电力电子技术节能范文

时间:2023-10-12 09:24:36

引言:寻求写作上的突破?我们特意为您精选了12篇电力电子技术节能范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

电力电子技术节能

篇1

中图分类号:TM92 文献标识码:A 文章编号:1007-3973(2011)010-042-02

1、引言

电力电子技术是一个新兴的领域,它将电子技术应用到电力领域,将强电和弱电结合控制。从电力电子技术问世至今,在各行各业都有广泛的应用,尤其在工业上发挥着重要的作用。在工业方面,电力电子技术主要应用在电力牵引、电机驱动和先进装备制造业等。在电力电子技术的基础上实现的大功率变流器及其控制系统,大功率高精度可程控交、直流电源系统,高精度数控机床的驱动和控制系统,这些技术不但提高了工业制造精度和效率。更重要的是有效地降低了能耗,实现绿色工业。

2、电力电子技术的发展历史

从1958年美国通用公司研制出世界第一个工业用普通晶闸管开始,电能的变换和控制就开始了从旋转的变流机组和静止的离子变流器进入由功率半导体器件构成的变流器时代。虽然早在20世纪初就已经出现在了可以控制电流的真空管和水银整流器,但电力电子技术真正得到飞速发展并被广泛应用,还是在硅整流器件诞生之后。硅整流器件包括从半控型晶闸管(SCR)到全控型的门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOS.FET)・随着硅整流器件的发展,电力电子器件的控制能力和开关速度得到了提高,而电力电子技术的发展也相应先后经历了整流器时代、逆变器时代和变频器时代。

3、电力电子节能技术的典型应用

3.1变频调速系统 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因数、过流/过压/过载保护等功能。变频器的功能很多,比如其优化电机运行,全世界中用电量有60%左右是通过电动机来消耗的,因此变频器在提高电动机的电能利用率上有很大的作用。根据全球著名变频器生产企业ABB的测算,单单该集团全球范围内已经生产并安装的变频器每年就能够节省1150亿千瓦时电力,相应减少9700万吨二氧化碳排放,这已经超过芬兰一年的二氧化碳排放量。 在一般的工业领域,通常场合下的电机调速均采用电力电子技术与电力传动技术,目前该技术已经比较成熟。在异步电动机运行时,需要同步进行调压和调频使电机在获得良好的运行性能,同时保持控制的灵活性。目前主要通过交-直-交变频调速系统来实现这一目标。包括可控整流调压、方波(六脉波)逆变调频和不控整流器整流、脉宽调制逆变器同时调压调频两种主要结构形式。但一些高压大功率应用(电力牵引,中高压高性能电机驱动等)场合,依然是这一领域的技术制高点,仍在进行不断的研究。 据最新资料统计。在美国大约有8%的发电量消耗与照明负载有关,约50%-60%的发电量用于电动机的驱动。近年来,由于美国应用高度发展的电力电子变频技术对白炽灯和各种电机进行改造,使电能节约15%-25%左右,在日本,由于广泛使用变频技术,使得目前单位国民总值平均能耗居世界最低的情况下,又再把全国发电量的10%节约下来。

3.2高频开关电源技术 电气产品的体积、重量与供电频率的平方根成反比,所以当我们把频率从50Hz提升到200Hz时,用电设备的体积重量大体下降至原来的5%-10%,基于这个原理,对传统行业的电镀、电加工、充电等各种电源进行改造,不仅其主要材料可以节约90%或者更高,还可节电30%或者更多。 目前,高频小型化的开关电源及其技术已成为现代通信供电系统的主流,传统的相控式稳压电源已逐步被高频开关电源所取代,高频开关电源通过MOSFET或IGBT在高频下工作,其开关频率一般在50Hz-100Hz之间,以实现高效率的小型化。

3.3新型静止无功发生器(ASVG) 变压器和交流异步电动机等都属于感性负载,这些设备在运行时不仅消耗有功功率,而且还消耗无功功率。因此无功电源与有功电源一样,是保证电能不可缺少的部分。随着电力电子技术的进一步发展,逐步出现在了应用变流技术进行动态无功补偿的静止补偿器。它是通过将自换相桥梁式电路直接并联到电网上或者通过电抗器并联到电网上。ASVG根据直流侧采用电容和电感两种不同的储能元件,可以分为电压型和电流型两种,图1所示的原理图为电压型补偿器,如果将直流侧的电容器用电抗器代替,交流侧的串联电感用并联电容代替,则为电流型的ASVG。交流侧所接的电感L和电容C的作用分别为阻止高次谐波进入电网和吸收换相时产生的过电压。当逆变器脉冲宽度恒定时,调节逆变器输出电压及系统电压之间的夹角,就可以调节无功功率及逆变器直流侧电容电压Uc,同时调节夹角和逆变器脉宽,既可以保持Uc恒定的情况下,发出或吸改所需的无功功率。

4、我国电力电子技术应用于工业节能情况

我国电力电子行业起步较早,1957年美国发明了晶闸管,1962年我国就研制出自己的晶闸管,电力电子节能技术遍布工业制造、交通运输、电力系统、电子装置等各个领域,包括一大批轧机、无轨电车、电焊机、电镀和电解电源以及风机和水泵等机电设备,由于采用现代电力电子技术进行改造,其效率大大提高。电力电子技术已经渗透到日常生活的各个角落:上班乘坐的交流调速地铁;上下楼用的交流调速电梯;室内用的变频调速空调;照明用的高频振荡荧光灯;计算机用的开关电源和UPS.家用电炊具中的电磁炉等。这些新型设备大大提高了效率,降低了能耗。

5、结论

通过以上分析,可以看出电力电子技术能够实现工业上高效节能的目的,具有非常高的实用性,应用范围也相当广泛,在工业中很多领域已经开始发挥出重要的节能作用。随着电力电子技术的发展,其必将为绿色工业提供更好的指导和更强的动力,为节能减排创造更广阔的发展空间,从而造福全人类。

注释:

①唐政.浅谈电力电子技术发展与应用[J]中国科技博览,2010,30: 635.

②李泽元.21世纪的电力电子技术[J]电信技术.1999,11:1.3.

③林辉.异步电动机的软起动技术[J]I电机技术.2010,3:32-34.

篇2

开关模式电源的主要功率损耗源包括:开关损耗、磁芯损耗、铜损耗、栅极驱动损耗和流经电容ESR的纹波电流。开关频率会对这些损耗产生直接影响。本节说明如何优化开关频率以降低功率损耗,同时保持整体性能不变。

以全桥拓扑结构为例,输出电感的峰峰值电流纹波为

I=(Vin×D×(1-2 D))/(n×Lo×fsw) (1)

式中,Vin是输入电压;D是占空比;n是匝比;Lo是输出电感;fsw是开关频率。

图1举例说明了输出电感电流纹波与输入电压的关系。可以看出,输出电感电流以非线性方式随着输入电压而变化。为了满足输出纹波要求,开关频率应足够高,以使最大输入电压时的I保持在限值以内,但在大多数输入电压情况下,效率无法达到最优水平。

如果我们通过一个算法来使开关频率发生变化,就可以在线路电压较低时降低开关频率。这样,电源既能实现高效率,又能使输出电流纹波保持在可接受的范围内。利用数字电源控制器可以轻松实现这种算法。

自适应死区控制

适当的死区设置对于提高效率十分重要。死区过长,会增大硬开关和体二极管的高导通损耗所引起的功率损耗。死区过短,会增大交叉导通所引起的功率损耗。为了实现高效率,优化死区是必要的。但在不同的工作条件下,死区优化值也不同。例如,在满负载条件与轻负载条件下,或者在高线路电压条件与低线路条件下,死区优化值是不同的。

为了解决这一问题,需要引入自适应死区控制功能。一种简单的解决办法是根据不同的输出电流阈值提供多个死区设置。通过对这些设置进行编程,可以优化不同负载条件下的死区。图2举例说明了如何根据负载电流设置死区。

