必不可缺的“助手”。在大量工作中,按照固定流程处理的步骤正在变得完全自动化,而且这些自动化的流程还会像AlphaGo那样,在多种算法与自我博弈中寻求最佳优化。虽然不是每一个公司都像世界级棋手那样高超得屈指可数,但还是有大量公司对人工智能带来的智能水平优化趋之若鹜。

篇11

也正因为如此,人工智能发展进程中所面临的挑战才不仅仅局限于技术或产业领域,而更多体现在经济、社会、政治领域的公共政策选择上。首先,普遍建立在科层制基础上的公共事务治理结构,是否能够适应技术发展和应用过程中所大规模激发的不确定性和不可预知性?再者,长久以来围绕人类行为的规制制度,是否同样能够适应以数据、算法为主体的应用环境?最后,如何构建新的治理体系和治理工具来应对伴随人工智能发展而兴起的新的经济、社会、政治问题?

应对上述挑战并不完全取决于技术发展或商业创新本身,而更多依赖于我们的公共政策选择。本文试图在分析人工智能发展逻辑及其所引发的风险挑战的基础上,对人工智能时代的公共政策选择做出分析,并讨论未来改革的可能路径,这也就构成了人工智能治理的三个基本问题。具体而言,人工智能本身成为治理对象,其发展与应用构成了治理挑战,而在此基础上如何做出公共政策选择便是未来治理变革的方向。

全文共分为四个部分:第一部分将探讨人工智能的概念及特征,并进而对其发展逻辑进行阐述。作为一项颠覆性技术创新,其本身的技术门槛对决策者而言构成了挑战,梳理并捋清人工智能的本质内涵因而成为制定相关公共政策的前提;第二部分将着重分析人工智能时代崛起所带来的治理挑战,主要包括三个方面,即传统科层治理结构应对人工智能新的生产模式的滞后性、建基于行为因果关系之上的传统治理逻辑应对人工智能新主体的不适用性,以及人工智能发展所引发的新议题的治理空白;面对上述挑战,各国都出台了相关政策,本文第三部分对此进行了综述性对比分析,并指出了其进步意义所在。需要指出的是,尽管各国的政策目标都试图追求人工智能发展与监管的二维平衡,但由于缺乏对人工智能内涵及其发展逻辑的完整认识,当前的公共政策选择有失综合性;本文第四部分将提出新的治理思路以及公共政策选择的其他可能路径,以推动围绕人工智能治理的相关公共政策议题的深入讨论。

一、人工智能的概念及技术发展逻辑:算法与数据

伴随着人工智能技术的快速发展,尤其是其近年来在棋类对弈、自动驾驶、人脸识别等领域的广泛应用,围绕人工智能所可能引发的社会变革产生了激烈争论。在一方面,以霍金[2]、马斯克[3]、比尔-盖茨[4]、赫拉利[5]为代表的诸多人士呼吁加强监管,警惕“人工智能成为人类文明史的终结”;在另一方面,包括奥巴马[6]在内的政治家、学者又认为应该放松监管,充分释放人工智能的技术潜力以造福社会。未来发展的不确定性固然是引发当前争论的重要原因之一,但围绕“人工智能”概念内涵理解的不同,以及对其发展逻辑认识的不清晰,可能也同样严重地加剧了人们的分歧。正因为此,廓清人工智能的概念内涵和发展逻辑不仅是回应争论的需要,也是进一步提出公共政策建议的前提。

就相关研究领域而言,人们对于“人工智能”这一概念的定义并未形成普遍共识。计算机领域的先驱阿兰-图灵曾在《计算机器与智能》一文中提出,重要的不是机器模仿人类思维过程的能力,而是机器重复人类思维外在表现行为的能力。[7]正是由此理解出发,著名的“图灵测试”方案被提出。但如同斯坦福大学计算机系教授约翰·麦卡锡所指出的,“图灵测试”仅仅只是“人工智能”概念的一部分,不模仿人类但同时也能完成相关行为的机器同样应被视为“智能”的。[8]事实上,约翰·麦卡锡正是现代人工智能概念的提出者。在他看来,“智能”关乎完成某种目标的行为“机制”,而机器既可以通过模仿人来实现行为机制,也可以自由地使用任何办法来创造行为机制。[9]由此,我们便得到了人工智能领域另一个非常重要的概念——“机器学习”。

