电子封装的技术范文

时间:2023-10-15 09:48:49

引言:寻求写作上的突破?我们特意为您精选了12篇电子封装的技术范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

电子封装的技术

篇1

【引言】:近年来,各种各样的电子产品已经在工业、农业、国防和日常生活中得到了广泛的用。伴随着电子科学技术的蓬勃发展,使得微电子工业发展迅猛,这很大程度上是得益于微电子封装技术的高速发展。这样必然要求微电子封装要更好、更轻、更薄、封装密度更高,更好的电性能和热性能,更高的可靠性,更高的性能价格比,因此采用什么样的封装关键技术就显得尤为重要。

1. 微电子封装的概述

1.1微电子封装的概念

微电子封装是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出连线端子并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。在更广的意义上讲,是指将封装体与基板连接固定,装配成完整的系统或电子设备,并确定整个系统综合性能的工程【1】。

1.2微电子封装的目的

微电子封装的目的在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使电路具有稳定、正常的功能。

1.3微电子封装的技术领域

微电子封装技术涵盖的技术面积广,属于复杂的系统工程。它涉及物理、化学、化工、材料、机械、电气与自动化等各门学科,也使用金属、陶瓷、玻璃、高分子等各种各样的材料,因此微电子封装是一门跨学科知识整合的科学,整合了产品的电气特性、热传导特性、可靠性、材料与工艺技术的应用以及成本价格等因素。

2 微电子封装领域中的关键技术

目前,在微电子封装领域中,所能够采用的工艺技术有多种。主要包括了栅阵列封装(BGA)、倒装芯片技术(FC)、芯片规模封装(CSP)、系统级封装(SIP)、三维(3D)封装等(以下用简称代替)【2】。下面对这些微电子封装关键技术进行一一介绍,具体如下:

2.1 栅阵列封装

BGA是目前 微电子封装的主流技术,应用范围大多以主板芯片组和CPU等大规模集成电路封装为主。BGA的特点在于引线长度比较短,但是引线与引线之间的间距比较大,可有效避免精细间距器件中经常会遇到的翘曲和共面度问题。相比其他封装方式,BGA的优势在于引线见巨大,可容纳更多I/0;可靠性高,焊点牢固,不会损伤引脚;有较好的点特性,频率特性好;能与贴装工艺和设备良好兼容等。

2.2 倒装芯片关键技术

倒装芯片技术,即:FCW。其工艺实现流程就是将电路基板芯片上的有源区采用相对的方式,将衬底和芯片通过芯片上的焊料凸点进行连接,需要说明的是,这些凸点是呈阵列的方式排列。采用这种封装的方式,其最大的特点就在于具有比较高的I/O密度。而其相对于其他微电子封装技术的优势在于:第一,具备良好散热性能;第二,外形尺寸减小;第三,寿命提升,可靠性良好;第四,具备较高密度的I/O;第五,裸芯片的具备可测试性。

2.3 芯片规模封装

CSP是与BGA处于同一个时代的封装技术。CSP在实际运用中,采用了许多BGA的形式。一般行业中在对二者进行区分时,主要是以焊球节距作为参考标准。一般焊球节距作小于1mm便是CSP,而高于1mm便是BGA。相对于BGA,CSP具有很多突出的优势,如:具备优良的电、热性;具备高封装密度;超小型封装;易于焊接、更换和修正;容易测定和老化;操作简便等。主要有适用于储存器的少引脚CSP和适用于ASCI的多引脚CSP。

2.4三维(3D)封装

三维封装,即是向空间发展的微电子组装的高密度化。它不但使用组装密度更高,也使其功能更多、传输速度更高、功耗更低、性能及可靠性更好等。

2.5多芯片模式

多芯片模式(MCM),是指多个半导体裸芯片表面安装在同一块布线基板上。按基板材料不同,分为MCM-L、MCM-C、MCM-D三大类。

①MCM-L是指用通常玻璃、环氧树脂制作多层印刷电路基板的模式。布线密度高而价格较低。

②MCM-C通过厚膜技术形成多层布线陶瓷,滨海高以此作为基板。布线密度比MCM-L高。

③MCM-D通过薄膜技术形成多层布线陶瓷或者直接采用Si、Al作为基板,布线密度最高,价格也高。

2.6系统级封装

SIP是将多种功能芯片,包括处理器、存储器等功能芯片集成在一个封装内,从而实现一个基本完整的功能。与SOC(System On a Chip系统级芯片)相对应。不同的是系统级封装是采用不同芯片进行并排或叠加的封装方式,而SOC则是高度集成的芯片产品。

3.微电子封装领域的应用前景

21世纪的微电子封装概念已从传统的面向器件转为面向系统,即在封装的信号传递、支持载体、热传导、芯片保护等传统功能的基础上进一步扩展,利用薄膜、厚膜工艺以及嵌入工艺将系统的信号传输电路及大部分有源、无源元件进行集成,并与芯片的高密度封装和元器件外贴工艺相结合,从而实现对系统的封装集成,达到最高密度的封装。

在近期内,BGA技术将以其性能和价格的优势以最快增长速度作为封装的主流技术继续向前发展;CSP技术有着很好的前景,随着其成本的逐步降低将广泛用于快速存储器、逻辑电路和ASIC等器件在各类产品中的封装;在今后不断的封装中,FCT技术将作为一种基本的主流封装技术渗透于各种不同的封装形式中;随着便携式电子设备市场的迅速扩大,适用于高速、高性能的MCM发展速度相当惊人;三维封装是发展前景最佳的封装技术,随着其工艺的进一步成熟,它将成为应用最广泛的封装技术【3】。