轻负载模式和深度轻负载模式

为在整个负载范围内实现省电,可以将开关电源设置为不同的工作模式,包括正常模式、轻负载模式和深度轻负载模式。在不同的工作模式下,同步整流器采用不同的工作方案。

当电源在中高负载下工作时,使能正常模式。同步整流器与全桥PwM(脉宽调制)通道互补。当负载降为满负载的20%~30%时,使能轻负载模式。这种模式下,同步整流器仍然有效,但它与全桥PWM通道同相。当负载非常小时,可以使能深度轻负载模式。在这种模式下,同步整流器禁用。

利用负载电流信息,可以为数字电源控制器设置不同的轻负载和深度轻负载阈值。图3显示了正常模式、轻负载模式和深度轻负载模式的工作情况。

切相控制

交错技术可改善电路效率,减小输出电流纹波,提高有效纹波频率,降低输出滤波器电容要求。交错方法还能显著降低输入滤波器电感和电容要求。两相并行工作可降低满负载下的导通损耗,但会提高轻负载下的开关损耗。一相关闭时,导通损耗会提高,但开关损耗会降低,从而在轻负载下获得更高的效率。通过监控输出电流,可以实现对相数的实时优化。用户可以更改切相(phase shedding)的负载电流阂值。

在两相系统中,控制器应能利用交错相位工作,还能平衡电流并增加相位或进行切相。利用数字控制技术,可以在控制器中轻松实现这些功能。图4显示了在轻负载条件下利用切相控制提高效率的实验测试结果。

冷冗余

在空闲模式和其他低功耗条件下,为了提高系统能效并实现省电,需要引入冷冗余模式。在这种模式下,控制电路仅仅激活省电所需的电源模块,其他电源模块关闭,处于待机状态。一旦负载变大,或者在用电源发生故障,就可以激活冗余电源。

篇3

其次,电子技术学生应当进行系统的电子技术理论学习与技能培训,要具备本专业必需的知识与能力结构。为实现上述培养目标,应用电子技术人才培养时应当包含的专业课程包括:工程制图、高频电子线路及电工学、单片机原理及接口技术的应用、自动检测和传感技术、Protel、电子产品的工艺基础和管理、音像设备工程、电视原理和接收与智能仪表技术。在知识结构上,除上述专业课程以外,应当具备一定社会科学的知识与人文知识,如电子工艺与电子产品的检验方面基础知识,电子设备的维修和电子产品的营销管理等方面相关能力知识。而在能力结构上,应当具备电子产品的生产一线相关工艺实施与技术管理等能力。如对于基本电子电路图识图与绘图等能力;电子产品的辅助设计能力;熟练运用电子仪表仪器等能力;电子产品生产设备应用和维护能力;电子产品检验维修等能力;音像工程的设计施工及调试维护能力;电子设备使用与维护等能力。

最后,在素质结构上,电子技术人才应当具备比较高的思想道德素养及唯物主义相关理论知识基础。要有较高的心理素质,勇于克服面临的困难和挑战;要有较好身体素质,以适应艰苦的工作环境需要;还要具备较高的业务素质水平,从而不断创新自身工作能力。

2多能力结构应用电子技术人才培养的具体措施分析

首先,应当改革当前的教学模式和创新当前教学手段。电子技术专业教师在教学的过程中,要充分发挥出学生主体作用,并结合当前电子技术发展的特色开展教学。要避免只是进行课本内容的灌输,应当加入电子发展特色,扩充学生知识面。其次,要加强应用电子技术学生的实践动手能力培养。电子技术的教学,理论教学要和实践教学同时进行。教师在教学时,应当利用课堂的一半时间教授软件工程理论知识,在此基础之上,再安排学生进行上机操作。同时,操作时教师要注意及时纠正学生的操作失误,通过这种方式,将理论和实践有机结合起来,以加强学生实践动手能力。此外,教师还应当定期组织相关实践课,如教师将一些企业开发项目应用于实践课中去,促使学生依据所学理论知识,自主动手进行设计,针对设计中所出现的一些问题,帮助学生自主分析与解决。

最后,教师再对学生所设计的项目进行审定,并提出合理的建议。接着,完善应用电子技术的教材改革。当前电子技术教材都是由国家进行统一制定,而随着当前社会不断发展,一些教材内容已经无法能适应新时展背景,所以,教材改革也是势在必行的。对此,相关部门,应当依据电子行业发展的新形势,把新兴电子技术要素纳入到教材编写中,以丰富电子技术的教材内容。最后,是完善师资建设,多能力结构应用电子技术人才培养的关键,就是要完善师资队伍建设。而只有教学水平高、结构合理与经验丰富师资队伍,才可以规划好应用电子技术人才的培养工作。因此,需要定期对电子技术专业的教师开展能力培活动与职称考核工作,以构建一支教学能力、科研能力及经验丰富都比较强的师资队伍。

篇4

1.电气系统设计的节能控制

1.1配电设计的节能优化设计

电力系统就是为电气系统中所需用电的设备提供一个必要的动力。因此,在配电设计过程中,首先就要考虑电力系统的适用性。对于适用性而言,既要满足用电设备与供电设备的可靠性要求,又要保证电气设备对控制方式的要求,还要保证电力系统高效、稳定、易控、灵活、可靠等特点。

在配电设计过程中,其次要考虑电力系统的安全性。而对于安全性而言,既要保证导线的绝缘性能良好,又要满足各导线之间的绝缘距离,还要保证导线的负荷能力、热稳定和动态稳定的裕度,并做好电气系统的防雷与接地,以确保在电气系统运行过程中用电设备与供电设备的安全。

1.2提高电气系统的运行效率

在电气系统中优先选用节能设备,从设备的选择开始就为电气系统的节能打下坚实的基础。另外,我们还可以利用均衡负荷、补偿无功、降低损耗等方法使电气系统在运行过程中达到节能的目的。如,在配电设计时,合理调整负荷以及合理选择设计系数能够提高电源的综合利用率与设备的运行效率,从而直接或间接地降低电能损耗。2电气系统运行的节能技术

2.1降低线损

电能在传输过程中,由于导线存在电阻,因此会产生有功功率损耗。为了降低线路上的电能损耗,最直接的方法就是尽可能地减小导线的电阻。而导线的电阻与电导率及导线长度成正比,与导线截面积成反比。因此,减小导线的电阻就可以从以下几个方面入手:

2.1.1选用电导率较小的材质做导线。

2.1.2减小导线的长度:一方面,在布线时尽量让导线走直路,避免走弯路、走回头路,从而减小导线的长度;另一方面,尽量将变压器向负荷中心靠近,从而减小供电距离。

2.1.3增大导线的横截面积:在条件允许的情况下,尽量选用横截面积较大的导线,从而减小导线电阻。

2.2无功补偿

在电气系统中,无功功率占供电设备容量的很大一部分,占用了电网资源,增加了能量损耗,降低了线路电压,影响了电能质量和电网运行。而对于用户而言,无功功率的直观表现为功率因数偏低,当功率因数小于0.9时,用户就须向供电部门缴纳一定比率的罚款,因此用户用电的成本将会增加,经济效益就会下降。若我们选用合适的无功补偿设备,就可以实现无功就地平衡,提高功率因数,从而实现节能减耗、提高电能质量、稳定系统电压的目的,并可切实提高经济效益和社会效益。

对电气系统进行无功补偿时,无功补偿设备的选用有以下几点要求:

2.2.1在使用电容器补偿时,电容器容量应该根据负荷容量、三相电压平衡度、目前功率因数、目标功率因数等参数经过计算来确定。若有谐波存在,就要串联一定容量的电抗器,滤除线路上的谐波。

2.2.2为了有效的防止投切振荡、过补偿和无功倒送,在电容器的容量、无功电流、无功功率这些参数中最优的投切物理量参数为无功功率。

2.2.3以前,补偿电容的分组方式和投切方式普遍采用等容量分组方式和循环投切方式。后来,又演变出按比例分配、按编码配置、按级投切等分组或投切方式。但是,这些方式都不能达到我们想要的补偿效果。因此,现在更多采用的是模糊投切方式,其适应面广、跟踪准确、调节平滑、效果显著。在电容器组投切过程中,低压补偿宜采用复合开关作为投切开关,而高压补偿则宜选用真空接触器作为投切开关。

