电力电子技术节能范文

时间:2023-10-12 09:24:36

引言:寻求写作上的突破?我们特意为您精选了4篇电力电子技术节能范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

电力电子技术节能

篇1

中图分类号:TM92 文献标识码:A 文章编号:1007-3973(2011)010-042-02

1、引言

电力电子技术是一个新兴的领域,它将电子技术应用到电力领域,将强电和弱电结合控制。从电力电子技术问世至今,在各行各业都有广泛的应用,尤其在工业上发挥着重要的作用。在工业方面,电力电子技术主要应用在电力牵引、电机驱动和先进装备制造业等。在电力电子技术的基础上实现的大功率变流器及其控制系统,大功率高精度可程控交、直流电源系统,高精度数控机床的驱动和控制系统,这些技术不但提高了工业制造精度和效率。更重要的是有效地降低了能耗,实现绿色工业。

2、电力电子技术的发展历史

从1958年美国通用公司研制出世界第一个工业用普通晶闸管开始,电能的变换和控制就开始了从旋转的变流机组和静止的离子变流器进入由功率半导体器件构成的变流器时代。虽然早在20世纪初就已经出现在了可以控制电流的真空管和水银整流器,但电力电子技术真正得到飞速发展并被广泛应用,还是在硅整流器件诞生之后。硅整流器件包括从半控型晶闸管(SCR)到全控型的门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOS.FET)・随着硅整流器件的发展,电力电子器件的控制能力和开关速度得到了提高,而电力电子技术的发展也相应先后经历了整流器时代、逆变器时代和变频器时代。

3、电力电子节能技术的典型应用

3.1变频调速系统 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因数、过流/过压/过载保护等功能。变频器的功能很多,比如其优化电机运行,全世界中用电量有60%左右是通过电动机来消耗的,因此变频器在提高电动机的电能利用率上有很大的作用。根据全球著名变频器生产企业ABB的测算,单单该集团全球范围内已经生产并安装的变频器每年就能够节省1150亿千瓦时电力,相应减少9700万吨二氧化碳排放,这已经超过芬兰一年的二氧化碳排放量。 在一般的工业领域,通常场合下的电机调速均采用电力电子技术与电力传动技术,目前该技术已经比较成熟。在异步电动机运行时,需要同步进行调压和调频使电机在获得良好的运行性能,同时保持控制的灵活性。目前主要通过交-直-交变频调速系统来实现这一目标。包括可控整流调压、方波(六脉波)逆变调频和不控整流器整流、脉宽调制逆变器同时调压调频两种主要结构形式。但一些高压大功率应用(电力牵引,中高压高性能电机驱动等)场合,依然是这一领域的技术制高点,仍在进行不断的研究。 据最新资料统计。在美国大约有8%的发电量消耗与照明负载有关,约50%-60%的发电量用于电动机的驱动。近年来,由于美国应用高度发展的电力电子变频技术对白炽灯和各种电机进行改造,使电能节约15%-25%左右,在日本,由于广泛使用变频技术,使得目前单位国民总值平均能耗居世界最低的情况下,又再把全国发电量的10%节约下来。

3.2高频开关电源技术 电气产品的体积、重量与供电频率的平方根成反比,所以当我们把频率从50Hz提升到200Hz时,用电设备的体积重量大体下降至原来的5%-10%,基于这个原理,对传统行业的电镀、电加工、充电等各种电源进行改造,不仅其主要材料可以节约90%或者更高,还可节电30%或者更多。 目前,高频小型化的开关电源及其技术已成为现代通信供电系统的主流,传统的相控式稳压电源已逐步被高频开关电源所取代,高频开关电源通过MOSFET或IGBT在高频下工作,其开关频率一般在50Hz-100Hz之间,以实现高效率的小型化。

3.3新型静止无功发生器(ASVG) 变压器和交流异步电动机等都属于感性负载,这些设备在运行时不仅消耗有功功率,而且还消耗无功功率。因此无功电源与有功电源一样,是保证电能不可缺少的部分。随着电力电子技术的进一步发展,逐步出现在了应用变流技术进行动态无功补偿的静止补偿器。它是通过将自换相桥梁式电路直接并联到电网上或者通过电抗器并联到电网上。ASVG根据直流侧采用电容和电感两种不同的储能元件,可以分为电压型和电流型两种,图1所示的原理图为电压型补偿器,如果将直流侧的电容器用电抗器代替,交流侧的串联电感用并联电容代替,则为电流型的ASVG。交流侧所接的电感L和电容C的作用分别为阻止高次谐波进入电网和吸收换相时产生的过电压。当逆变器脉冲宽度恒定时,调节逆变器输出电压及系统电压之间的夹角,就可以调节无功功率及逆变器直流侧电容电压Uc,同时调节夹角和逆变器脉宽,既可以保持Uc恒定的情况下,发出或吸改所需的无功功率。