人工智能研究的目标是使机器达到人类级别的智能能力,而其中最重要的便是学习能力。[10]因此,尽管“机器学习”是“人工智能”的子域,但很多时候我们都将这两个概念等同起来。[11]就实现过程而言,机器学习是指利用某些算法指导计算机利用已知数据得出适当模型,并利用此模型对新的情境给出判断,从而完成行为机制的过程。此处需要强调一下机器学习算法与传统算法的差异。算法本质上就是一系列指令,告诉计算机该做什么。对于传统算法而言,其往往事无巨细地规定好了机器在既定条件下的既定动作;机器学习算法却是通过对已有数据的“学习”,使机器能够在与历史数据不同的新情境下做出判断。以机器人行走的实现为例,传统算法下,程序员要仔细规定好机器人在既定环境下每一个动作的实现流程;而机器学习算法下,程序员要做的则是使计算机分析并模拟人类的行走动作,以使其即使在完全陌生的环境中也能实现行走。

由此,我们可以对“人工智能”设定一个“工作定义”以方便进一步的讨论:人工智能是建立在现代算法基础上,以历史数据为支撑,而形成的具有感知、推理、学习、决策等思维活动并能够按照一定目标完成相应行为的计算系统。这一概念尽管可能仍不完善,但它突出了人工智能技术发展和应用的两大基石——算法与数据,有助于讨论人工智能的治理问题。

首先,算法即是规则,它不仅确立了机器所试图实现的目标,同时也指出了实现目标的路径与方法。就人工智能当前的技术发展史而言,算法主要可被划分为五个类别:符号学派、联接学派、进化学派、类推学派和贝叶斯学派。[12]每个学派都遵循不同的逻辑、以不同的理念实现了人工智能(也即“机器学习”)的过程。举例而言,“符号学派”将所有的信息处理简化为对符号的操纵,由此学习过程被简化(抽象)为基于数据和假设的规则归纳过程。在数据(即历史事实)和已有知识(即预先设定的条件)的基础上,符号学派通过“提出假设-数据验证-进一步提出新假设-归纳新规则”的过程来训练机器的学习能力,并由此实现在新环境下的决策判断。

从对“符号学派”的描述中可以发现,机器学习模型成功的关键不仅是算法,还有数据。数据的缺失和预设条件的不合理将直接影响机器学习的输出(就符号学派而言,即决策规则的归纳)。最明显体现这一问题的例子便是罗素的“归纳主义者火鸡”问题:火鸡在观察10天(数据集不完整)之后得出结论(代表预设条件不合理,超过10个确认数据即接受规则),主人会在每天早上9点给它喂食;但接下来是平安夜的早餐,主人没有喂它而是宰了它。

所有算法类型尽管理念不同,但模型成功的关键都聚焦于“算法”和“数据”。事实上,如果跳出具体学派的思维束缚,每种机器学习算法都可被概括为“表示方法、评估、优化”这三个部分。[13]尽管机器可以不断的自我优化以提升学习能力,且原则上可以学习任何东西,但评估的方法和原则(算法)以及用以评估的数据(数据)都是人为决定的——而这也正是人工智能治理的关键所在。算法与数据不仅是人工智能发展逻辑的基石,其同样是治理的对象和关键。

总而言之,围绕“人工智能是否会取代人类”的争论事实上并无太大意义,更重要的反而是在廓清人工智能的内涵并理解其发展逻辑之后,回答“治理什么”和“如何治理”的问题。就此而言,明确治理对象为算法和数据无疑是重要的一步。但接下来的重要问题仍然在于,人工智能时代的崛起所带来的治理挑战究竟是什么?当前的制度设计是否能够对其做出有效应对?如果答案是否定的,我们又该如何重构治理体系以迎接人工智能时代的崛起?本文余下部分将对此做进一步的阐述。

二、人工智能时代崛起的治理挑战

不同于其他颠覆性技术,人工智能的发展并不局限于某一特定产业,而是能够支撑所有产业变革的通用型技术。也正因为此,其具有广泛的社会溢出效应,在政治、经济、社会等各个领域都会带来深刻变革,并将同时引发治理方面的挑战。具体而言,挑战主要体现在以下三个方面。