2.3谐波过滤

目前电网中非线性特性的电气设备数量在不断增加,从而产生的谐波电流也越来越多。而这些谐波电流在电网阻抗上产生的电压与基波电压重叠就会引起电压的畸变。基波畸变不仅会严重影响电气设备的运行和寿命,还会造成电气设备的误动作。因此,我们必须消除电网中的谐波。目前消除谐波最有效的方法就是使用有源滤波器。

有源滤波器具有很多的特性,如:反应快,具有优异的动态性能等。有源滤波器可在补偿无功的同时滤除2~60次谐波,可大大提高功率因数和电能质量。采用有源滤波器对谐波进行过滤,可有效防止电气设备误动作和提高电气设备的运行效率,也可使无功补偿达到更好的效果,实现节能的目的。

2.4变压器的选择

在选用变压器时,应该满足以下几点要求:一是应尽量选用非晶合金变压器、立体卷铁芯变压器等节能型变压器,以大大降低变压器本体损耗;二是应尽量采用三相四线制供电模式、单相用电设备应均匀分布在三相电源上,并实施单相自动补偿等手段,有效保持负荷平衡。

2.5其他形式的节能

篇5

Effect of Electroacupuncture on Metabolism of Mitochondrial Free Radicals and Mitochondrial Function in Kidney in Rats of Full Swimming

Luo Lei1,Xu Xiaojin2(1.Infirmary of Henan Provinces Physical Training Team,Zhengzhou 450003;2.Department of Acupuncture and Massage,Henan College of TCM)

[Abstract] Purpose To study further antihyperoxidation and antiageing action of electroacupuncture and preliminarily approach to the machanism of Shenshu(BL 23) in balancing Yin and Yang,supplementing vital essence and tonifying kiidney. Methods Changes of metabolism of mitochondrial free radicals and mitochondial function in kidney were investigated at different times after full swimming and electroacupuncture.Results MDA,GSH,NADH,free Ca2+,THG,GSHPx at 0 and 4 hours after swimmimg had changes in varying degrees;the swimming time in the electroacupuncture group was significantly longer than that in the nonelectroacupuncture group.Conclusion Full swimming can induce a series of hyperoxidation,and production,accumalation and abnormal metabolism of a great number of free radicals in rats;Electroacupuncture at Shenshu can obviously increase the ability of antihyperoxidation,effectively clearing free radicals and increasing motor ability,which reveal preliminarily the mechanism of Shenshu in balancing Yin and Yang,supplementing vital essence and tonifying kidney.

[Keywords]Electroacupuncture;Mitochondria/acup eff;Free Radicals/metab;Swimming

越来越多的研究证实,化学性质极为活泼的自由基可引发机体过氧化反应,导致生物膜损伤、生物分子交联等一系列生理、生化紊乱[1]。人体运动实验显示,长时间有氧运动至力竭可使机体自由基增加,消除能力下降,以致自由基积累,产生疲劳[2]。关于自由基的危害,有研究表明,大鼠长时间大强度运动训练后线粒体膜流动性下降,刚性增加,这是自由基对膜脂质双分子层结构攻击所致[3]。有报道称针刺对中风、脑瘫等患者体内脂质过氧化水平具有一定的良性影响[4]。传统中医认为刺激肾俞可平衡阴阳,益精补肾,这种作用是否有助于肾脏中运动性内源自由基的清除,以及是否有利于肾脏线粒体功能的稳定,从而防治疲劳,提高机体活力,此作用机制的探讨正是本实验目的所在。

1 材料与方法

1.1 材料与分组

(1)选用SD雄性大鼠60只,体重230~280 g,购入后按体重大小随机分为7组,即:安静对照组(A)、力竭游泳结束后即刻组(B)、电针力竭游泳后即刻组(BA)、力竭游泳结束后4 h末组(C)、电针力竭游泳后4 h末组(CA)和耐力测试组(D) ,电针耐力测试组(DA)。除D、DA中每组5只大鼠外,其他各组中大鼠数量均为10只。

(2)每5只大鼠饲养于同一笼中,给以国家标准啮类动物饲料自由饮食,光照时间8:00~19:00,环境温度约12~16 ℃,相对湿度45%~60%。实验前常规饲养22天,以便适应和电针处理。

1.2 实验方法

(1)BA、CA、DA各组大鼠在力竭游泳实验前每日电针双侧“肾俞”穴1次,每次20 min,10次为一疗程,休息2天后再行下一疗程,电针治疗共2疗程。电针采用疏密波(4~20 Hz),刺激强度3 mA。A、B、C、D四组大鼠常规饲养,不施以电针等刺激。

(2)第23天,除A组外的大鼠依次在长120 cm、宽60 cm、高50 cm的玻璃水槽中游泳,水深约40 cm,水温约30 ℃左右。力竭标准定为:连续无负重游泳140 min,若中途力竭,沉入水下达6 s者,捞出水面休息1~2 min,继续游泳至140 min。耐力测试的时间一般长于150 min,连续2次力竭下沉。

(3)分别于力竭游泳后即刻和4 h后经乙醚麻醉处死大鼠(B、BA、C、CA组)。迅速打开腹腔,取出肾脏并置于生理盐水中洗净血液,再用滤纸吸干、称重。以磷酸盐缓冲液(pH 7.2)低温匀浆,用差速离心法离心,制得肾脏线粒体悬浮液。操作面温度0~4℃。

1.3 检测项目与方法

(1)肾脏线粒体丙二醛(MDA)的测定采用硫代巴比妥酸(TBA)反应法,TBA为上海试剂二厂产品,TEP为Sigma产品。

(2)线粒体还原型谷胱甘肽(GSH)含量测定用OPT作荧光指示剂,荧光法检测[5]。OPT由中科院有机所提供。谷胱甘肽过氧化物酶(GSHPx)活性测定采用DTB直接法[6]。

(3)巯基(THG)含量测定采用Ellman的DTNB反应法[7]。

(4)还原型辅酶Ⅰ(NADH)荧光值测定采用直接荧光法,与Rodamine B荧光值之比计量。

(5)线粒体内游离Ca2+测定用Fura2AM作荧光探针,根据Mccormark等的方法[8],用日本岛津荧光光度计进行检测,340 nm、380 nm双波激发,505 nm发射。

线粒体蛋白定量用考马氏亮蓝法,为简便起见,以下各指标单位均为蛋白定量后的每mg蛋白含量。各指标数据均用平均值±标准差(±s)表示,两两均数比较采用t检验。

2 实验结果

各项实验指标测定结果如表1和表2

由表1可知,力竭游泳140 min后,B组、BA组、C组MDA含量较运动前(A组)显著升高(P分别

GSH含量,B、C组持续下降(P

力竭游泳后,线粒体内巯基含量下降特点同MDA巯基对于维护线粒体膜的完整性有重要意义。

线粒体内NADH荧光值运动后即刻下降显著(P

线粒体内游离Ca2+浓度运动后即刻下降极显著(P

3 讨论

脂质过氧化物丙二醛(MDA),可作为评价自由基生成及对膜脂质双分子层破坏的指标。本实验结果表明,大鼠力竭游泳后肾脏线粒体MDA含量显著增加,说明力竭时自由基大量积累。另外对抗自由基生成的GSH含量也持续显著下降。GSH的抗过氧化作用与GSHPx活性密切相关。GSHPx是一种含硒的过氧化物酶,它可催化H2O2与GSH反应,生成氧化型谷胱甘肽,从而分解H2O2,防止产生毒性很强的羟自由基。其活性相对于自由基的生成有一定的滞后性,故力竭运动后GSHPx呈现先下降后缓慢回升,数小时后反馈激增的趋势。GSH一直处于被消耗状态,其含量持续下降。中医传统观点认为,肾俞可平衡阴阳,益精补肾。实验发现电针刺激“肾俞”后机体抗过氧化系统能力得以加强,自由基生成减缓,故自由基的积累及其危害减弱。提示电针有利于机体自由基生成与消除之间尽快达到平衡,避免较大生理危害的发生,这是电针肾俞平衡阴阳的可能机制之一。益精补肾作用的机制可能是促使机体在应激状态下迅速有效地产生GSHPx等抗自由基物质,保护肾脏线粒体功能,阻断一系列机体过氧化反应所致的紊乱。