结束语

关键性封装技术在推动更高性能、更低功耗、更低成本和更小形状因子的产品上发挥着至关重要的作用。在芯片-封装协同设计以及为满足各种可靠性要求而使用具成本效益的材料和工艺方面,还存在很多挑战。为满足当前需求并使设备具备高产量大产能的能力,业界还需要在技术和制造方面进行众多的创新研究。

【参考文献】:

篇2

基于点胶原理的不同,可将点胶技术分为接触式点胶和无接触式点胶[3,4],如图1所示。接触式点胶的工作原理是通过点胶针头引导液同基板接触,经过一段时间后待基板完全浸润后,点胶针头开始向上运动,胶液依靠同基板间的黏性力同点胶针头分离在基板上形成胶点。接触式点胶技术的特点是需要配置高精度的传感器来控制针头抬起和下降高度。无接触式点胶是采用相关方式使胶液受到高压作用,胶液在获得足够大的动能后按照规定的速度喷射到基本之上。胶液在喷射时,针头没有Z轴方向位移[3]。近几年来,点胶技术得以快速发展,已经从接触式点胶技术向无接触式点胶技术转变。当前国外已经开始研究和开发无接触式点胶技术,并取得了一定的成绩。不过,就我国而言,目前还有超过一般以上的点胶系统仍旧采用接触式针头点胶,且以时间/压力型为主[2];无接触式点胶系统市场份额占有率低下,所以,针对我国点胶技术发展实际,加强对精度高、可靠性强的流体点胶技术研究和开发势在必行[5]。 

2 接触式点胶 

2.1大量式点胶 

大量式点胶可细分为针转式点胶和丝网印刷式点胶两种。大量式点胶的突出特点是点胶速度快。可适用于印刷电路板的大规模生产线,其缺点是柔性差,点胶的精度不是很高,一致性差,且胶液是直接暴露在空气中,胶液容易吸水和挥发,影响胶液质量。针转移式点胶的适应性比较差,对于不同的点胶样式需要更换针板,在点胶时需不停加热,重复适用性差。丝网印刷式点胶仅仅适用表面比较平整的元器件,而对于表面凸凹不平的集成电路则不适用。[2,4,6]。 

2.2 针头式点胶 

2.2.1 计量管式点胶和活塞式点胶 

计量式点胶和活塞式点胶是继大量式点胶后的一种新型点胶方式。这两种点胶方式都是通过压力驱动胶液流出完成点胶。计量式点胶是由螺旋杆旋转提供压力,在压力作用下胶液流出,针头按照一定的轨迹移动可画出线或者圆等图案。活塞式点胶是通过活塞作用推动胶液流出完成点胶。该点胶方式的一致性好,不过胶液的量不好控制,活塞清洗困难,对活塞的密封性要求极高[2,4,6]。 

2.2.2 时间/压力型点胶 

时间/压力型点胶是当前应用最为广泛的点胶方式之一,该种点胶方式最早的应用在表面贴装中。其工作原理是通过脉动气压挤压针筒内的活塞,将流体通过底部针头挤出到基板上。该种点胶技术适用于黏度不是很高的流体;其胶点大小同气体压力和时间有关。该种点胶设备的造价比较低,容易操作,维护和清洗方便。不过该种点胶方式对流体的黏度很敏感,气压反复压缩使流体温度逐渐升高,对流体的流变特性造成了一定影响,比如胶液流出的直径大小不一,点胶一致性效果差。 

3 无接触式点胶 

无接触式点胶是当前一种基于微电子技术的新型点胶技术,该点胶技术可细分为喷墨点胶和喷射点胶。其中喷射点胶又分为机械式喷射点胶和压电式喷射点胶两种方式。 

3.1 喷墨技术 

喷墨技术指的是将墨水喷涂到基底上面的技术。喷墨方式有热气泡式和压电式。该种技术主要应用在印刷、压电式喷墨和药剂生产方面。热气泡式喷墨是对热敏电阻通电,产生热能加热墨水产生气泡,气泡爆破后墨水喷出形成墨滴;压电式喷墨是利用压电材料压电效应产生机械力,通过机械力将墨水“挤”或“推”出去。不过需要提出的是,微电子封装中所使用的流体黏度一般都比较高,而喷墨技术只适用于低黏度流体的喷墨。在流体材料适用性方面表现的能力比较欠缺。 

3.2 喷射点胶技术 

喷射点胶技术当前还处于研发阶段,技术还不够成熟。该技术主要是通过瞬间高压作用驱动胶液喷出,每次喷射只能形成一个胶点。经过多次喷射后胶点叠加在一起形成图案。喷射点胶基本上对各种黏度的流体适用。并且喷射的速度快、适应性和一致性好。当前,喷射点胶技术有机械式和压电式两种。其中,压电式点胶适用于低、中黏度流体;机械式点胶适用于黏度高的流体。 

3.2.1 机械式喷射点胶 

机械式喷射点胶主要用于喷射高黏度流体,目前在电子生产领域得以广泛应用。采用机械师喷射点胶,流体在比较低的压力作用下就能进入到料腔内。一般而言,芯片下填充料粘结剂的压力控制在0.1MPa左右;液晶类黏度比较低的材料压力控制在0.01MPa左右。该技术的特点是液体在喷嘴位置可获得极强瞬时压力,可对黏度高的流体进行喷射;其缺点是喷射出的胶点要比压电式、热气泡式所喷射的胶点尺寸大很多[3,7],并且其结构比较复杂,喷射频率要低于压电式。 

3.2.2压电式喷射点胶 

压电式喷射点胶装置主要有两大类型。一类是压电式点胶作为热喷墨印刷技术应用于LED中有机颜料的注入;另一类是压电式喷射点胶是应用于电子器件紫外固化粘结剂包封。 

4 结语 

综上,随着现代科学技术的发展,微电子封装点胶技术必将会向新台阶迈进。本文针对微电子封装的接触式点胶技术和无接触式点胶技术的应用及优缺点进行了简要的介绍和分析。仅供业内人士参考。 

参考文献 

[1]李晓琴,王红美.流体点胶技术分类及发展趋势[J].科学技术,2009(17):26-28. 