首先,治理结构的僵化性,即传统的科层制治理结构可能难以应对人工智能快速发展而形成的开放性和不确定性。之所以需要对人工智能加以监管,原因在于其可能成为公共危险的源头,例如当自动驾驶技术普及之后,一旦出现问题,便可能导致大规模的连续性伤害。但不同机、大型水坝、原子核科技等二十世纪的公共危险源,人工智能的发展具有极强的开放性,任何一个程序员或公司都可以毫无门槛的进行人工智能程序的开发与应用。这一方面是由于互联网时代的到来,使得基于代码的生产门槛被大大降低[14];另一方面,这也是人工智能本身发展规律的需要。正如前文所提到,唯有大规模的数据输入才可能得到较好的机器学习结果,因此将人工智能的平台(也即算法)以开源形式公开出来,以使更多的人在不同场景之下加以利用并由此吸收更多、更完备的数据以完善算法本身,就成为了大多数人工智能公司的必然选择。与此同时,人工智能生产模式的开放性也必然带来发展的不确定性,在缺乏有效约束或引导的情况下,人工智能的发展很可能走向歧途。面对这一新形势,传统的、基于科层制的治理结构显然难以做出有效应对。一方面,政府试图全范围覆盖的事前监管已经成为不可能,开放的人工智能生产网络使得监管机构几乎找不到监管对象;另一方面,由上至下的权威结构既不能传递给生产者,信息不对称问题的加剧还可能导致监管行为走向反面。调整治理结构与治理逻辑,并形成适应具有开放性、不确定性特征的人工智能生产模式,是当前面临的治理挑战之一。

再者,治理方法的滞后性,即长久以来建立在人类行为因果关系基础上的法律规制体系,可能难以适用于以算法、数据为主体的应用环境。人工智能的价值并不在于模仿人类行为,而是其具备自主的学习和决策能力;正因为如此,人工智能技术才不能简单地理解为其创造者(即人)意志的表达。程序员给出的只是学习规则,但真正做出决策的是基于大规模数据训练后的算法本身,而这一结果与程序员的意志并无直接因果关联。事实上也正由于这个特点,AlphaGo才可能连续击败围棋冠军,而其设计者却并非围棋顶尖大师。也正是在这个意义上,我们才回到了福柯所言的“技术的主体性”概念。在他看来,“技术并不仅仅是工具,或者不仅仅是达到目的的手段;相反,其是政治行动者,手段与目的密不可分”。[15]就此而言,长久以来通过探究行为与后果之因果关系来规范人的行为的法律规制体系,便可能遭遇窘境:如果将人工智能所造成的侵权行为归咎于其设计者,无疑不具有说服力;但如果要归咎于人工智能本身,我们又该如何问责一个机器呢?由此,如何应对以算法、数据为核心的技术主体所带来的公共责任分配问题,是当前面临的第二个治理挑战。

最后,治理范围的狭隘性,即对于受人工智能发展冲击而引发的新的社会议题,需要构建新的治理体系和发展新的治理工具。人工智能发展所引发的治理挑战不仅仅体现在现有体系的不适应上,同时还有新议题所面临的治理空白问题。具体而言,这又主要包括以下议题:算法是否能够享有言论自由的宪法保护,数据的权属关系究竟如何界定,如何缓解人工智能所可能加剧的不平等现象,以及如何平衡人工智能的发展与失业问题。在人工智能时代之前,上述问题并不存在,或者说并不突出;但伴随着人工智能的快速发展和应用普及,它们的重要性便日渐显著。以最为人所关注的失业问题为例,就技术可能性来说,人工智能和机器人的广泛应用代替人工劳动,已是一个不可否定的事实了。无论是新闻记者,还是股市分析员,甚至是法律工作者,其都有可能为机器所取代。在一个“充分自动化(Full Automation)”的世界中,如何重新认识劳动与福利保障的关系、重构劳动和福利保障制度,便成为最迫切需要解决的治理挑战之一。[16]

上述三方面共同构成了人工智能时代崛起所带来的治理挑战。面对这些挑战,各国也做出了相应的公共政策选择。本文第三部分将对各国人工智能的治理政策进行对比性分析。在此基础上,第四部分将提出本文的政策建议。

三、各国人工智能治理政策及监管路径综述

人工智能时代的崛起作为一种普遍现象,其所引发的治理挑战是各国面临的共同问题,各国也陆续出台了相关公共政策以试图推动并规范人工智能的快速发展。

美国于2016年同时颁布了《国家人工智能研究与发展战略规划》和《为人工智能的未来做好准备》两个国家级政策框架,前者侧重从技术角度指出美国人工智能战略的目的、愿景和重点方向,而后者则更多从治理角度探讨政府在促进创新、保障公共安全方面所应扮演的角色和作用。就具体的监管政策而言,《为人工智能的未来做好准备》提出了一般性的应对方法,强调基于风险评估和成本-收益考量的原则以决定是否对人工智能技术的研发与应用施以监管负担。[17]日本同样于2016年出台了《第五期(2016~2020年度)科学技术基本计划》,提出了“超智能社会5.0”的概念,强调通过推动数据标准化、建设社会服务平台、协调发展多领域智能系统等各方面工作促进人工智能的发展和应用。[18]