衡量线粒体膜完整性的直接指标常为其表面的巯基含量。当巯基被自由基氧化。含量下降时可导致膜的完整性破坏,Ca2+外流,以致实验所测线粒体内游离Ca2+浓度急速下降。电针组(BA、CA组)Ca2+浓度因电针刺激加强了机体抗过氧化能力,减少了自由基的生成积累,使线粒体膜得到了一定的保护,Ca2+外流被抑制而显著高于未电针组(B、C组)。实验还发现,电针可减缓力竭运动对NADH的消耗。NADH是线粒体内最直接的质子供体,巯基要保持其还原状态,必须有充分的质子供应。这是电针作用保护线粒体膜完整性的又一可能机制。

线粒体内Ca2+浓度下降,可使线粒体内NADH含量下降,还原当量水平降低。这是因为线粒体内NADH主要来源于底物的氧化脱氢反应,比如谷氨酸、异柠檬酸、丙酮酸、α酮戊二酸等在脱氢酸作用下,脱下的氢为NAD+所接受,生成NADH。有3种重要的脱氢酶:丙酮酸脱氢酶(PDH)、NAD+异柠檬酸脱氢酶(NAD+ICDH)和α酮戊二酸脱氢酶(OGDH)可被Ca2+激活。此3种酶统称为Ca2+敏感脱氢酶。Ca2+浓度下降,Ca2+敏感脱氢酶含量也下降,必然导致NADH的减少。所以Ca2+可通过对线粒体内重要脱氢酶的作用来调节线粒体的氧化代谢,而且此调节无需ADP/ATP比值的变化。Korestsky等[10]的实验表明:线粒体内还原当量NAD(P)H是调节线粒体氧化代谢的重要环节。当线粒体外ADP保持恒定,NADH荧光值升高时,耗氧量也明显升高,氧化代谢能力增强,二者呈线型关系。电针可有效抑制Ca2+外流,NADH荧光值下降。线粒体内较高的游离Ca2+通过对敏感脱氢酶的激活,可使NADH含量有效上升,还原当量水平提高,ATP合成率、氧化代谢能力增加。大鼠(电针组)耐力游泳时间亦加长。

4 结论

本实验发现,电针双侧“肾俞”,大鼠肾脏线粒体自由基病理变化减轻,运动能力加强,疲劳延缓。这可能与电针可对自由基的生成、积累产生抑制,加强抗过氧化能力,保护巯基免受自由基攻击,有效抑制线粒体内游离Ca2+外流,提高线粒体氧化代谢能力有关。这也可能是刺激“肾俞”产生平衡阴阳、益精补肾的作用机制之一。

5 参考文献

1 冯伟权,等.运动生化原理.北京:北京体育大学出版社,1995:285

2 陈吉棣,等.一次急性有氧或无氧运动对人体内自由基生成和消除的影响.中国运动医学杂志,1994;10(1):20

3 张宜龙,等.牛磺酸对长期大强度运动训练后大鼠自由基代谢、膜流动性的影响.中国运动医学杂志,1999;18(3):248

4 赖新生,等.三针疗法.广州:广州科学技术出版社,1998:210

5 张哲,等.组织中氧化型和还原型谷胱甘肽荧光测定法.生物化学和生物物理进展,1993;20(2):136

6 Elstner E.F,et al.ThinCheromatography of Lipid.Methods of Enzymology,1991;Vol 14:572

7 Ellman GL,et al.Tissue Sulfhydryl Groups.Archives of Biochom and Biophy,1959;82:70

8 Mccormark J G,et al.Studies on Mitochondrial Ca2+-Transport and Matrix Ca2+ Using Fura-2-Loaded Rat Heart Mitochondria.Biochom Biophys Acta,1989;973:420

篇6

2电力电子技术的实际应用

现阶段,很多的行业与领域都涉及到了电力电子技术的应用。全球范围内的经济模式都逐渐走向信息化发展方向,这就需要对传统的产业模式进行改革,转变为依靠高新技术的经济发展模式,而电力电子技术在经济模式转变过程中是重要的技术保障。电力电子技术在不断的应用的过程中,也在不断的得到完善与发展,很多高性能、多功能的元件被不断的开发并使用到电力变流设备运行中来。高性能元件的发展与使用,很大程度上推动了电力电子技术的进步,同时也推进了半导体器件、集成电路、自动化技术以及信息技术等领域的发展。所以,电力电子技术在实际应用中展示出了越来越多的优势,并逐渐的被广泛推广。

1)电力电子技术在交通设施中的应用。电力电子技术随着自身不断的改革与进步,其应用范围也越来越广,而电力电子技术在交通运输中的应用尤为广泛。例如铁道运输中的电气机车,其分为直流机车与交流机车两种,这两种机车就是分别对整流以及变频装置的实际使用。此外,最新开发的磁悬浮列车,电力电子技术在其中起着重要的作用,很多的设备以及元件都需要借助电力电子技术才可以进行正常运转。例如,在磁悬浮列车的牵引机传动过程中以及辅助电源运行过程中,都需要利用到电力电子技术。目前所研发的绿色节能汽车,就是依靠电力作为汽车运行的动力。而电力在通过电机转化为动力的过程中,也需要电子装置将电力转换处理,才可以达到有效控制驱动的效果。船舶以及飞机等交通工具其电源在使用过程中差异也非常大,也需要采用电力电子技术进行控制与改进。

2)电力电子技术在家电中的应用。越来越多的家用电器开始应用电力电子技术,以更加方便的为人们的生活服务,提高人们生活的质量。例如,日常中经常用到的洗衣机,通过应用电力电子技术就能够实现洗衣过程的自动化控制,减少了人力工作,我们仅仅把衣服放置到洗衣机中,通过给定制定的操作,就可以借助电力电子技术的功能实现我们想要的目的。才出现时间不长的洗碗机,其工作原理与洗衣机相似,都是通过电力电子技术来完成的。空调也逐渐的向变频节能的功能转变,利用电力电子技术的变频功能,可以为我们降低近1/3的电能消耗,不仅节省了日常开销,也在很大程度上节约了资源与能源的消耗。电频荧光照明灯泡同样要比白炽灯泡拥有更好的节能性能,其中也是电力电子技术所应用的效果。

3)电力电子技术在工业节能中的应用。随着我国的社会经济不断发展,工业对于能源以及资源的消耗也在逐渐的增加,特别是对于电力能源的消耗数量尤为高。由于电力能源具有性能稳定、利用率相对较高的特点,工业生产中大多都采用电力作为能源的主要来源,使得电力的消耗随着经济的不断发展而大幅增加。就目前工业发展的大体状况上来说,其用电过程中依然出现较多不科学现象,特别是工业用电效率普遍偏低,使得电力能源大量的浪费。随着我国可持续发展战略的不断深化与改革,电力能源的节约使用已成为一个重大的社会问题,而电力电子技术可以在很大程度上降低对于电力能源的消耗。很多的企业开始逐渐使用电力电子节能设备,使得设备的运行更加优化,极大提升了电力能源的使用效率。

4)电力电子技术在发电站的应用。世界能源的短缺促使了人们加快开发新能源的步伐,我国也逐渐的重视风力发电以及水力发电的工程建设,在这些电力设施建设与运行的过程中,发电机电流频率的转换是非常关键与重要的技术。对于水力发电来说,发电的功率大小跟水压头的大小以及水流量的大小有直接关系,也在很大程度上影响着发电机组的转速改变,为了获得发电机组的最佳运转功率,就要借助电力电子技术来改变电流的频率,以达到改变发电机组转速的目的。