[2] 赵翼翔,陈新度,陈新.微电子封装中的流体点胶技术综述[J].液压与气动,2006(2):52-54. 

篇3

[2]运行监测协调局2015年1―12月电子信息制造业运行情况[OL].2016-01-25..

篇4

一、我国风电设备安装技术的讨论与分析

当前我国对以开发风能资源为主的新能源示范工程做了诸多的专项计划安排,国内大范围、大规模的风力发电建设工程如雨后春笋一般迅速发展。针对我国目前的风电设备建设工作重点主要放在其设备的安装作业上,一般地建设过程都要通过履带式起重机充当其吊装运作的主角,而小型的汽车起重机作为辅助。以下内容主要对我国风电设备安装的技术进行一些讨论与分析。

风电设备的主要构成包括底座、塔筒、机舱、轮毂、叶片、箱式变压器、及电气等部分。由于存在设备机型的吨位及高度的差异,可以根据当地风力资源的情况进一步研究设计具体的安装方案。我国国内风电场施工及设备对于安装场地的要求措施主要分为两种,包括直接将风机设备运输吊装一次到位办法和在事先设立好的临时场地中先转运、再安装的措施。第一种措施成本较低,因此被越来越多的风电场所采用。但是这种方法对安装场地的条件要求很高存在局限性,对于设备进入现场之前的场地布置策划工作要十分严谨,注重场地利用的合理性。风电设备的吊装工作首先要注意的问题是对现场起重机的选用,注意要考虑到现场地理环境、场内交通状况以及设备的参数等影响要素。在安装场地和现场交通状况良好的情况下,一般考虑采用履带式起重机进行吊装作业,而在现场条件不明朗的状况下,必须首先考虑小型的汽车起重机作为主要的作业工具。应该强调风电设备卸车工作的重要性,其工作内容主要指设备塔筒、机舱等大件构件的卸车,应根据设备参数以及现场装卸工具的实际情况采用单机卸车或双击卸车。现场风电设备吊装也是特指设备塔筒、机舱及叶轮等大构件的吊装工作,机舱最重则吊机受力最大,叶轮在以后的工作中受风面积最大,因此对对于安装过程中的风速有特别的要求,一般风速要求不大于8m/s 。如果考虑到风电设备吊装的便捷

与可操作性,设备机舱和叶轮吊装时起重机的位置既要考虑其满足设备机舱技术参数的要求也要满足叶轮的合理吊装要求。同时,我们对一般地风电设备吊装作业还要求履带式起重机吊臂正对设备机舱连接轮毂的法兰,这样既便于对设备叶轮的吊装到位又不需要对起重机进行再次移位。

由于风电设备吊装作业的施工过程短且存在受风力影响等特点,项目人员办公和住宿地点一般都处于临时搭建的简易活动板房中,对于收集施工现场资料和周围环境资料要提前做好工作,然后根据不同的施工特点提前制定相应的措施并充分利用现有的资源以确保现场施工有序可控。如果施工现场处于风力比较大的环境下,无论是风电设备吊装作业还是大型的起重机运转都必须考虑环境的最大风速情况。风力条件大于起重机的停车限制值须及时将其吊臂降低确保安全。如果在可允许的条件范围之内,也得严格控制施工吊臂朝着迎风方向降低吊臂进行作业。现场应每天预先收集风力信息,及时掌握风力和风向的变化以便做好施工前的准备工作。履带起重机转移过程要严格控制行进速度,一般控制在500m/h以内,转移前做好行进线路的铺平工作,由履带起重机司机作为指挥,履带四周派有专人监护,地压不足须铺设路基板,夜间配备照明设施,保证转移安全。

二、我国应用风电设备安装技术开发风能资源的发展现状及展望

我国国土幅员辽阔,风能资源非常富足。提倡风力能源开发主要是由于风能具有资源丰富、取之不尽、绿色无污染且价格低廉等特点。相比较而言,目前还没有任何一种自然能源具有这么多优点。利用风能资源发电已经成为现在和将来可以大力研究开发的课题之一。风能发电产业已然成为最具商业化地新型产业,其发展前景不可限量,极有可能成为世界未来的最重要的可利用自然能源。

我国不少专业人士人为风能发电至今没有得到广泛性地发展主要原因在于产业化程度低、发电成本高、专业化人才稀缺、专业技术落后以及市场发育不良等,笔者根据自身经验及多年涉身了解,我国风能发电主要存在以下几点问题:

(1)长期缺乏对发展风能发电产业的战略规划落实,国家没有针对风能发电产业制定有关具体的政策措施,没有鼓励产业发展的经济支持等;

(2)国家相关部门对利用开发风能资源的战略意识认识不足,制定有关战略规划目标落空,缺乏针对性的有力措施以及制度保障等;

(3)对我国风能资源分布情况探明程度较低,缺乏足够科学可靠的基础数据,基础工作环节薄弱,大规模开发利用风能发电缺乏科学性地可行性论证支持等。

风能发电产业的发展必定在未来在能源效益、环境效益等问题等方面发挥重要的作用并产生一定的影响。当前,我国能源开发主张的宗旨是坚持科学发展观,走资源节约型发展道路,这无疑给予风能发电产业一个非常不错的发展契机。面对我国电力行业能源短缺的紧张局面,高速发展风能发电产业极有可能会迅速化解这一紧张局面。

