时间:2023-10-16 09:50:10
引言:寻求写作上的突破?我们特意为您精选了4篇高层建筑结构抗震设计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
为了提高超高层建筑的抗震性,其足够的结构侧向刚度必不可少。足够的结构侧向刚度不仅可以保障建筑物的安全性、抗震性,还可在一定程度上有效抵抗建筑结构构件的不利受力情况及极限承载力下的安全稳定性。设计超高层建筑的结构抗震侧向刚度,应重点从其结构体系和刚度需求进行。
2.1结构设计。结构初步设计根据建筑高度和抗震烈度确定高度级别和防火级别。超高层结构设计首先满足规范要求的高宽比限值和平面凹凸尺寸比值限值,其次控制扭转不规则发生:在考虑偶然偏心影响的规定水平地震力作用下,扭转位移比不大于1.4;最大层间位移角不大于规范限值的0.4倍时,扭转位移比不大于1.6;混凝土结构扭转周期比不大于0.9,混合结构及复杂结构扭转周期比大于0.85。最后设计过程中严格控制偏心、楼板不连续、刚度突变、尺寸突变、承载力突变、刚度突变等现象。满足结构设计规范的同时,还应考虑建筑师的设计意图和功能需求,同时满足设备专业设计要求。结构平面的规整程度直接影响着抗震设计的强弱,尽量采用筒体结构,以使得承受倾覆弯矩的结构构件呈现为轴压状态,且其中的竖向构件应最大程度的安置在建筑结构的外侧。各竖向构件和连接构件的受力合理、传力明确,降低剪力滞后效应,杜绝抗震薄弱层产生。
2.2结构侧向刚度控制。超高层建筑的抗震性能设计主要与结构侧向刚度的最大层间位移角和最小剪力限制相关。对于层间位移角限值,其是衡量建筑抗震性的刚度指标之一,地震作用应使得建筑主体结构具有基本的弹性,保证结构的竖向和水平构件的开裂不会过大。同时,因超高层建筑的底部楼层、伸臂加强层等特殊区域的弯曲变形难以起主导作用,所以应采取剪切层间位移或有害层间位移对其变形进行详细的分析与判断。对于最小地震剪力,其最重要的两个影响因素是建筑结构的刚度和质量,当超高层建筑难以达到最小地震剪力要求时,设计人员应该结合具体情况适度的增加设计内力,提高其抗震能力和稳定性,然而,当不能满足最小地震剪力时,还需通过重新设计或调整建筑结构的具体布置或提高刚度来提高建筑物在地震作用下的安全性,而非单纯增高地震力的调整系数。
3超高层建筑的性能化抗震设计
超高层建筑的抗震性能设计,国内主要根据“三个水准,两个阶段”,即“小震不坏、中震可修、大震不倒”。超高层建筑来说,其建筑工程复杂、高度极高、面积大、成本高,一旦受到地震损害,其损失程度会更高,因此,必须充分考虑各方理论、实际情况和专家意见,兼顾经济、安全原则,定量化的展开超高层建筑的性能化抗震设计。同时,相关文件虽针对超高层建筑结构的性能化设计制定了较具体且系统的指导理念,涉及宏观与微观两个层面。但是,由于结构构件会受到损坏,且损坏与整体形变情况的分析计算都需进行专业的弹塑性静力或动力时程计算,而目前我国尚未形成相关的定量化的评价体系,因此,设计人员应在积极参考ATC-40和FEMA273/274等规范。此外,对于弯曲变形为主导的建筑结构,在大震作用后应尤其注重构件承载力的复核。
4超高层建筑多道设防抗震设计
除了上述注意事项外,针对超高层建筑进行抗震性设计时,还因注重设计多道的抗震防线。多道抗震防线是指一个由一些相对独立的自成抗侧力体系的部分共同组成的抗震结构系统,各部分相互协同、相互配合,一同工作。当遭遇地震时,若第一道防线的抗侧移构件受到损害,其后的第二道和第三道防线的抗侧力构件即会进行内力的重新调整和分布,以抵御余震,保护建筑物。目前,我国超高层建筑主要依靠内筒和外框的协同工作来达到提供抗侧刚度的目的,包含两种受力状态:首先,建筑的内外结构通过楼板和伸臂析架来协调作用,进而使得外部结构承受了较多的倾覆弯矩和较少的剪力,而内筒则承受了较大的剪力和一些倾覆弯矩,广州东塔就是此受力方式的典型;其次,以交叉网格筒或巨型支撑框架为代表的建筑外部结构,其十分强大,依靠楼板的面内刚度,外部结构即可同时承受较大的倾覆弯矩和剪力,如广州西塔。
建筑结构论文参考文献:
[1]刘烽锋.对建筑结构设计中的思路优化探讨[J].建筑工程技术与设计,2015,(9):497-497.