篇7

中图分类号:G718文献标识码:B文章编号:1672-1578(2013)10-0002-01

1.电力电子技术的发展

1.1电力电子技术的发展阶段。电力电子器件的发展分为两个阶段,一是传统电力电子器件,它是以电力二极管和晶闸管(SCR)为代表的第一代电力电子器件,自 1957 年生产第一只晶闸管以来,它以其体积小、功率低等优势首先在大功率整流电路中迅速取代了老式的汞弧整流器,并衍生出快速晶闸管、逆导晶闸管、双向晶闸管、不对称晶闸管等多种品种。它立足于分立元件结构,工作频率难以提高,大大限制了它的应用范围,但是因为它价格低廉,所以在大电流、高电压的发展空间依旧很多,目前以晶闸管为核心的设备在许多场合仍然被广泛使用。二是现代电力电子器件,它是将微电子技术和电力电子技术相结合,研制出的一种全新的高频、全控型器件。现代电力电子器件的主要产品有功率晶闸管、可关断晶闸管、功率场控晶体管、绝缘栅双极晶体管、MOS 门极晶闸管等。这些产品当中,由于绝缘栅双极晶体管和 MOS 门极晶闸管两个为场控复合器件,所以也成为了最有发展前途的两种[2]。

1.2电力电子技术的发展方向。未来电力电子器件可能在以下几个方面发展 :(1)大容量化。利用微电子技术,提高单个器件的电压、电流容量,从而达到满足高压大电流的需要 ;(2)易驱动。由电流驱动发展为电压驱动,大力发展复合器件,还可专门研制专用集成模块,以便更适合中小功率的控制 ;(3)模块化。采用新技术和新工艺,将几个电力电子器件集中到一起,不仅缩小其体积减少连线,同时还可减低企业的生产成本 ;(4)功率集成化。充分利用集成电路工艺,将集成电路的功能与电力电子器件集成于一块芯片,实现集成电路功率化和功率器件集成化,并逐步向智能化方向发展 ;(5)降低导通压降。研制出比二极管压降还低的器件来提高交流效率、节省电能。

2.电力电子技术的应用

2.1工业领域中的应用。工业领域中,交直流电动机的应用十分普遍,如大型鼓风机、数控机床伺服电机等。当前,在大量冶金工业中,电力电子技术也被广泛应用于直流电弧炉电源、淬火电源、中高频感应加热电源中。同时,在水电厂的蓄能机组中,应用现代电力电子技术科对大型机组工作状态、调速作出改变。此外,工业领域的有很多高温场合,而在高温环境下,电力电子装置的应用有着十分严格的散热要求。然而随着电力电子器件频率不断提高、容量不断增加,器件发热问题就凸显出来,尤其是在一些高温应用场合,如散热措施不适当,就很有可能造成器件温度超过所允许的最高温[1]。结合高工作温度、大容量的应用场合,提出了液态冷却,其相比于气体冷却和油冷,可提高两个数量级的导热系数。通过实践表明,该水冷装置的故障率很低,且具有体积小、冷却效率高、无污染等显著优势。可以说,该装置在工业领域的应用推广,为电力电子技术的应用提供了基础保障,从而使器件潜力得到充分发挥。

2.2电力电子技术在电力系统中的应用。电力电子技术在电力系统通向现代化进程的道路上有着不可磨灭的功劳,我们都知道,在高电压输电的工程中,由电厂发出电之后,把电流通过变压器进行变电之后再输送,这样做的目的是因为在电流一定的情况下,电压越高电流也就越小,在输送的过程中损耗也就越小,可以节省大量的电流,因为电力电子技术的变流特性,尤其是在特高压的输送技术发展中,利用电力电子技术,将直流输送电端的整流和受端电流都应用了晶闸管变流装置,这就在一定程度上解决了长距离、大容量的输送电流导致的电流损耗过大的问题,这一举措为中国的电力行业做出了极大的贡献,使中国电力系统迈出了至关重要的一步。同时在同步发电机励磁系统和交流电动机的变频调速以及新能源发电和智能电网的应用等方面也得到了广泛应用。

2.3电气节能的应用。节能已经成为了当前社会发展的必然趋势,因为电在人们日常生活中的重要作用,因此电气节能也就显得尤为重要。电气节能目前主要包括变频节能、电能质量控制、有源滤波等三个方面,在当前阶段,变频节能在这三个方面中又是重要的一点,人们所熟知的变频冰箱、变频空调等,它们已经开始为人们的生活提供服务。在未来的发展时期中,电机变频调速行业还要进行快速的发展,这主要是因为它的以下三个重要发展因素 :一是因为变频器产品越来越成熟,而且应用广泛,现代电器产品都开始进入变频时代,又由于它的技术越来越新,企业投资产品的成本也越来越低,这就更为变频器产品的发展和应用提供了绝好的机会。二是因为变频调速节能非常明显的效果,为社会提供了广泛的效益,也为企业提供了较高的利益,所以越来越多的企业对变频调速节能产生了兴趣。三是国家也开始在这方面出台一些措施,对重点耗能企业进行严格控制,鼓励督促他们发展电气节能,不仅可以降低企业能源的消耗,同时也减少了资源浪费,为社会创造了巨大财富。

2.4交通运输中的应用。电力电子技术在电气化铁道中有着广泛应用,整流装置被应用于直流机车中,交流机中应用变频装置。同时,铁道车辆中,直流斩波器的应用也十分广泛,在磁悬浮列车的未来发展中,电力电子技术扮演者重要角色。除电机的牵引转动外,各种车辆辅助电源同电力电子技术也密不可分,电动汽车电机的驱动与交换就是凭借电力电子装置来实现的,且在蓄电池充电过程,也需要电力电子装置的参与来完成。船舶、飞机均需要很多电源,且有着不同要求,故它们同电力电子技术难以分割。而如果将电梯也视作交通运输的话,且也需要电力电子技术的参与,以往,直流调速系统在电梯中普遍应用,而近年来,电梯中应用方式也主要集中在交流变频调速[3]。

2.5电力电子技术在家用电器中的应用。电力电子技术在家用电器中的应用我们都深有感触,如日常生活中应用到的"节能灯",就是电力电子技术发展的直接产物,它以其体积小、发光率高等的绝对优势已经取代传统的白炽灯和日光灯。同时变频空调、变频冰箱、电视机、音响设备、计算机等电子设备也是利用电力电子产品,它们已经进入到了我们的日常生活中,并为我们生活质量的提高做出了巨大的贡献。

3.总结

电力电子器件从开始的单一功率整流管与晶闸管发展到现今的现代电力电子器件,尤其是绝缘栅双极晶体管(IGBI)与 MOS 门极晶闸管(MCT)的出现,摆脱了传统电力电子器件的一些弊端,使电力电子技术进入了一个全新的发展时代,在未来的发展过程中,人们对电子产品要求越来越高的明天,电力电子器件还会得到进一步的发展,电力电子技术也将会给人们的生活带来越来越无法想象的精彩。且我们有理由相信,在不远的将来,电力电子技术必将取得更好地发展和应用,促使电源技术更加实用、经济、成熟,从而实现高品质、高效率的用电。

参考文献

篇8

电力电子技术涵括了很多的科学技术,包括计算机、自动化、半导体技术等等,同时其应用面极广,尤其是计算机控制系统以及自动化控制技术的发展更为成熟。电力电子技术的应用面不断过大,渗入到不同的行业当中并且使自身的功能价值得到了体现。下文就电力电子技术在配电系统的应用进行详细研讨。