对于未来风能发电产业发展的展望主要在于其投资成本和产生效益的问题上,风能发电相比较于火力发电、水力发电等传统发电方式在投资成本上得到了大大降低,而且其产生的经济效益和环境效益也是人们预想中的结果。考虑到未来能源不足的情况,对于风能发电产业的发展前期将一致被看好。

三、结束语

风电设备安装是一项事无巨细的工作,要考虑的现场要素非常之多。只有严格控制把关才能够保障有序可控的工作进程。良好的风电设备基础造就我国风电产业的不断发展与进步,同时营造一个优异的社会发展环境。

参考文献

篇5

中图分类号:TN305.94 文献标识码:A 文章编号:1009-914X(2016)30-0005-01

随着现代电子信息技术的迅速发展,电子系统及设备向大规模集成化、小型化、高效率和高可靠性方向发展。电子封装正在与电子设计及制造一起,共同推动着信息化社会的发展[1]。由于电子器件和电子装置中元器件复杂性和密集性的日益提高,因此迫切需要研究和开发性能优异、可满足各种需求的新型电子封装材料。

国外通常把封装分为4级,即零级封装、一级封装、二级封装和三级封装:零级封装指芯片级的连接;一级封装指单芯片或多芯片组件或元件的封装;二级封装指印制电路板级的封装;三级封装指整机的组装。由于导线和导电带与芯片间键合焊接技术大量应用,一、二级封装技术之间的界限已经模糊了。国内基本上把相对应国外零级和一级的封装形式也称之为封装,一般在元器件研制和生产单位完成。把相对应国外二级和三级的封装形式称之为电子组装。

1 电子封装的内涵

电子封装工艺技术指将一个或多个芯片包封、连接成电路器件的制造工艺。其作为衔接芯片与系统的重要界面,也是器件电路的重要组成部分,已从早期的为芯片提供机械支撑、保护和电热连接功能,逐渐融入到芯片制造技术和系统集成技术之中,目前已经发展到新型的微电子封装工艺技术,推动着一代器件、电路并牵动着整机系统的小型化和整体性能水平的升级换代,电子封装工艺对器件性能水平的发挥起着至关重要的作用。

电子封装是为电子产品提供合适环境的技术,它在一段时间内为电子产品提供可靠性。封装它不仅起着安放、固定、密封、保护芯片和增强导热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁。对于很多电子产品而言,封装技术都是非常关键的一环。

2 电子封装的技术要求

2.1 对材料的技术要求

热膨胀系数、热导率和密度是现代电子封装材料必须考虑的三大要素。只有充分满足这3项基本要求,并具有合理封装工艺性能的材料才能顺应现代电子封装技术的发展要求。理想的电子封装材料应满足以下性能要求[2]:1)较低的热膨胀系数(Coefficient of thermal expansion,CTE),要求与Al2O3和Ga As芯片相匹配,以避免CTE相差过大产生热应力使芯片受损;2)较高的热导率(>100W/(m・K)),保护芯片不因温度过高而失效;3)较低的密度(100GPa),对机械部件起到稳定支撑及保护作用;5)稳定的化学性质。

2.2 对象的技术要求

封装技术针对功能相对单一的器件,结构相对简单、体积较小;微组装密封针对面向电子整机的多功能和高频组件,结构较为复杂(如异形等),体积较大。

2.3 对工艺的技术要求

多层基板结构不同:封装技术采用的多层基板通常只包括电路连接线;微组装采用的多层基板通常不但包括电路互联线,而且包括功分器和电桥等微波功率器件。

组装焊接工艺方法有差别:封装技术采用的元器件和材料种类较少,需应用适合少品种、大批量的焊接方法;微组装采用的元器件和材料种类较多,需应用适合多品种、多材料的焊接方法。

密封焊接工艺不同:由于封装件结构相对外形规则,封装较多采用平行焊接工艺;由于微组装组件结构复杂,外形有异形,因此常采用激光密封焊接。

3 电子封装技术的发展

过去的40多年,国外微电子封装技术在封装材料、封装方式、封装性能以及封装的应用等方面均取得了巨大的进步,封装效率(硅片面积与封装面积的比值)成几何倍数增长,PGA(针栅阵列)的封装效率不足10%,BGA(球栅阵列)的封装效率为20%,CSP(芯片尺寸封b)的封装效率大于80%,MCM的封装效率可达90%。随着新的封装技术的出现,封装效率可超过100%,五芯片叠层封装的封装效率可达300%,电子封装技术已经成为电子器件领域的关键技术。

器件级封装是整个电气互联技术发展的关键,纵观近几年的电子封装业,其发展趋势如下:电子封装技术继续朝着超高密度的方向发展,出现了三维封装、多芯片封装(MCP)和系统级封装(SIP)等超高密度的封装形式;电子封装技术继续朝着超小型的方向发展,出现了与芯片尺寸大小相同的超小型封装形式――圆晶级封装技术(WLP);电子封装技术从二维向三维方向发展,不仅出现了3D-MCM,也出现了3D-SIP等封装形式[3,4];电子封装技术继续从单芯片向多芯片发展,除了多芯片模块(MCM)外还有多芯片封装(MCP)、系统级封装(SIP)及叠层封装等;电子封装技术继续向高性能、多功能方向发展,高频、大功率和高性能仍然是发展的主题;电子封装技术向高度集成化方向发展,出现了板级集成、片级集成和封装集成等多种高集成方式。

电子封装技术发展的新领域:MEMS封装、光电子(OE)封装、高温(高温半导体材料)封装和微光电子机械系统(MOEMS)封装等。

4 电子封装材料的分类

4.1 低温共烧陶瓷材料(LTCC)

LTCC材料是一类由玻璃陶瓷组成的封装材料,烧结温度仅有850℃左右,可与金、银和铜等金属共烧,介电常数低,介电损耗小,并可以无源集成,尤其是其特别优良的高频性能,使其成为许多高频应用的首选[3]。该技术开始于20世纪80年代中期,经过多年的开发和应用,已经日臻成熟,并在许多领域获得了应用。