[2]周宏伟.刍议房屋结构设计中建筑结构设计优化方法的应用[J].四川水泥,2014,(12):283-283,286.
[3]周宏伟.刍议房屋结构设计中建筑结构设计优化方法的应用[J].四川水泥,2014,(12):313-314.
[4]周翱.房屋结构设计中建筑结构设计优化方法的应用探讨[J].建筑工程技术与设计,2014,(22):710-710.
[5]梁辉辉,杨鑫.刍议房屋结构设计中建筑结构设计优化方法的应用[J].建筑工程技术与设计,2015,(14):390-390.
[6]伍后胜,庞宇.建筑结构设计优化技术在房屋结构设计中的实际应用[J].房地产导刊,2014,(18):114-114.
[7]朴洪立.建筑结构设计中优化方法研究[J].民营科技,2014,(7):145.
[8]刘立伟.建筑结构设计优化方法在房屋结构设计中的应用探究[J].商品与质量·理论研究,2014,(7):208-208.
建筑结构论文参考文献:
[1]张世廉,董勇,潘承仕.建筑安全管理[M].2005
[2]陈肇元,土建结构工程与耐久性[M].2003
[3]杨云峰.浅谈建筑结构抗震概念设计[j].科技创新导报.2009(11)
[4]王建军.土建结构工程的安全性与耐久性[N].伊犁日报(汉),2006
[5]董心德,叶丹,张永平,蔡世连.复杂高层建筑结构基于性能的抗震设计概念[j].中国产业.2010(12)
建筑结构论文参考文献:
[1]建筑抗震设计规范(GB50011-2001)
[2]混凝土结构设计规范(GB50010-2002)
[3]建筑结构杂志
[4]高层建筑结构概念设计
中图分类号:TU37 文献标识码:A 文章编号:
近几十年来,钢筋混凝土结构有了更大的发展,混凝土强度和钢筋强度得到提高,钢筋混凝土结构的应用范围不断扩大,预应力混凝土结构也开始应用。钢筋混凝土高层建筑成为了当前建筑物的一个主体工程,如何保证建筑结构抗震设计是否过关尤为重要。设计阶段决定主体结构构件、非结构构件的尺寸与构造、连接,是结构抗震性能目标能否实现的一个重要阶段。论文就钢筋混凝土高层建筑结构抗震关键设计进行探讨,旨在促进了钢筋混凝土结构和预应力混凝土结构的飞速发展。
一、结构抗震设计的重要性
地震是一种随机振动,有难于把握的复杂性和不确定性,要准确预测建筑物所遭遇地震的特性和参数,目前尚难做到。在结构分析方面,由于未能充分考虑结构的空间作用、结构材料的非弹性性质、材料时效、阻尼变化等多种因素,同时也存在着不准确性。因此,工程抗震问题不能完全依赖“计算设计”解决,而必须立足于“概念设计”。概念设计是指设计人员从结构的宏观整体出发,用结构系统的观点,着眼于结构整体反应,正确地解决总体方案、材料使用、分析计算、截面设计和细部构造等问题,力求得到最为经济、合理的结构设计方案以达到合理抗震设计的目的。结构抗震概念设计的目标是使整体结构能发挥耗散地震能量的作用,避免结构出现敏感的薄弱部位。地震能量的聚散,如果仅集中在少数薄弱部位,必会导致结构过早破坏,目前各种抗震设计方法的前提之一就是假定整个结构能发挥耗散地震能量的作用,在此前提下才能以多遇地震作用进行结构计算、构件截面设计并辅以相应的构造措施,必要时采用弹性时程分析法进行补充计算,试图达到罕遇地震作用下结构不倒塌的目标。
二、高层混凝土建筑结构抗震设计策略
1、 从建筑的全局出发
高层混凝土建筑结构设计要从建筑的全局出发,全面考虑各种建筑部位的功能,在此基础上,科学设计每个部分的构件,保证每个部件之间的契合,促使每个部件或者是若干部件组合起来可以完成某一特定的设计要求,满足一定的现实需求,同时,通过抗震设计,使得每个构件都可以具有相应的承载力,当地震来袭,每个构件都可以有着一定的次序先后破会,整体组合构件将会有着更强大的承载力和柔性,从而延缓地震破坏的速度,消耗爆发的能量。增强建筑的整体抗震能力。
2、地基选址
地基选址是进行建筑结构设计的基础,因此,在房间结构抗震设计中,要科学避开山嘴,山包,陡坡,河流等不利因素,要本着坚硬,牢固,平坦,开阔的选址原则。亲身实地,利用先进技术设备,进行地质勘探,山石水土监测,并取样论证,科学严谨分析。力求使得整个地基牢固可靠,地质稳定无渗漏,无坍塌,无暗河,无熔岩,无火山……从而保证整个地基不会因为承载而发生小范围的坍塌。影响到整体承载能力和抗震能力设计。