1 电力电子技术的概念以及特点

当前的电力电子技术具有全控化、集成化、高频化以及高效率化。全控化是指自动关断设备取代了半空型普通晶闸管,从而避免了传统电子设备中的换相电路等;集成化是指全控型器件经由单元件并联,形成了一个基片当中;高频化是指利用高频度提高系统的运行效率。比如GTR、IGBT、MOSFET能够分别在低频、高频、超高频的环境中运行;高效率化是指器件以及变换技术两方面的高效率,当器件的导通压降下降时,导通损耗也会相应变小,器件开关上下变化频率增快,同样是开关耗损降低。在软开关中加入软开关技术,能够进一步提高运行效率。电力电子技术属于较为新兴的科学技术,但是已经被广泛应用在电力行业里,能够实现对电能的有效控制以及提高电力系统的运行效率。电力电子技术从功能角度可以分为变流技术以及电力电子器件制造技术,由于其具有众多优势,并且应用面不断扩大,所以电力电子技术的相关知识以及成为了电气工程以及自动化专业重点学习的理论知识。

2 电力电子技术以及配电自动化的发展现状

电力电子技术是在半导体的基础上逐渐发展出来,其为强弱电的连接搭建了一个平台。经过长期的发展,电力电子技术的发展相对较为成熟。其最早是以晶闸管的形式出现,后又发展成为可控硅整流装置,完成了质的飞跃,在后来出现了柔流输电技术,此项技术促使许多新型设备的产生,同时电力电子技术也向工业自动化和机电相结合的发展道路,当前电力电子技术能够实现节能环保、智能化、轻便化等众多优势。就我国来说,电力电子技术的发展相对较晚,但是通过国家的帮扶和人们的不懈努力,已经走向了独具特色的高速发展道路。

经济的发展必定会带动电力产业的进步,电力产业的发展已经从传统投资规模变为以市场需求为重心的发展模式,同时电力市场也完成了卖方向买方转变的过程,以前我国发电和配电的比率存在较大差距,落后于世界先进国家,当前已经得到了一些改善,例如35kV变电站具备了四遥功能,但是还是存在很大的成长空间,例如电站的自动化、故障检测定位、故障隔离、最低网损等等,这些还属于发展阶段。从供电设备来看,许多的供电企业已经找到了与配电自动化相协调的设备,例如馈线开关远程式终端、开闭所、重合器等等,所以实现配电系统自动化的硬件条件还是比较完善的,但除此之外主要还存在两个问题:第一,供电方在选择设备的同时,应从自身实际状况出发,同时还要综合考察设备的性价比,使设备不至于过快的淘汰,进而造成成本的浪费,尽量选择与当前科学技术发展方向一致的设备,并且秉承统一规划、分步实施的原则;第二,配电系统本身具有特殊性,体现在远方抄表、容量大、定制远传等,对于这些技术的标准化要求还存在缺陷,同时以往的规范限制了使用性能,为了防止电力设备供货商自行设置的紊乱情况出现,有必要将电网的通信规约尽早规范下来。

3 实现配电自动化的必要性

电力电子技术、计算机技术、自动化控制技术三者是相辅相成的关系,只有将电力电子技术与配电系统相结合,才可以实现电子系统的自我控制能力、效率以及配电质量,将电力电子技术应用于配电技术还有以下几个方面:第一,使电力系统具备更高的自动化水平,电力电子设备的出现促进了电力电子技术的发展,使电力系统具备自动智能化的功能。尤其是模糊控制、智能化控制对于电子设备的重大意义;第二,电力电子技术不仅能够降低供电单位的成本消耗,保障企业利益,同时其服务对象是社会群众,所以高质量的配电系统能够产生高质量的供电服务,从而实现社会效益;第三,电力电子技术不仅仅是以技术的身份停留在技术的层面,而对于电气产业的结构和管理形式都形成了很大的影响,企业通过利用电力电子技术,使得自身加快了向新兴产业的转型。

4 电力电子技术的优点

首先,电力电子技术能够对电力进行有效控制,从而将所耗的电能控制在合理范围之内,达到了优化电能的目的,同时在用户使用的过程当中也发挥出有限电量的最大使用价值。对于工业生产来说,电力电子技术的不仅提高了生产的效率,也使节能价值得到体现。

其次,电力电子技术的应用能够使民用电和工业用电的质量得到提升,促进了工业制造工艺的革新,使机电一体化技术得到了发展,在当前对电力电子技术的使用当中,还加入了网络信息技术,这进一步提高了电力电子技术的使用价值。

然后,电力电子技术能够实现设别的高频化,打破了传统工频的限制,大大提高了运行效率,使机电设备的体积得到了控制。

最后,只有不断的实践才能促进技术的进步,电力电子技术正是因为不断的发展,不断的被应用,从而使其融入了其他的先进科学技术,进一步促进了技术的发展,进而得到更广阔的应用平台。

5 电力电子技术的应用

5.1 发电阶段

在此阶段,电力电子技术能够最大程度的保证配电系统的安全、可靠,能够增强发电效率,增强管理的科学性。同时电力电子技术中的励磁技术、太阳能技术、直流调速、变频调速技术都能够保障发电环节的顺利进行。主要应用方式如下:磁力技术主要能够提高调节速率,为其他控制提供有利条件,同时降低了成本、操作难度低、可靠度高;变频调速技术当前发展较为成熟,使风机水泵具备变频调速功能,对于能源的消耗量也不大,在未来具备良好的发展潜力;太阳能技术体现在环保方面,能够将太阳能电池板当中的能源转换到电力系统当中,节约了资源,降低了成本;直流调速技术在很多设备中还具有应用价值,能够提高电力系统整体的运行效率。

5.2 输电阶段

HDVC以及柔流输电技术两方面是电力电子技术在输电阶段的主要应用,HDVC又可以分为常规HDVC以及HDVC Light技术,其最大的特点是可以进行远距离输电,受到环境影响程度较小,可以完成大容量、可靠度高、灵活性好的电力输送,同时HDVD可以保持系统处于持续的、稳定的运行状态当中。柔流输电技术是当前发展速度最快的电力电子技术,其与控制技术的连接十分紧密,另外可以控制电力系统中的很多参数,例如电压以及电流,能够优化输电状况,减小输电线路对于电能的损耗,从而保证了系统运行的稳定和安全。除了HDVC以及柔流输电技术外,微型计算机自动化控制也发挥出了应用价值,主要负责对故障的处理,包括检测、分析以及切除等,减少了人员的工作量。

5.3 配电阶段

在配电阶段当中电力电子技术的应用目标就是实现配电的可靠性,进而使供电质量得到保证。其特点就是弱电对强电的控制以及调控电压电流、功率,避免谐波的不良影响,其工作原理类似于柔流输电技术,能够同时兼顾电力标准以及配电质量。综合来说电力电子技术在此阶段的应用面最大,同时在未来还会有进一步发展。

5.4 节能环保

电动机的节电并不能完全达到节电效果,变负荷电动机调速同样也无法实现完全的节能,因此只有将以上两中节能方式相结合,才能实现全方位的节能效果,变频调速的无功损耗调速对电力系统的环保节能有重要意义,避免了传统调速中功率耗损过大的问题。同时变频调速有助于电机设备自动化水平的提高,在保证调速的准确度的同时又可以达到30%的节能效果,另外还可以是电力设备的运行稳定,不会出现系统崩溃的情况。

6 结语

电子技术与能源有机结合是未来电力电子技术在配电系统应用的发展方向,同时综合太阳能、风能等不耗损资源,增强资源的利用率,总的来说就是其发展方向应该是迎合环保节约型的社会发展理念的,通过电力电子技术向机电一体化的发展不断深入,未来将会形成一个电力电子技术体系并且覆盖全国。除此之外智能化也是电力电子技术的发展方向,电力设备必须具备自我控制能力,对于问题能够识别并且采取有效的解决办法,自动化的水平越高,对于人员的依赖性就越小,进而可以达到降低成本、减少工作量,增加效率,保证供电质量等一系列好处。

参考文献:

[1]王智.机械智能自动化技术在煤炭企业中的实际运用研究[J].华东科技:学术版,2014(1).

[2]陈深圳.配电网调度自动化系统及其技术应用[J].大科技,2013(24).

[3]杨仟卉.浅谈输配电及其用电工程自动化运行[J].科技创新与应用,2013(36).