4.2 高导热率氮化铝陶瓷材料

氮化铝陶瓷材料是20世纪90年代才发展起来的一种新型高导热电子封装材料,由于其热导率高、热膨胀系数与硅匹配、介电常数低和绝缘强度高,而成为最理想的功率电子封装材料,目前已经在微波功率器件、毫米波封装和高温电子封装等领域获得了应用。

4.3 AlSiC金属基复合材料

AlSiC金属复合材料是用于高级热管理的封装材料,它具有以下特性,第一该材料可以净尺寸加工,避免了繁杂的后处理工艺,第二该材料具有高的热导率、与半导体芯片相匹配的热膨胀系数以及非常低的密度。该材料适用于航空航天等对轻型化比较敏感的领域。

参考文献

[1] 汤涛,张旭,许仲梓.电子封装材料的研究现状及趋势[J].南京工业大学学报2010,32(4):105-110.

[2] ZWEBEN C.Metal-matrix composites for electronic packaging[J].Chemistry and Materials Science,1992,44(7):15-23.

[3] 郎鹏,高志方,牛艳红.3D封装与硅通孔工艺[J].电子工艺技术,2009,30(6):75-81.

篇6

我们经常听说某某芯片采用什么什么的封装方式,在我们的电脑中,存在着各种各样不同处理芯片,那么,它们又是采用何种封装形式呢?并且这些封装形式又有什么样的技术特点以及优越性呢?在本文中,作者将为你介绍几个芯片封装形式的特点和优点。

一、DIP双列直插式封装

DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。

DIP封装具有以下特点:(1)适合在PCB(印刷电路板)上穿孔焊接,操作方便。(2)芯片面积与封装面积之间的比值较大,故体积也较大。Intel系列CPU中8088就采用这种封装形式,缓存和早期的内存芯片也是这种封装形式。

二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装

QFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。PFP方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

QFP/PFP封装具有以下特点:(1)适用于SMD表面安装技术在PCB电路板上安装布线。(2)适合高频使用。(3)操作方便,可靠性高。(4)芯片面积与封装面积之间的比值较小。Intel系列CPU中80286、80386和某些486主板采用这种封装形式。

三、PGA插针网格阵列封装

PGA芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2~5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。

ZIF是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。PGA封装具有以下特点:(1)插拔操作更方便,可靠性高。(2)可适应更高的频率。Intel系列CPU中,80486和Pentium、PentiumPro均采用这种封装形式。

四、BGA球栅阵列封装

随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。

BGA封装技术又可详分为五大类:(1)PBGA基板:一般为2~4层有机材料构成的多层板。Intel系列CPU中,PentiumII、III、IV处理器均采用这种封装形式。(2)CBGA基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片的安装方式。Intel系列CPU中,PentiumI、II、PentiumPro处理器均采用过这种封装形式。(3)FCBGA基板:硬质多层基板。(4)TBGA基板:基板为带状软质的1~2层PCB电路板。(5)CDPBGA基板:指封装中央有方型低陷的芯片区。

BGA封装具有以下特点:(1)I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。(2)虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。(3)信号传输延迟小,适应频率大大提高。(4)组装可用共面焊接,可靠性大大提高。

BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城公司开始着手研制塑封球栅面阵列封装的芯片。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。目前,BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有70%以上幅度的增长。

五、CSP芯片尺寸封装

随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒大不超过1.4倍。

CSP封装又可分为四类:(1)传统导线架形式,代表厂商有富士通、日立、Rohm、高士达等等。(2)硬质内插板型,代表厂商有摩托罗拉、索尼、东芝、松下等等。(3)软质内插板型,其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。(4)晶圆尺寸封装:有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。

CSP封装具有以下特点:(1)满足了芯片I/O引脚不断增加的需要。(2)芯片面积与封装面积之间的比值很小。(3)极大地缩短延迟时间。CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电、数字电视、电子书、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽等新兴产品中。

篇7

我们经常听说某某芯片采用什么什么的封装方式,在我们的电脑中,存在着各种各样不同处理芯片,那么,它们又是采用何种封装形式呢?并且这些封装形式又有什么样的技术特点以及优越性呢?在本文中,作者将为你介绍几个芯片封装形式的特点和优点。

一、DIP双列直插式封装

DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。

DIP封装具有以下特点:(1)适合在PCB(印刷电路板)上穿孔焊接,操作方便。(2)芯片面积与封装面积之间的比值较大,故体积也较大。Intel系列CPU中8088就采用这种封装形式,缓存和早期的内存芯片也是这种封装形式。

二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装

QFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。PFP方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

QFP/PFP封装具有以下特点:(1)适用于SMD表面安装技术在PCB电路板上安装布线。(2)适合高频使用。(3)操作方便,可靠性高。(4)芯片面积与封装面积之间的比值较小。Intel系列CPU中80286、80386和某些486主板采用这种封装形式。

三、PGA插针网格阵列封装

PGA芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2~5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。

ZIF是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。PGA封装具有以下特点:(1)插拔操作更方便,可靠性高。(2)可适应更高的频率。Intel系列CPU中,80486和Pentium、PentiumPro均采用这种封装形式。

四、BGA球栅阵列封装

随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。BGA封装技术又可详分为五大类:(1)PBGA基板:一般为2~4层有机材料构成的多层板。Intel系列CPU中,PentiumII、III、IV处理器均采用这种封装形式。(2)CBGA基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片的安装方式。Intel系列CPU中,PentiumI、II、PentiumPro处理器均采用过这种封装形式。(3)FCBGA基板:硬质多层基板。(4)TBGA基板:基板为带状软质的1~2层PCB电路板。(5)CDPBGA基板:指封装中央有方型低陷的芯片区。