4、我国电力电子技术应用于工业节能情况

我国电力电子行业起步较早,1957年美国发明了晶闸管,1962年我国就研制出自己的晶闸管,电力电子节能技术遍布工业制造、交通运输、电力系统、电子装置等各个领域,包括一大批轧机、无轨电车、电焊机、电镀和电解电源以及风机和水泵等机电设备,由于采用现代电力电子技术进行改造,其效率大大提高。电力电子技术已经渗透到日常生活的各个角落:上班乘坐的交流调速地铁;上下楼用的交流调速电梯;室内用的变频调速空调;照明用的高频振荡荧光灯;计算机用的开关电源和UPS.家用电炊具中的电磁炉等。这些新型设备大大提高了效率,降低了能耗。

5、结论

通过以上分析,可以看出电力电子技术能够实现工业上高效节能的目的,具有非常高的实用性,应用范围也相当广泛,在工业中很多领域已经开始发挥出重要的节能作用。随着电力电子技术的发展,其必将为绿色工业提供更好的指导和更强的动力,为节能减排创造更广阔的发展空间,从而造福全人类。

注释:

①唐政.浅谈电力电子技术发展与应用[J]中国科技博览,2010,30: 635.

②李泽元.21世纪的电力电子技术[J]电信技术.1999,11:1.3.

③林辉.异步电动机的软起动技术[J]I电机技术.2010,3:32-34.

篇2

开关模式电源的主要功率损耗源包括:开关损耗、磁芯损耗、铜损耗、栅极驱动损耗和流经电容ESR的纹波电流。开关频率会对这些损耗产生直接影响。本节说明如何优化开关频率以降低功率损耗,同时保持整体性能不变。

以全桥拓扑结构为例,输出电感的峰峰值电流纹波为

I=(Vin×D×(1-2 D))/(n×Lo×fsw) (1)

式中,Vin是输入电压;D是占空比;n是匝比;Lo是输出电感;fsw是开关频率。

图1举例说明了输出电感电流纹波与输入电压的关系。可以看出,输出电感电流以非线性方式随着输入电压而变化。为了满足输出纹波要求,开关频率应足够高,以使最大输入电压时的I保持在限值以内,但在大多数输入电压情况下,效率无法达到最优水平。

如果我们通过一个算法来使开关频率发生变化,就可以在线路电压较低时降低开关频率。这样,电源既能实现高效率,又能使输出电流纹波保持在可接受的范围内。利用数字电源控制器可以轻松实现这种算法。

自适应死区控制

适当的死区设置对于提高效率十分重要。死区过长,会增大硬开关和体二极管的高导通损耗所引起的功率损耗。死区过短,会增大交叉导通所引起的功率损耗。为了实现高效率,优化死区是必要的。但在不同的工作条件下,死区优化值也不同。例如,在满负载条件与轻负载条件下,或者在高线路电压条件与低线路条件下,死区优化值是不同的。

为了解决这一问题,需要引入自适应死区控制功能。一种简单的解决办法是根据不同的输出电流阈值提供多个死区设置。通过对这些设置进行编程,可以优化不同负载条件下的死区。图2举例说明了如何根据负载电流设置死区。

轻负载模式和深度轻负载模式

为在整个负载范围内实现省电,可以将开关电源设置为不同的工作模式,包括正常模式、轻负载模式和深度轻负载模式。在不同的工作模式下,同步整流器采用不同的工作方案。

当电源在中高负载下工作时,使能正常模式。同步整流器与全桥PwM(脉宽调制)通道互补。当负载降为满负载的20%~30%时,使能轻负载模式。这种模式下,同步整流器仍然有效,但它与全桥PWM通道同相。当负载非常小时,可以使能深度轻负载模式。在这种模式下,同步整流器禁用。