尽管美国和日本的政策着力点不同,但其共有的特点是对人工智能的发展及其所引发的挑战持普遍的包容与开放态度。就当前的政策框架而言,美日两国的政策目标更倾斜于推动技术创新、保持其国家竞争力的优势地位;当涉及对人工智能所可能引发的公共问题施以监管时,其政策选择也更倾向于遵循“无需批准式(permissionless)”的监管逻辑,即强调除非有充分案例证明其危害性,新技术和新商业模式默认为都是被允许的。[19]至于人工智能的发展对个人数据隐私、社会公共安全的潜在威胁,尽管两国的政策框架都有所涉及,却并非其政策重心——相比之下,英国、法国则采取了不同的政策路径。

英国政府2016年了《人工智能:未来决策制定的机遇与影响》,对人工智能的变革性影响以及如何利用人工智能做出了阐述与规划,尤其关注到了人工智能发展所带来的法律和伦理风险。在该报告中,英国政府强调了机器学习与个人数据相结合而对个人自由及隐私等基本权利所带来的影响,明确了对使用人工智能所制定出的决策采用问责的概念和机制,并同时在算法透明度、算法一致性、风险分配等具体政策方面做出了规定。[20]与英国类似,法国在2017年的《人工智能战略》中延续了其在2006年通过的《信息社会法案》的立法精神,同样强调加强对新技术的“共同调控”,以在享有技术发展所带来的福利改进的同时,充分保护个人权利和公共利益。[21]与美日相比,英法的公共政策更偏向于“审慎监管(precautionary)”的政策逻辑,即强调新技术或新的商业模式只有在开发者证明其无害的前提下才被允许使用。[22]

在本文看来,无论是“无需批准式监管”还是“审慎监管”,在应对人工智能时代崛起所带来的治理挑战方面都有其可取之处:前者侧重于推动创新,而后者则因重视安全而更显稳健。但需要指出的是,这两种监管路径的不足却也十分明显。正如前文第二部分所指出,一方面,快速迭代的技术发展与商业模式创新必将引发新的社会议题,无论是算法是否受到言论自由的权利保护还是普遍失业对社会形成的挑战,它们都在客观上要求公共政策做出应对,而非片面的“无需批准式监管”能够处理。更重要的是,“无需批准式监管”的潜在假设是事后监管的有效性;然而,在事实上,正如2010年5月6日美国道琼斯工业指数“瞬间崩盘”事件所揭示的,即使单个电子交易程序合规运行,当各个系统行为聚合在一起时反而却造成了更大的危机。[23]在此种情形下,依赖于合规性判断的“事后监管”基本上难以有效实施。另一方面,人工智能本身的自主性和主体性使得建立在人类行为因果关系基础上的“审慎监管”逻辑存在天然缺陷:既然人类无法预知人工智能系统可能的行为或决策,开发者又如何证明人工智能系统的无害性?

正如本文所反复强调的,人工智能与其他革命性技术的不同之处,正是在于其所带来的社会冲击的综合性和基础性。人工智能并非单个领域、单个产业的技术突破,而是对于社会运行状态的根本性变革;人工智能时代的崛起也并非一夜之功,而是建立在计算机革命、互联网革命直至数字革命基础上的“奇点”变革。因此,面对人工智能时代崛起所带来的治理挑战,我们同样应该制定综合性的公共政策框架,而非仅仅沿袭传统治理逻辑,例如只是针对具体议题在“创新”与“安全”这个二元维度下进行艰难选择。本文在第四部分从承认技术的主体性、重构社会治理制度、推进人工智能全球治理这三方面提出了政策建议,并希望以此推动更深入地围绕人工智能时代公共政策选择的研究与讨论。