3、高度的确定
按我国现行高层建筑混凝土结构技术规程(JGJ3- 2002)规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑都有一个适宜的高度。这个高度是我国目前建筑科研水平、经济发展水平和施工技术水平下,较为稳妥的,也是与目前整个土建规范体系相协调的。可实际上,已有许多混凝土结构高层建筑的高度超过了这个限制。对于超高限建筑物,应当采取科学谨慎的态度:一要有专家论证,二要有模型振动台试验。在地震力作用下,超高限建筑物的变形破坏性态会发生很大的变化。因为随着建筑物高度的增加,许多影响因素将发生质变,即有些参数本身超出了现有规范的适宜范围,如安全指标、延性要求、材料性能、荷载取值、力学模型选取等。
4、材料的选用和结构体系
在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。我国150m以上的建筑,采用的三种主要结构体系(框—筒、筒中筒和框架—支撑体系),都是其他国家高层建筑采用的主要体系。但国外,特别在地震区,是以钢结构为主,而在我国钢筋混凝土结构及混合结构占了90%。如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大地震作用的考验。在高层建筑中采用框架———核心筒体系,因其比钢结构的用钢量少,又可减少柱子断面,故常被业主所看中。混合结构的钢筋混凝土内简往往要承受80%以上的震层剪力,有的高达90%以上。由于结构以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,且效果不大,有时不得不加大混凝土筒的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值;此外,在结构体系或柱距变化时,需要设置结构转换层。加强层和转换层都在本层形成大刚度而导致结构刚度突变,常常会使与加强层或转换层相邻的柱构件剪力突然加大,加强层伸臂构件或转换层构件与外框架柱连接处很难实现强柱弱梁。因此在需要设置加强层及转换层时,要慎重选择其结构模式,尽量减小其本身刚度,减小其不利影响。
在高层建筑中,应注意结构体系及材料的优选。现在我国钢材生产数量已较大,建筑钢材的类型及品种也在逐步增多,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。在超过一定高度后,由于钢结构质量较小而且较柔,为减小风振而需要采用混凝土材料,钢骨(钢管)混凝土,通常作为首选。
另外,许多高层建筑底部几层柱虽然长细比小于4,但并不一定是短柱。因为确定是不是短柱的参数是柱的剪跨比,只有剪跨比≤2 的柱才是短柱。有专家学者提出现行抗震规范应采用较高轴压比。但是即使能调整轴压比限值,柱断面并不能由于略微增大轴压比限值而显著减小。因此在抗震的超高层建筑中采用钢筋混凝土是否合理值得商榷。
总之,钢筋混凝土框架结构是我国大量存在的建筑结构形式之一,钢筋混凝土框架结构的柱端与节点的破坏较为严重,其抗震设计中应该钢筋混凝土高层建筑结构抗震关键设计,另外,必须满足“强柱弱梁”“、强剪弱弯”“、强节点”“、强底层柱底”等延性设计原则和有关规定。
5、运用延性设计
结构良好的延性有助于减小地震作用,吸收与耗散地震能量,避免结构倒塌。因此,结构设计应力求避免构件的剪切破坏,争取更多的构件实现弯曲破坏。始终遵循“强柱弱梁,强煎弱弯、强节点、弱锚固”原则。构件的破坏和退出工作,使整个结构从一种稳定体系过渡到另外一种稳定体系,致使结构的周期发生变化,以避免地震卓越周期长时间持续作用引起的共振效应。
总之,高层建筑结构的抗震设计方法和技术是不断变化和进步的,需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。
参考文献:
[1] 计静.套建增层预应力钢骨混凝土框架抗震性能与设计方法研究.哈尔滨工业大学博士学位论文,2008.