BGA封装具有以下特点:(1)I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。(2)虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。(3)信号传输延迟小,适应频率大大提高。(4)组装可用共面焊接,可靠性大大提高。

BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城公司开始着手研制塑封球栅面阵列封装的芯片。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。目前,BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有70%以上幅度的增长。

五、CSP芯片尺寸封装

随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒大不超过1.4倍。

CSP封装又可分为四类:(1)传统导线架形式,代表厂商有富士通、日立、Rohm、高士达等等。(2)硬质内插板型,代表厂商有摩托罗拉、索尼、东芝、松下等等。(3)软质内插板型,其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。(4)晶圆尺寸封装:有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。

CSP封装具有以下特点:(1)满足了芯片I/O引脚不断增加的需要。(2)芯片面积与封装面积之间的比值很小。(3)极大地缩短延迟时间。CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电、数字电视、电子书、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽等新兴产品中。

篇8

DIP(DualIn-linePackage)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。

DIP封装具有以下特点:

1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。

2.芯片面积与封装面积之间的比值较大,故体积也较大。

Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。

二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装

QFP(PlasticQuadFlatPackage)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。

PFP(PlasticFlatPackage)方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

QFP/PFP封装具有以下特点:

1.适用于SMD表面安装技术在PCB电路板上安装布线。

2.适合高频使用。

3.操作方便,可靠性高。

4.芯片面积与封装面积之间的比值较小。

Intel系列CPU中80286、80386和某些486主板采用这种封装形式。

三、PGA插针网格阵列封装

PGA(PinGridArrayPackage)芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2-5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。

ZIF(ZeroInsertionForceSocket)是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。

PGA封装具有以下特点:

1.插拔操作更方便,可靠性高。

2.可适应更高的频率。

Intel系列CPU中,80486和Pentium、PentiumPro均采用这种封装形式。

四、BGA球栅阵列封装

随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA(BallGridArrayPackage)封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。

BGA封装技术又可详分为五大类:

1.PBGA(PlasricBGA)基板:一般为2-4层有机材料构成的多层板。Intel系列CPU中,PentiumII、III、IV处理器均采用这种封装形式。

2.CBGA(CeramicBGA)基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片(FlipChip,简称FC)的安装方式。Intel系列CPU中,PentiumI、II、PentiumPro处理器均采用过这种封装形式。

3.FCBGA(FilpChipBGA)基板:硬质多层基板。

4.TBGA(TapeBGA)基板:基板为带状软质的1-2层PCB电路板。

5.CDPBGA(CarityDownPBGA)基板:指封装中央有方型低陷的芯片区(又称空腔区)。

BGA封装具有以下特点:

1.I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。

2.虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。

3.信号传输延迟小,适应频率大大提高。

4.组装可用共面焊接,可靠性大大提高。

BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城(Citizen)公司开始着手研制塑封球栅面阵列封装的芯片(即BGA)。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组(如i850)中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。目前,BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有70%以上幅度的增长。

五、CSP芯片尺寸封装

随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP(ChipSizePackage)。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒(Die)大不超过1.4倍。

CSP封装又可分为四类:

1.LeadFrameType(传统导线架形式),代表厂商有富士通、日立、Rohm、高士达(Goldstar)等等。

2.RigidInterposerType(硬质内插板型),代表厂商有摩托罗拉、索尼、东芝、松下等等。

3.FlexibleInterposerType(软质内插板型),其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。

4.WaferLevelPackage(晶圆尺寸封装):有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。

CSP封装具有以下特点:

1.满足了芯片I/O引脚不断增加的需要。

2.芯片面积与封装面积之间的比值很小。

3.极大地缩短延迟时间。

CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电(IA)、数字电视(DTV)、电子书(E-Book)、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽(Bluetooth)等新兴产品中。

六、MCM多芯片模块

为解决单一芯片集成度低和功能不够完善的问题,把多个高集成度、高性能、高可靠性的芯片,在高密度多层互联基板上用SMD技术组成多种多样的电子模块系统,从而出现MCM(MultiChipModel)多芯片模块系统。

MCM具有以下特点:

1.封装延迟时间缩小,易于实现模块高速化。

2.缩小整机/模块的封装尺寸和重量。

篇9

    DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 

    DIP封装具有以下特点:(1)适合在PCB(印刷电路板)上穿孔焊接,操作方便。(2)芯片面积与封装面积之间的比值较大,故体积也较大。Intel系列CPU中8088就采用这种封装形式,缓存和早期的内存芯片也是这种封装形式。 

    二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 

    QFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。PFP方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。 

    QFP/PFP封装具有以下特点:(1)适用于SMD表面安装技术在PCB电路板上安装布线。(2)适合高频使用。(3)操作方便,可靠性高。(4)芯片面积与封装面积之间的比值较小。Intel系列CPU中80286、80386和某些486主板采用这种封装形式。 

    三、PGA插针网格阵列封装 

    PGA芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2~5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。 

    ZIF是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。PGA封装具有以下特点:(1)插拔操作更方便,可靠性高。(2)可适应更高的频率。Intel系列CPU中,80486和Pentium、Pentium Pro均采用这种封装形式。 

    四、BGA球栅阵列封装 

    随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208 Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。

    BGA封装技术又可详分为五大类:(1)PBGA基板:一般为2~4层有机材料构成的多层板。Intel系列CPU中,Pentium II、III、IV处理器均采用这种封装形式。(2)CBGA基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片的安装方式。

    Intel系列CPU中,Pentium I、II、Pentium Pro处理器均采用过这种封装形式。(3)FCBGA基板:硬质多层基板。(4)TBGA基板:基板为带状软质的1~2层PCB电路板。(5)CDPBGA基板:指封装中央有方型低陷的芯片区。 