篇9

2、智能电网发展历程

智能电网也是近几年来随着我国电力电子技术的发展在电子行业兴起的概念。在人们的潜意识里,基本上认为电力电子技术、传感技术、新能源发电技术、通讯技术等是驱动“智能电网”的主要因素。事实上,电力电子技术是一门包括灵活输电、新型储能、传感、先进的信息、控制等技术,它承载着大规模的可再生能源并网发电,以实现电网的安全、稳定、高效运行。近些年来,世界各国对于智能电网的研究愈加重视,2008年,美国提出了智能电网计划,企图用智能电网对各种新能源进行入网管理,并在此基础上全面地对能源进行分布式的管理,最终是美国创造出世界上高能源使用效率的记录。同年10月,我国也针对智能电网正式地启动了一个具有可行性的研究项目。并依据这一项目规划出了一个“三步走”的战略。所谓“三步走”战略,即在2010年将我国的电网高级调度中心建成,在2020年将我国具有初步智能特征的数字化电网全面建成,在2030年使得我国具有自愈能力的智能电网得以真正建成。可以说,电力电子应用系统近些年来被广泛运用与智能电网中。

3、电气节能发展历程

变频调速作为电气节能的主要内容。它是解决我国节能规划工程中电机系统节能的关键。我国政府对自2006启动的节能规划工程投入颇多,因此,节能这一举措势在必行。变频调速系统在运行过程中的主要依靠作为电机的电力电子变频器驱动电源。随着我国电子技术应用系统的不断发展,我国的变频调速技术也变得日趋成熟,在市场上有极大的发展空间,且其保质期延长了许多。目前,我国高压电机系统中采用变频调速技术的大约有20%,而低气压电机系统中采用此技术的大约占30%。可见,我国使用电力电子变频器来驱动源的变频调速系统在未来有着极大的发展空间。除此之外,变频调速系统将会在未来继续随着电子技术应用系统的发展成为一个集成型、专用型的系统产品。它的特点即是将变频器、电机以及其控制集于一体。

4、电力牵引发展历程

电力牵引对于我国的交通系统来说,有着越来越重要的作用。现在,由于国家及政府的大力支持,它正在迅速发展成为我国乃至世界交通的发展重点。近几年来,由于电力电子技术的发展,我国利用电力牵引技术制造出许多种类的电动汽车。而在电力牵引中,最关键的即是电力传动与电力电子。可见,近些年来,电力电子技术应用系统的发展愈加成熟。

篇10

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1、整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

2、逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

3、变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

二、电力电子技术的应用

1、一般工业

工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。

2、交通运输

电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。3、电力系统

电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。近年发展起来的柔流输电(FACTS)也是依靠电力电子装置才得以实现的。无功补偿和谐波抑制对电力系统有重要的意义。晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)都是重要的无功补偿装置。近年来出现的静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。

在变电所中,给操作系统提供可靠的交直流操作电源,给蓄电池充电等都需要电力电子装置。

4、电子装置用电源

各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。

5、家用电器

照明在家用电器中占有十分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,它正在逐步取代传统的白炽灯和日光灯。变频空调器是家用电器中应用电力电子技术的典型例子。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。

篇11

0 前言

现代电力电子技术的发展经历了几个不同的阶段,整流器时代、逆变器时代和变频器时代,现代电力电子技术属于变频器时代,同时又与微电子技术有效地进行了结合,这不仅使其应用范围十分广泛,而且在国民经济中的地位也变得越来越重要。

1 现代电力电子技术的发展趋势

在当前科学技术快速发展的新形势下,随着电力电子技术的不断革新,其发展达到了一个较高的水平。现代电力电子技术主要是对电源技术进行开发和应用,可以说电源技术的发展是当前电力电子技术发展的主要方向。

1.1 现代电力电子技术向模块化和集成化转变

电源单元和功率器件作为现代电力电子技术的重要组成部分,是电子器件智能化的核心所在,其组成器件具有微小性,因此电力电子器件结构也更为紧凑,体积较小,但其能够与其他不同器件的优点进行有效综合,所以其具有显著的优势。也加快了现代电力电子技术向模块化和集成化转变的进程,为电力系统使用性能的提升奠定了良好的基础。

1.2 现代电力电子技术从低频向高频化转变

变压器供电频率与变压器的电容体积、电感呈现反比的关系,在电力电子器件体积不断缩小的情况下,现代电力电子技术必然会加快向高频化方向转化。可控制关断型电力电子器件的出现即是现代电力电子技术向高频转化的重要标志。而且随着科学技术发展速度的加快,电力电子技术也必然会向着更高频的方向发展。

1.3 现代电力电子技术向全控化和数字化转变

传统的电力电子器件在使用过程中存在着一些限制,而且关断电器时还会产生一些危险,自关断的全控型器件在市场上出现后,有效地弥补了这些限制和避免了危险的发生,这也是现代电力电子技术变革的重要体现,表明现代电力电子技术加快了数字化发展的进程。

1.4 现代电力电子技术向绿色化转变

现代电力电子技术向绿色化转变主要表现在节能和电子产品两个方面。相比于传统的电力电子技术来讲,现代电力电子技术的节能性更好,这也实现了发电容量的有效节约,对环境保护带来了较好的效果。一直以来一些电子设备会将严重的高次谐波电流入到电网中,给电网带来较大的污染,导致电网总功率质量下降,电网电压出现不同程序的畸变。到了上世纪末期,各种有源滤波器和补偿器的面世,实现了对功率参数的修正,从而为现代电力电子技术的绿色化发展奠定了良好的基础。

2 现代电力电子技术的应用

现代电力电子技术的功能具有多样性的特点,其在多个领域都有着广泛的应用,这也决定了现代电力电子技术在国民经济发展中占据非常重要的地位,有着不可替代的作用。

2.1 电源方面

(1)一般电源。现代电力电子技术在开关电源和供电电源方面都取得了较大的进展,交流电直接由整流器转变为直流电,这部分直流电一部分由逆变器转换为交流,然后经由转换开关到达负载,而另一部分则直接对蓄电池组进行充电。一旦逆变器发生故障,蓄电池组则作为备用电源开始直接向负载提供能量。在现在的电力电子器件中普遍采用MOSFET和IGBT作为电源,不仅具有较好的降噪性,而且电源的效率和可靠性也能够得到有效的保障。

(2)专用电源。高频逆变式焊机电源和大功率开关型高压直流电源是比较典型的两种应用现代电力电子技术的专用电源。高频逆变式焊机电源是一种高性能的电源,由于大容量模块IGBT的普遍使用,使得这种电源有着更加广阔的应用前景,逆变式焊机电源基本采用的都是交流-直流-交流-直流的转换方法,由于焊机工作的环境条件恶劣,所以燃弧、短路等就成为了司空见惯的问题,而采用IGBT组成的PWM相关控制器,能够提取和分析参数和信息,进而预先对系统做出处理和调整。大功率开关型高压直流电源主要应用CT机、静电除尘等比较大型的设备上,因为这类设备电压比较高,甚至达到了50 ~ 159kV,将市电经过整流器整流变为直流,然后与谐振逆变电路串联,逆变为高频电压,再升压,最后整流成为直流高压。

2.2 传动控制及牵引

这主要应用在无轨电车、地铁列车、电动车的无级变速和控制等等方面,通过将一个固定的直流电压转换为一个可以变化的直流电压,这样就能够使控制更加的平稳和快速,而且还可以节能。

2.3 在电力系统中的应用

在发电系统中现代电力电子技术的应用更是广泛,比如说水力风力发电、用电系统、配电、输电等等都和现代电力电子技术有着密切的联系。目前的风力电力机组已经结合了机械制造、空气动力学、计算机控制技术、电力电子技术等等,而现代电力电子技术就是发电系统中不可或缺的重要技术,它对于电能的转换、机组的控制和改善电能质量等都很重要。