四、人工智能时代的公共政策选择

《新一代人工智能发展规划》明确提出了到2030年我国人工智能发展的“三步走”目标,而在每一个阶段,人工智能法律法规、伦理规范和政策体系的逐步建立与完善都是必不可少的重要内容。面对人工智能时代崛起的治理挑战,究竟应该如何重构治理体系、创新治理机制、发展治理工具,是摆在决策者面前的重要难题。本文基于对人工智能基本概念和发展逻辑的梳理分析,结合各国已有政策的对比分析,提出以下三方面的改革思路,以为人工智能时代的公共选择提供参考。

第一,人工智能发展的基石是算法与数据,建立并完善围绕算法和数据的治理体系与治理机制,是人工智能时代公共政策选择的首要命题,也是应对治理挑战、赋予算法和数据以主体性的必然要求。(1)就算法治理而言,涉及的核心议题是算法的制定权及相应的监督程序问题。算法作为人工智能时代的主要规则,究竟谁有权并通过何种程序来加以制定,谁来对其进行监督且又如何监督?长久以来公众针对社交媒体脸书(Facebook)的质疑正体现了这一问题的重要性:公众如何相信脸书向用户自动推荐的新闻内容不会掺杂特殊利益的取向?[24]当越来越多的人依赖定制化的新闻推送时,人工智能甚至会影响到总统选举。也正因为此,包括透明要求、开源要求在内的诸多治理原则,应当被纳入到算法治理相关议题的考虑之中。(2)就数据治理而言,伴随着人工智能越来越多地依赖于大规模数据的收集与利用,个人隐私的保护、数据价值的分配、数据安全等相关议题也必将成为公共政策的焦点。如何平衡不同价值需求、规范数据的分享与应用,也同样成为人工智能时代公共政策选择的另一重要抓手。

第二,创新社会治理制度,进一步完善社会保障体系,在最大程度上缓解人工智能发展所可能带来的不确定性冲击。与历史上的技术革命类似,人工智能的发展同样会导致利益的分化与重构,而如何保证技术革命成本的承受者得到最大限度的弥补并使所有人都享有技术发展的“获得感”,不仅是社会发展公平、正义的必然要求,也是促进技术革命更快完成的催化剂。就此而言,在人工智能相关公共政策的考量中,我们不仅应该关注产业和经济政策,同时也应该关注社会政策,因为只有后者的完善才能够控制工人或企业家所承担的风险,并帮助他们判断是否支持或抵制变革的发生。就具体的政策设计来说,为缓解人工智能所可能带来的失业潮,基本收入制度的普遍建立可能应该被提上讨论议程了。“基本收入”是指政治共同体(如国家)向所有成员不加任何限制条件地支付一定数额的收入,以满足其基本生活的需求。尽管存在“养懒汉”的质疑,但有研究者已指出,自18世纪就开始构想的基本收入制度很有可能反过来促进就业。[25]芬兰政府已经于2017年初开始了相关实验,美国的一些州、瑞士也做出了一定探索。在人工智能时代尚未完全展现其“狰容”之前,创新社会治理机制、完善社会保障体系,可能是平衡技术创新与社会风险的最佳路径。

第三,构建人工智能全球治理机制,以多种形式促进人工智能重大国际共性问题的解决,共同应对开放性人工智能生产模式的全球性挑战。人工智能的发展具有开放性和不确定性的特征,生产门槛的降低使得人工智能技术研发的跨国流动性很强,相关标准的制定、开放平台的搭建、共享合作框架的形成,无不要求构建相应的全球治理机制。另一方面,跨境数据流动在广度和深度上的快速发展成为了人工智能技术进步的直接推动力,但各国数据规制制度的巨大差异在制约跨境数据流动进一步发展的同时,也将影响人工智能时代的全面到来。[26]故此,创新全球治理机制,在承认各国制度差异的前提下寻找合作共享的可能性,便成为人工智能时代公共政策选择的重要考量之一。就具体的机制设计而言,可以在人工智能全球治理机制的构建中引入多利益相关模式;另一方面,为防止巨头垄断的形成,充分发挥主权国家作用的多边主义模式同样不可忽视。作为影响深远的基础性技术变革,互联网全球治理机制的经验和教训值得人工智能发展所借鉴。

上述三方面从整体上对人工智能时代的公共政策框架做出了阐述。与传统政策局限于“创新”与“安全”之间做出二维选择不同,本文以更综合的视角提出了未来公共政策选择的可能路径。就其内在联系来讲,建立并完善围绕算法和数据的治理体系是起点,其将重构人工智能时代的规则与制度;创新社会治理机制并完善社会保障体系是底线,其将缓解人工智能所带来的影响与波动;构建全球治理机制则成为了制度性的基础设施,推动各国在此之上共同走向人工智能时代的“人类命运共同体”。