利用负载电流信息,可以为数字电源控制器设置不同的轻负载和深度轻负载阈值。图3显示了正常模式、轻负载模式和深度轻负载模式的工作情况。

切相控制

交错技术可改善电路效率,减小输出电流纹波,提高有效纹波频率,降低输出滤波器电容要求。交错方法还能显著降低输入滤波器电感和电容要求。两相并行工作可降低满负载下的导通损耗,但会提高轻负载下的开关损耗。一相关闭时,导通损耗会提高,但开关损耗会降低,从而在轻负载下获得更高的效率。通过监控输出电流,可以实现对相数的实时优化。用户可以更改切相(phase shedding)的负载电流阂值。

在两相系统中,控制器应能利用交错相位工作,还能平衡电流并增加相位或进行切相。利用数字控制技术,可以在控制器中轻松实现这些功能。图4显示了在轻负载条件下利用切相控制提高效率的实验测试结果。

冷冗余

在空闲模式和其他低功耗条件下,为了提高系统能效并实现省电,需要引入冷冗余模式。在这种模式下,控制电路仅仅激活省电所需的电源模块,其他电源模块关闭,处于待机状态。一旦负载变大,或者在用电源发生故障,就可以激活冗余电源。

篇3

其次,电子技术学生应当进行系统的电子技术理论学习与技能培训,要具备本专业必需的知识与能力结构。为实现上述培养目标,应用电子技术人才培养时应当包含的专业课程包括:工程制图、高频电子线路及电工学、单片机原理及接口技术的应用、自动检测和传感技术、Protel、电子产品的工艺基础和管理、音像设备工程、电视原理和接收与智能仪表技术。在知识结构上,除上述专业课程以外,应当具备一定社会科学的知识与人文知识,如电子工艺与电子产品的检验方面基础知识,电子设备的维修和电子产品的营销管理等方面相关能力知识。而在能力结构上,应当具备电子产品的生产一线相关工艺实施与技术管理等能力。如对于基本电子电路图识图与绘图等能力;电子产品的辅助设计能力;熟练运用电子仪表仪器等能力;电子产品生产设备应用和维护能力;电子产品检验维修等能力;音像工程的设计施工及调试维护能力;电子设备使用与维护等能力。

最后,在素质结构上,电子技术人才应当具备比较高的思想道德素养及唯物主义相关理论知识基础。要有较高的心理素质,勇于克服面临的困难和挑战;要有较好身体素质,以适应艰苦的工作环境需要;还要具备较高的业务素质水平,从而不断创新自身工作能力。

2多能力结构应用电子技术人才培养的具体措施分析

首先,应当改革当前的教学模式和创新当前教学手段。电子技术专业教师在教学的过程中,要充分发挥出学生主体作用,并结合当前电子技术发展的特色开展教学。要避免只是进行课本内容的灌输,应当加入电子发展特色,扩充学生知识面。其次,要加强应用电子技术学生的实践动手能力培养。电子技术的教学,理论教学要和实践教学同时进行。教师在教学时,应当利用课堂的一半时间教授软件工程理论知识,在此基础之上,再安排学生进行上机操作。同时,操作时教师要注意及时纠正学生的操作失误,通过这种方式,将理论和实践有机结合起来,以加强学生实践动手能力。此外,教师还应当定期组织相关实践课,如教师将一些企业开发项目应用于实践课中去,促使学生依据所学理论知识,自主动手进行设计,针对设计中所出现的一些问题,帮助学生自主分析与解决。

最后,教师再对学生所设计的项目进行审定,并提出合理的建议。接着,完善应用电子技术的教材改革。当前电子技术教材都是由国家进行统一制定,而随着当前社会不断发展,一些教材内容已经无法能适应新时展背景,所以,教材改革也是势在必行的。对此,相关部门,应当依据电子行业发展的新形势,把新兴电子技术要素纳入到教材编写中,以丰富电子技术的教材内容。最后,是完善师资建设,多能力结构应用电子技术人才培养的关键,就是要完善师资队伍建设。而只有教学水平高、结构合理与经验丰富师资队伍,才可以规划好应用电子技术人才的培养工作。因此,需要定期对电子技术专业的教师开展能力培活动与职称考核工作,以构建一支教学能力、科研能力及经验丰富都比较强的师资队伍。

篇4

1.电气系统设计的节能控制

1.1配电设计的节能优化设计

电力系统就是为电气系统中所需用电的设备提供一个必要的动力。因此,在配电设计过程中,首先就要考虑电力系统的适用性。对于适用性而言,既要满足用电设备与供电设备的可靠性要求,又要保证电气设备对控制方式的要求,还要保证电力系统高效、稳定、易控、灵活、可靠等特点。