    BGA封装具有以下特点:(1)I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。(2)虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。(3)信号传输延迟小,适应频率大大提高。(4)组装可用共面焊接,可靠性大大提高。 

    BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城公司开始着手研制塑封球栅面阵列封装的芯片。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。目前,BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有70%以上幅度的增长。 

    五、CSP芯片尺寸封装 

    随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒大不超过1.4倍。 

    CSP封装又可分为四类:(1)传统导线架形式,代表厂商有富士通、日立、Rohm、高士达等等。(2)硬质内插板型,代表厂商有摩托罗拉、索尼、东芝、松下等等。(3)软质内插板型,其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。(4)晶圆尺寸封装:有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。 

篇10

DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。

DIP封装具有以下特点:(1)适合在PCB(印刷电路板)上穿孔焊接,操作方便。(2)芯片面积与封装面积之间的比值较大,故体积也较大。Intel系列CPU中8088就采用这种封装形式,缓存和早期的内存芯片也是这种封装形式。

二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装

QFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。PFP方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

QFP/PFP封装具有以下特点:(1)适用于SMD表面安装技术在PCB电路板上安装布线。(2)适合高频使用。(3)操作方便,可靠性高。(4)芯片面积与封装面积之间的比值较小。Intel系列CPU中80286、80386和某些486主板采用这种封装形式。

三、PGA插针网格阵列封装

PGA芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2~5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。

ZIF是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。PGA封装具有以下特点:(1)插拔操作更方便,可靠性高。(2)可适应更高的频率。Intel系列CPU中,80486和Pentium、PentiumPro均采用这种封装形式。

四、BGA球栅阵列封装

随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。

BGA封装技术又可详分为五大类:(1)PBGA基板:一般为2~4层有机材料构成的多层板。Intel系列CPU中,PentiumII、III、IV处理器均采用这种封装形式。(2)CBGA基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片的安装方式。Intel系列CPU中,PentiumI、II、PentiumPro处理器均采用过这种封装形式。(3)FCBGA基板:硬质多层基板。(4)TBGA基板:基板为带状软质的1~2层PCB电路板。(5)CDPBGA基板:指封装中央有方型低陷的芯片区。

BGA封装具有以下特点:(1)I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。(2)虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。(3)信号传输延迟小,适应频率大大提高。(4)组装可用共面焊接,可靠性大大提高。

BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城公司开始着手研制塑封球栅面阵列封装的芯片。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。目前,BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有70%以上幅度的增长。

五、CSP芯片尺寸封装

随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒大不超过1.4倍。

CSP封装又可分为四类:(1)传统导线架形式,代表厂商有富士通、日立、Rohm、高士达等等。(2)硬质内插板型,代表厂商有摩托罗拉、索尼、东芝、松下等等。(3)软质内插板型,其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。(4)晶圆尺寸封装:有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。

CSP封装具有以下特点:(1)满足了芯片I/O引脚不断增加的需要。(2)芯片面积与封装面积之间的比值很小。(3)极大地缩短延迟时间。CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电、数字电视、电子书、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽等新兴产品中。

篇11

电子器件间互联与封装工艺技术

篇12

近十多年来,随着电子信息产业迅猛发展,电子工业技术更新速度越来越快,产品升级换代周期不断缩短。电子工业及其产品在给人类的生活带来便利的同时,给全球生态环境造成的消极影响也越来越严重。为此,根据高等学校材料科学与工程教学指导委员会材料化学专业规范、上海第二工业大学的办学定位以及国家和地方经济社会发展的需要,2009年经教育部批准建立材料化学专业(绿色电子材料方向)并开始招生,其是基于电子产品制造绿色化和从源头上解决电子废弃物资源化技术为主体,培养具有宽厚材料化学专业知识,电子信息制造基础知识和电子废弃物资源化技术,从事绿色电子材料设计与制备技能的专业技术人才,满足微电子及光电材料与器件制造、电子原辅料制备、电子废弃物处理等高新技术和环保产业需求[1,2]。其中《封装材料与工艺》课程是我校材料化学专业――绿色电子材料方向的一门重要的专业基础课,涵盖的技术面极广,属于复杂的系统工程,除了信息技术和工业技术外,它还涉及物理、化学、材料、化工、电子、机械、经济学、环境工程等专业领域,是理论与实践并重的技术基础课程。随着集成电路产业的发展,电子封装越来越受到人们的重视。国家教委设置了“微电子制造工程”目录外专业,国防科工委设置了“电子封装技术”目录外紧缺专业。许多高校的材料学、材料加工、机械制造方面的研究也逐渐向电子封装的材料、工艺和装备转移,已有多所高校开办了电子封装技术专业[3]。但目前针对绿色电子材料方向,同时兼顾电子废弃物资源化开设《封装材料与工艺》课程的高校并不多。因此,作为新开设专业,如何立足学校的办学定位,服务于国家和地方经济社会发展,并与复旦大学、华东理工大学和上海电力大学的材料化学专业形成优势互补,这都为我们新开材料化学专业本科教育提出了更大的挑战,也带来了难得的机遇,相应的也对材料化学相关课程的设置和教学效果提出了更高要求。

本文结合作者在上海第二工业大学材料化学专业―绿色电子材料方向的《封装材料与工艺》课程教学工作,以及在课程建设中的一些心得体会,从教学内容、教学方法及教学手段等方面进行探讨和实践。