五、结语

在经历了60余年的发展之后,人工智能终于在互联网、大数据、机器学习等诸多技术取得突破的基础上实现了腾飞。在未来的人类生活中,人工智能也必将扮演越来越重要的角色。对于这样的图景,我们自不必惊慌,但却也不可掉以轻心。对于人工智能的治理,找到正确的方向并采取合理的措施,正是当下所应该重视的政策议题。而本文的主旨也正在于此:打破长久以来人们对于人工智能的“笼统”式担忧,指出人工智能技术发展的技术逻辑及其所引发的治理挑战,并在此基础上提出相应的政策选择。人工智能治理的这三个基本问题,是重构治理体系、创新治理机制、发展治理工具所必须思考的前提。伴随着我国国家层面战略规划的出台,我国人工智能的发展也必将跃上新台阶。在此背景下,深入探讨人工智能治理的相关公共政策议题,对于助推一个人工智能时代的崛起而言,既有其必要性,也有其迫切性。(来源:中国行政管理 文/贾开 蒋余浩 编选:中国电子商务研究中心)

[参考文献]

[1]国务院关于印发新一代人工智能发展规划的通知[EB/OL]. http://gov.cn/zhengce/content/2017-07/20/content_5211996.htm.

[2]霍金. AI可能成就或者终结人类文明[EB/OL].http://raincent.com/content-10-7672-1.html.

[3] Elon Musk. Artificial Intelligence is Our Biggest Existential Threat. https://theguardian.com/technology/2014/oct/27/elon-musk-artificial-intelligence-ai-biggest-existential-threat.

[4] Microsoft's Bill Gates Insists AI is A Threat. http://bbc.com/news/31047780. 2017-8-14.

[5] [以]赫拉利.人类简史[M].北京:中信出版社,2014.

[6] The President in Conversation With MIT’s Joi Ito and WIRED’s Scott Dadich. https://wired.com/2016/10/president-obama-mit-joi-ito-interview/. 2017-8-14.

[7] Turing,A. M. Computing Machinery and Intelligence. Mind,1950,59(236).

[8] [9][10] McCarthy,J.What is Artificial Intelligence. URL:http://www-formal.stanford.edu/jmc/whatisai/whatisai.html.

[11] [12][13] [美]佩德罗-多明戈斯.终极算法:机器学习和人工智能如何重塑世界[M].黄芳萍译.北京:中信出版社,2016.

[14] Benkler,Y. The Wealth of Networks:How Social Production Transforms Markets and Freedom. Yale University Press,2006.

[15] Foucoult,M. Discipline and Punish. A. Sheridan,Tr.,Paris,FR,Gallimard,1975.

[16] Srnicek,N.,& Williams,A. The Future isn't Working. Juncture,2015,22(3):243-247.

[17] Preparing for the Future of Artificial Intelligence. https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf. 2017-8-14.

[18]薛亮.“日本推动实现超智能社会‘社会5.0’”[EB/OL]. http://istis.sh.cn/list/list.aspx?id=10535.

[19] Thierer,A. Permissionless Innovation:The Continuing Case for Comprehensive Technological Freedom. Mercatus Center at George Mason University,2016.

[20] Artificial Intelligence:Opportunities and Implications for the Future of Decision Making.https://gov.uk/government/uploads/system/uploads/attachment_data/file/566075/gs-16-19-artificial-intelligence-ai-report.pdf.

[21]周衍冰.大数据产业在法国的发展及应用[N].学习时报,2014-11-03.

[22] Thierer,A. D.,& Watney,C. J. Comment on the Federal Automated Vehicles Policy,2016.

[23] [美]杰瑞·卡普兰.人工智能时代:人机共生下财富、工作与思维的大未来[M].杭州浙江人民出版社,2016.

[24] Marcel Rosenbach. How Google and Facebook Can Reshape Elections.http://spiegel.de/international/germany/google-and-facebook-could-help-decide-2017-german-election-a-1120156.html.