在配电设计过程中,其次要考虑电力系统的安全性。而对于安全性而言,既要保证导线的绝缘性能良好,又要满足各导线之间的绝缘距离,还要保证导线的负荷能力、热稳定和动态稳定的裕度,并做好电气系统的防雷与接地,以确保在电气系统运行过程中用电设备与供电设备的安全。

1.2提高电气系统的运行效率

在电气系统中优先选用节能设备,从设备的选择开始就为电气系统的节能打下坚实的基础。另外,我们还可以利用均衡负荷、补偿无功、降低损耗等方法使电气系统在运行过程中达到节能的目的。如,在配电设计时,合理调整负荷以及合理选择设计系数能够提高电源的综合利用率与设备的运行效率,从而直接或间接地降低电能损耗。2电气系统运行的节能技术

2.1降低线损

电能在传输过程中,由于导线存在电阻,因此会产生有功功率损耗。为了降低线路上的电能损耗,最直接的方法就是尽可能地减小导线的电阻。而导线的电阻与电导率及导线长度成正比,与导线截面积成反比。因此,减小导线的电阻就可以从以下几个方面入手:

2.1.1选用电导率较小的材质做导线。

2.1.2减小导线的长度:一方面,在布线时尽量让导线走直路,避免走弯路、走回头路,从而减小导线的长度;另一方面,尽量将变压器向负荷中心靠近,从而减小供电距离。

2.1.3增大导线的横截面积:在条件允许的情况下,尽量选用横截面积较大的导线,从而减小导线电阻。

2.2无功补偿

在电气系统中,无功功率占供电设备容量的很大一部分,占用了电网资源,增加了能量损耗,降低了线路电压,影响了电能质量和电网运行。而对于用户而言,无功功率的直观表现为功率因数偏低,当功率因数小于0.9时,用户就须向供电部门缴纳一定比率的罚款,因此用户用电的成本将会增加,经济效益就会下降。若我们选用合适的无功补偿设备,就可以实现无功就地平衡,提高功率因数,从而实现节能减耗、提高电能质量、稳定系统电压的目的,并可切实提高经济效益和社会效益。

对电气系统进行无功补偿时,无功补偿设备的选用有以下几点要求:

2.2.1在使用电容器补偿时,电容器容量应该根据负荷容量、三相电压平衡度、目前功率因数、目标功率因数等参数经过计算来确定。若有谐波存在,就要串联一定容量的电抗器,滤除线路上的谐波。

2.2.2为了有效的防止投切振荡、过补偿和无功倒送,在电容器的容量、无功电流、无功功率这些参数中最优的投切物理量参数为无功功率。

2.2.3以前,补偿电容的分组方式和投切方式普遍采用等容量分组方式和循环投切方式。后来,又演变出按比例分配、按编码配置、按级投切等分组或投切方式。但是,这些方式都不能达到我们想要的补偿效果。因此,现在更多采用的是模糊投切方式,其适应面广、跟踪准确、调节平滑、效果显著。在电容器组投切过程中,低压补偿宜采用复合开关作为投切开关,而高压补偿则宜选用真空接触器作为投切开关。

2.3谐波过滤

目前电网中非线性特性的电气设备数量在不断增加,从而产生的谐波电流也越来越多。而这些谐波电流在电网阻抗上产生的电压与基波电压重叠就会引起电压的畸变。基波畸变不仅会严重影响电气设备的运行和寿命,还会造成电气设备的误动作。因此,我们必须消除电网中的谐波。目前消除谐波最有效的方法就是使用有源滤波器。

有源滤波器具有很多的特性,如:反应快,具有优异的动态性能等。有源滤波器可在补偿无功的同时滤除2~60次谐波,可大大提高功率因数和电能质量。采用有源滤波器对谐波进行过滤,可有效防止电气设备误动作和提高电气设备的运行效率,也可使无功补偿达到更好的效果,实现节能的目的。

2.4变压器的选择

在选用变压器时,应该满足以下几点要求:一是应尽量选用非晶合金变压器、立体卷铁芯变压器等节能型变压器,以大大降低变压器本体损耗;二是应尽量采用三相四线制供电模式、单相用电设备应均匀分布在三相电源上,并实施单相自动补偿等手段,有效保持负荷平衡。

2.5其他形式的节能

友情链接