1. 强化专业特色,优化教学内容

不同高校不同专业对电子封装课程教学内容偏重点有所不同,“985”和“211”高校重在培养研究型人才,偏重于传授理论知识.知识面较广,为学生今后深造打下牢同的基础。其他院校开设“微电子制造工程”专业,以及在“材料成型及控制工程”专业中开设“微电子封装”方向的院校,传授内容偏重于电子封装中的二级封装技术(电子组装技术),培养工程型人才。上海第二工业大学在材料化学专业(绿色电子材料方向)中开设了《封装材料与工艺》课程,和其他高校重在培养研究型人才而偏重于传授理论知识不同,为了能够使毕业生具有较好的就业前景,上海第二工业大学的培养目标定位于培养满足微电子及光电子材料与器件制造、电子废弃物处理等高新技术和环保产业需求的高素质创新人才。因此,更希望课堂上学生能够在接受本专业知识外,同时扩大知识范围。《封装材料与工艺》课程是一门学时数为48学时的专业必修课,教学内容在满足电子封装材料和工艺授课要求的同时,还需兼顾学生绿色环保及废弃物资源化理念的培养,因此课程内容的选择需要基于专业的培养目标,突出学科重点。

我们设计优选的《封装材料与工艺》理论课程体系总体分为八个部分:(1)封装的概述,包括电子封装的意义、功能及发展趋势;(2)封装材料,包括高分子封装材料、陶瓷封装材料、焊接材料、引线框架材料等;(3)封装工艺过程,包括芯片贴装、芯片互连、引线键合等;(4)封装设计,包括电设计和热控制设计;(5)先进封装技术,主要包括BGA技术、CSP技术、WLP技术及MCM技术等;(6)可靠性设计及测试;(7)电子废弃物资源化技术;(8)电子产品有毒有害物质防护与检测。

同时,为了适应电子封装的发展趋势和不断涌现的新技术和新工艺,我们在授课中尽量删除繁琐的理论推导,例如电设计章节中一维波动方程等,对部分过时的技术知识,也作了相应的调整,主要是以必需和够用为度。另外,还增加一些热门专题,如光电子、LED封装、液晶显示等的封装知识及国际国内相关法律法规等,并通过PPT及相关视频展示,进一步开拓学生对新兴先进的封装知识的了解,增强电子产品制造绿色化及废弃物资源化的理念。同时,紧紧跟随专业及行业发展的前沿,适时进行相关热点专题的调整。

2. 产学研结合,注重实践、实(见)习基地建设

实践是工科专业教育的根本已成为国际高等工程教育界的共识。我国近年来随着新的教学计划的修订,实验和实训等环节在整个教学计划中的比重明显增大。实践教学是电子封装课程的重要组成部分,是培养学生动手能力、认知能力和创新能力的重要环节[4]。为了培养具有较强创新和实践能力的、符合社会需求、高素质复合应用型工程技术人才,伴随着材料化学专业(绿色电子材料方向)组建过程, 我们加强了实(见)习和实训教学环节建设, 将绿色电子材料教研室、电子废弃物研究所、分析测试中心等进行资源整合,同时,联合校外企事业单位,例如上海市集成电路展览馆、上海杉杉科技、上海蓝宝光电、上海宏力半导体、日月光封装、上海新金桥环保等,建立了具有本校特色的校内外绿色电子材料与封装生产实(见)习基地,通过参观相关企事业增强学生对生产过程的初步直观认知。同时,采取与企业实际生产接轨的流水线式实习安排, 让每个同学负责生产制造过程中某一项工序,并定期进行轮换工作,适时地对学生进行安装、组装、贴装和封装以及电子废弃物拆卸再利用等具体工艺的实训,而这些实训内容是电子封装和电子产品资源化的基本和必备技能。通过这些实训和实习,进一步增强学生对电子封装材料、封装工艺以及电子废弃物资源化的感性认识和体验,从而实现我们对电子产品从“源头到坟墓”整个过程的绿色化的教学理念。实(见)习等基地建设是实现加强实践教学,提高实践教学质量水平,推进产学研相结合研究的基本保证。其目的是为学生创造更多机会进入实践基地学习锻炼,进一步加强实践能力和创新能力的培养,同时实现资源共享,提高设备的利用率。加强现有实践基地的建设,同时开辟新的实践基地,不仅有利于产学研相结合研究的发展,而且有利于实践教学基地的长效运转。

通过实践教学,能够培养学生团队协作精神、分析和解决问题能力,使之掌握现有生产工艺技术,提高其对新技术、新工艺、新设备等的认识,开阔了眼界,促进学生毕业后尽早融入就业单位,适应工作岗位。当前大学生就业形势严峻,缓解就业压力,就必须根据企业与学生的需要进行教学改革,建立适合当地经济发展需要的人才培养模式,使学校的办学行为与企业接轨,充分发挥企业人力资源与物质资源在办学过程中的作用,实现企业资源与学校资源的有机整合,优化资源配置。通过教学实践改革,一方面可以拓展了学生的就业渠道,解决了家长的后顾之忧,另一方面也可减轻社会就业压力,促进了社会的繁荣和稳定。

3. 结束语

由于电子封装技术的自身特点,决定了教学内容和教学手段与其他学科相比,有其特殊的要求。另外,不同层次的学校,不同的专业对于《封装材料与工艺》课程的教学要求也有所不同,所以,教师在授课过程中,要根据本校定位、专业特点以及学生情况因材施教,优选课程教学内容,并结合自身专业的教学目标,合理选择课程教学手段。在传递相关专业知识的同时,拓展了认知和感性的宽度和广度,以培养学生分析问题的能力,知识应用能力和创新意识,提高其工程职业实践能力,以满足社会对专业人才的需要。但教学探索改革要做的工作还很多,所以《封装材料和工艺》课程的教学还需要长期和深入的研究和探讨。

【参考文献】

[1]袁昊等. 紧跟社会需求,培养高素质绿色电子材料专业人才[J]. 陕西教育(高教版), 2010(4-5):73-56.

友情链接