篇12

“这是在跟上帝下棋。”在乌镇围棋峰会的现场,当五位中国围棋国手联手对战AlphaGo仍中盘落败之际,我听到旁边有人由衷地感叹。在这次人机对战的赛事中,类似的话大概早已不是第一次有人说,无论是世界排名第一的柯洁在与AlphaGo对决中说的“它就是围棋上帝”,还是两名围棋国手聂卫平和古力所说的“阿(尔法狗)老师”,都明白无误地显现出人们对于人工智能技术的敬畏之心――古力的话很好地表达这种感受:“我对科技产生了一种敬畏感,仅次于对大自然的敬畏。”

世界排名第一的柯洁三战皆败,足证人工智能(AI)的强大。显然,从大众的情绪反应来看,很多人将此理解为人类的失败,而不是人类的胜利。在好多人看来,这似乎就像是那个长久以来的科幻故事主题正在成为现实:强大无比的电脑将获得人工智能和自我意识,最终控制并取代人类。在柯洁第一盘以1/4目告负之后,有一个说法在网上流传:电脑始终控制着局面,之所以以1/4这一最小比分击败人类,只是为了给人类留面子。

在看了@样的解释后,我一些朋友感到“更心寒、更恐怖了”。然而事实是:AlphaGo并不懂“留面子”,只是它的程序在设计之初,追求的就是胜率而不是胜差,也就是说,不求赢得多,只求赢得稳。从AlphaGo的下法来看,它其实是相当保守的,因为它追求的是立于不败之地,而不是大开大阖地进攻,这意味着,它是在现有规则内计算最优化方法,很多下法也是对人类经验的基础上延伸,但它不会像人类那样打破规则或无中生有地创造――例如发明一种新的棋类游戏。

之所以那么多人对AI感到恐惧,当然不是因为它连胜人类棋手本身,而是因为此事所代表的象征意义:围棋被我们默认为是人类最复杂的棋类游戏,象征着人类智能的某种极限。当1997年“深蓝”在国际象棋比赛中击败人类之际,甚至当十多年后电脑又攻克中国象棋之后,人们仍然乐观地认为,围棋仍将是很多年内无法被攻克的堡垒,保留着人类的尊严。这次在人机配对赛中获胜的连笑在新闻会上承认:“去年我们不是敌视(AlphaGo),而是不知道它的厉害;之前看棋谱,还都觉得应该是李世石赢,但最后才发现它那么厉害。”这也许体现了一种在科技进步中时常出现的情形:人类没能料到人工智能会以指数级速度发展。

其实人类创造的工具在某一项能力方面超过人,这早已不是新鲜事――当然,这就是我们创造它们的目的。人的力气再大,也不可能超过举重机;跑得再快,也超不过汽车;如果数学计算代表着人类的智力,那我们早已输给了任何一部廉价的计算器。所有这些工具的发明,并没有成为人类的掘墓人,倒不如说是把人们从一些繁杂重复的工作中解放出来,使我们可以去从事更具创造性的工作。

AlphaGo之父Demis Hassabis在柯洁惜败之后曾表示:“这绝不是人和电脑之间的对抗,这是人用机器发现新的知识,就像哈勃望远镜,它能带来新的奥秘的发现。”在五名国手联手仍落败之后,AlphaGo团队负责人David Silver也说“今天的问题无关输赢”,他认为这只是为了把人工智能这一工具更好地用于探索各种可能,来服务于人类的福祉。

这并不只是安慰人的官方说辞,因为显而易见的是:投入那么多人力财力去发明这样一台机器,总不会是为了赢世界冠军,那对它没有任何意义。赢棋不是目的,而是手段――只是通过这样一种戏剧性的呈现方式,来让绝大部分对人工智能一无所知的普通人也意识到,原来它已发展到了如此强大的地步。

就此而言,这场人机对决倒不如说是一次大型公关活动,输赢确实不重要――就像1830年美国巴尔的摩举办的火车与赛马的速度比赛,虽然当时火车还跑不过人类骑手驾驭的奔马,但没关系,仅此就足以让人直观地感受到蒸汽机车的潜力,而它要跑得比马快也不过只是个技术升级的时间问题罢了。

对科技的威力感到敬畏,那是人之常情,也不失为一种激发自我潜力的驱动力;然而对之感到末日降临式的恐惧,则恐怕是科幻故事看多了。这或许是出自一种技术邪恶论(“科技的发展往往带来不可预知的灾难性后果”),或是来自一种可以理解的人类中心主义的忧虑(“人工智能会替代人类”),但如果仅仅看到“坏”的一面而去抑制乃至反对科技发展,这是否让我们显得像当年反对火车的人一样愚昧?两百年前,因为被机器夺走工作而愤怒砸毁机器的卢德主义者,早被看作是错误的乌托邦理念,那么如今的新卢德主义是否又在重蹈覆辙?