2.4 在节能和改造传统行业中的应用

现代工作的开展离不开电能的支持,电能是现代工业的重要动力和能量源头。随着我国工业用电量不断增加,用电的不合理及浪费现象也日益显现出来。这就需要有效地降低能源的消耗,提高电能的利用效率,以便于能够对当前能源紧缺的局面起到一定的缓解作用。因此需要充分的发挥现代电力电子技术的性能优势,有效地提高现代电力电子技术的效率,应用现代电力电子技术,通过工业控制有效地将电能转换为劳动力,建成现代化的智能车库,从而降低工人的劳动强度,实现人力资源的节约,确保劳动生产力的提高,以便于推动传统行业的改造进程。

2.5 在家用电器方面的应用

现代电力电子技术在我们日常生活中应用也较为广泛,当前家用电器普遍应用现代电力电子技术,给我们的日常生活带来了较大的便利。许多电器都只需要按下按钮就能进行工作,而不需要人们亲自动手。

3 应用展望

在今后现代电力电子技术应用过程中,需要重视以下几个方面的问题:首先,需要对节能和环保给予充分的重视,通过完善控制设备和设计专用的电机来有效地提高电机系统的使用性能和效率;其次,为了实现节能和环保,则需要使用中高压直流转电系统,使其实现低能耗及低污染;最后,需要加快解决电力系统中储电装置的设置问题,需要电力系统设计者从控制技术等方面来制定切实可行的解决方案,从而对电能储备中存在问题进行有效解决,更好地推动电力系统的持续、稳定发展。

4 结语

现代电力电子技术在多个领域都得到了广泛的应用,特别是对电网的控制和转换上发挥着非常重要的作用。通过现代电力电子技术的应用,使大功率电能成为其他高新技术的重要基础,这也决定了现代电力电子技术在国民经济发展中的重要地位具有不可替代性,对推动经济和社会的发展发挥着非常重要的作用。

参考文献:

[1] 刘增金.电力电子技术的发展及应用探究[J].电子世界,2011(9):19+25.

[2] 冷海滨.现代电力电子技术的发展趋势探析[J].电子技术与软件工程,2014(1):156-157.

[3] 韦和平.现代电力电子及电源技术的发展[J].现代电子技术,2005(18):102-105.

篇12

1.1电力电子技术的产生

电力电子技术最早产生于20世纪50年代,以晶闸管问世为标准。电力电子技术是现代电力系统的传动技术,其利用晶闸管发展为可控硅整流装置,也意味着电力系统传动技术发展到新的阶段。以可控硅整流装置为标志,电能转换进入电力电子器件构成的变流器时代。因此可以总结出,可控硅整流装置是电力电子技术产生的重要标志。

1.2电力电子器件的发展

电力系统在电力电子技术产生后获得了迅速发展,第一代的电力电子器件以电力二极管和晶闸管为代表。晶闸管和电力二极管具有体积小、耗能低的特征,取代了传统的汞弧整流器,大大推动了电力电子技术的发展。电力二极管在改善电路性能方面有着明显的作用,能够有效电路损耗和提高电源使用率。电力二极管经过几十年的发展,种类各异,功能齐全,第二代电子电力器件同时还具有自动关断的能力。与第一代电子电力器件相比,第二代电子电力器件在开关速度方面有着明显的提升,能够用于开关频率较高的电路中。

1.3第三代电力电子器件的产生

20世纪90年代是电力电子技术快速发展的时期,其结构和体积都得到了进一步改良,具有体积小、结构紧凑的特点,同时还出现了多种电力器件结合的电子模块形式,为电力器件的广泛使用奠定了基础。第三代电力电子器件在集成模块基础上,将多种电力器件相结合,组合为集成电路。以功率集成电路出现为标志,电力电子技术向高频化、标准模块化、智能化方向发展。通过以上分析可以总结出,电力电子技术大约经历了三个发展阶段,目前电力电子技术正向以高频技术处理问题为主的现代电力电子技术方向发展。随着可持续发展战略的提出,电力电子技术必然会在实现高频技术的基础上,向节能、环保方面改进,促进电力系统在更为科学合理的道路上发展。

2电力电子技术在电力系统中应用分析

通过以上分析可以看出,电力电子技术是电工技术中的新技术,是电技术与弱电技术的结合,推动着国民经济的发展,影响着输电系统的变革。本文主要从发电、输电、配电、节能等方面分析电力电子技术的应用。

2.1电力电子技术在发电系统中的应用

电力电子技术在发电环节中能够改善发电机等设备的运行,进而调节运行系统功率,比如大型发电机中的静止励磁控制就运用了晶闸管,从而简化静止励磁的结构,提高其可靠性,并且价格更为低廉。在水力、风力发电机方面,电力电子技术能够依靠变频电源调整励磁电流频率,进而调整水力、风力发电功率,确保其控制在稳定的范围内,降低风速不同所引起的频差。风机水泵耗电量比较大,效率也比较低,电力电子技术运用于风机水泵中能够较好解决运行效率问题,但是目前生产高压大容量变频器的企业有限。太阳能发电控制系统运用电力电子技术表现在使用最大功率跟踪功能的逆变器,能够有效跟踪功率变换,及时调整频率,降低能耗,保持节能的作用。

2.2电力电子技术在输电系统中的应用

电力电子技术运用于输电系统中表现为柔流输电技术,能够将电力电子技术与现代控制技术相融合,对参数、相位角、功率等进行持续调节的控制技术,能够大幅度降低输电过程中产生的能量,能够大幅度提升输电的稳定性。高压直流输电技术是目前电能输送最引人关注的部分,这一技术能够解决诸多问题,特别是长距离输送电能降低能量耗损,稳定性强,没有电抗压降,整体压降小,所以整体来看,这一线路投资少,具有很强的稳定性。根据物理原理,直流输电线路两端接入大功率晶闸管、有源逆变器等,组成复合结构变换器,并由多个晶闸管串联组成,从而实现电力电子技术在输电系统中的应用。

2.3电力电子技术在配电过程中的应用

电力电子技术运用于配电过程主要表现为满足配电频率、电压、谐波上相应的条件,从而保证配电系统能够送出高质量的电力。另外,由于配电过程中需要阻止电能的不稳定被动和影响现象,这样就要求电力电子技术给予支持。电力电子技术是配电环节的质量控制部分,以用户电力技术和FACTS技术为实现形式,前者能够解决配电系统即将发生的问题,比如配电系统过程中的稳定性和安全性,保障配电输电过程中的电能质量等。后者在配电线路中通过增设电力电子装置,从而加强电流、电压和功率的可控性,满足电力传输的要求。FACTS技术也是配电系统对电能的输送能力和有效控制力,是电力电子技术在配电系统中的新型研发技术,并且随着电子技术的不断发展,FACTS技术正处于和用户电力技术同步并合用的趋势,比如定制电力(DFACTS)技术就是其中非常有代表性的技术。

2.4电力电子技术在电力系统节能方面的应用

电力电子技术在电力系统节能方面的运用主要表现在变负荷电动机调速运行和提高电能使用率两个方面。首先从变负荷电动机调速运行角度来分析,由于电厂生产和配送电过程中会产生大量电能浪费,比如上文提到的发电能源处于变化过程中,发电机组配合度比较低,无功功率的浪费现象层出不穷,这样就需要及时调整和控制变负荷电动机的运转速度,实现电能较高效率的生产和配用。目前西方发达国家已经熟练掌握该项技术,但是我国还处于探索阶段,因此需要加强科研投入,在意识和行动上对变负荷电动机的应用及时足够的重视。另外一方面,变负荷电动机也存在一定的缺陷,比如其成本比较高,运行过程中对电网产生的影响比较大,只适合在大型电厂中使用,导致其很难普及,因此需要从提高电能使用率角度给予补充,达到电力节能的目标。其次从提高电能使用率角度来分析,我国电力系统现用的电力设备在配送电过程中会产生大量的电能,其成本比较高,对电能质量影响也比较大,因此需要利用电力电子技术来增设可控设备,对配送电过程中的电能进行实时调控,确保电能高质量和高稳定性。

作者:骆小明 单位:广州广电计量检测股份有限公司

参考文献:

友情链接