当然,一个不可避免的问题是:AI和火车是可以类比的挑战吗?跑不过火车不可怕,因为火车始终只是火车;但下棋下不过AI,那就是质的不同了。的确,如果把蒸汽机为代表的发明视为第一次机器革命,而当下的数字化技术和人工智能作为第二次机器革命,那么显然后者对人类的挑战更为深远得多。美国评论家Thomas Friedman在多年前就不无忧虑地说出了许多人的心声:“人类和受软件驱动的机器可能正在日益变成替代关系,而不是互补关系。”

然而,这恐怕不是真的,至少眼下不是。不妨做个简单的假定:如果现在人类消失了,那这些智能的机器能够自动进化并统治这个世界吗?这显然是不可能的。另一个常有的误区是,我们以为围棋代表了人类智慧的巅峰,因而电脑超越是很可怕的事,然而听起来吊诡的一件事是,正像机器人研究专家Hans Moravec所观察到的,“如果让计算机展示成人水平的智力测验或者玩跳棋是一件相对容易的事情,但当涉及知觉和机动性时,即使让计算机完成一岁幼儿的某些技能也是非常困难或者不可能的。”

这就是所谓莫拉维克悖论(Moravec paradox):“人工智能和机器人研究领域与传统重要发现不同:高层次的推理几乎不需要计算,但低层次的感觉运动技能则需要大量的计算。”这就是说,对我们人来说难的问题,对人工智能而言很容易,但对人容易的问题对它却很难。这样说来,如果电脑击败了围棋九段,我们不必惊讶,倒是如果它炒菜胜过了一名普通厨师,我们才应该吃惊它是怎么做到的。

每一次新工具、新机器的发明,在给一部分人造成挑战的同时,最终都变成了社会更进一步发展的驱动力,因为正是有了这种挑战,才使得不断进步成为可能。如果说第一次机器革命的发明大多是人类手臂的延伸,那么当下的智能技术则意味着大脑的延伸和强化;以前它们在力量、速度等方面做得比我们更好,今后,也许它们会在下棋乃至写作、绘画方面都超过人类。

随着科技的发展,超智能机器的出现是不可避免的,一些大胆的预测者甚至早就猜想过这样一个未来。曾获诺贝尔经济学奖的Herbert Simon在1965年就说:“在20年之内,机器将能够做人类所做的所有工作。”他的预言也许只是错在这个时间点上。许多人可能会被技术进步替代下来,然而也正是这样,人类可以获得更充裕的财富和空闲时间去做更有创造性的事,科幻小说家Arthur C. Clarke曾说,“未来的目标是完全失业,那时我们就能够发挥作用了”,他这么说并不是在讽刺。

没有必要去恐慌这样一个未来。我们也许将变得越来越离不开机器,《奇点临近》一书甚至预测“在21世纪行将结束的时候,人类智能中的非生物部分将无限超越人类智能本身”,然而那也意味着我们能借助前所未有的强大工具来探索更多可能。人工智能的发展也将使我们更清楚地意识到“人之所以为人”的那些东西――要电脑模拟人类的理性、计算是容易的,但正如神经专家安东尼・贝尔曾说的,人类的大脑之所以是难以理解、更难以充分模拟其功能,主要问题就在于,大脑设计具有自组织、无秩序、不规则的特性。

正是这些特质,使得人区别于按逻辑运算的机器,也有着有时难以解释的创造力。简言之,人本身就是一个混沌、复杂、无序的现象。据说毕加索曾嘲笑计算是“无用的”,因为“它们只会给你提供答案”。对人类而言,也许越来越重要的是去提出问题,而可以把解答交给电脑。

对人工智能而言最难的,也许就是那些对人而言很重要、却不属于理性算计的东西,诸如爱情、情绪、价值观。AlphaGo之所以那么下棋,只是因为它的主要目的在程序上就被设定为是获胜,但如果把它优先级修改为“赢更多子”,那它就会呈现出完全不同的下法。更重要的是,在棋盘上,每颗子毕竟是等值的,但在人类社会中,却不能说一个人的价值不如两个人,因而就可以牺牲前者。据说人工智能研究的先驱Marvin Minsky和发明文字处理及鼠标的Douglas Engelbart 1950年代曾在麻省理工学院相遇,前者宣称:“我们要给机器赋予智慧,让他们有自我意识!”后者则问:“你要给机器做那么多好事?那你打算给人做点什么呢?”

友情链接