Abstract: the conversion layers design is in the structural design of high-rise building is a key part. Taking the high-rise building with conversion layers structure as the research object, analyses the architecture design of security problems, finally discusses how to design of the building structure in how to improve the safety of the building.
Keywords: take conversion layers; Design; Construction safety
中图分类号:S611文献标识码: A 文章编号:
近年来随着科学技术的进步,现代高层建筑结构向着体型复杂、功能多样的综合性方向发展,带有转换层的高层建筑得到了大量应用。由于建筑功能的需要,形成了建筑上层的结构形式与下层的结构形式不一样;或上下层结构形式一样,但上下层结构的柱网的尺寸不一样。为解决这一矛盾,就采用了转换层结构。高层建筑结构转换层形式有梁式楼盖转换、箱形楼盖转换、析架转换、厚板转换和斜柱转换。
1带转换层建筑结构的特点及存在安全问题
1.1结构转换层的特点
1)转换结构构件常常承受其上部结构传下来的巨大竖向荷载或悬挂下部结构的多层荷载,使得转换结构构件的内力很大,因此,竖向荷载成了控制转换结构构件设计的主要因素。2)转换结构构件通常具有数倍于上部结构的跨度,转换结构构件的竖向挠度成为严格控制的目标。3)转换结构的连续施工强度大,有的施工过程复杂,有一定的难度。4)结构中由于设置了转换层,沿建筑物高度方向刚度的均匀性会受到很大的破坏,力的传递途径有大的改变,这决定了转换层结构不能以通常结构来进行分析和设计。
1.2带转换层建筑结构的安全问题
转换层在国内外早就有研究和应用。早在上世纪五十和六十年代,苏联和东欧一些学者就提出了柔性底层板材房屋的设计方案,也就是上部均为剪力墙、下部均为框架的结构体系,并认为柔性底层有利于隔震,提高整座建筑物的抗震能力,因而兴建了不少这样的房屋。这是初次通过设置转换层而取得底层大空间的尝试。但是,震害的结果表明,这种柔性底层的剪力墙房屋并不具有人们所希望的隔震、抗震能力,框支剪力墙结构的侧向刚度在剪力墙和框架交接的楼层处发生突变。在强烈地震力的冲击下,结构因底层框架刚度太小、侧移过大、延伸性差以及强度不足等而引起破坏,甚至整座建筑物的倒塌。例如1964年南斯拉夫斯可比耶地震,这类房屋很多倒塌或严重破坏;1978年罗马尼亚布加勒斯特地震,许多这样的住宅、计算中心建筑由于底层柱破坏而倒塌;1988年12月原苏联亚美尼亚地震总结出同样的教训:底层柔性的房屋抗震性能很差,地震中破坏严重。所以,底层均为框架的纯框支剪力墙结构体系,在地震区不宜采用。
2建筑结构设计中如何提高建筑的安全性
2.1竖向布置
1)应避免高位转换。根据前人研究成果,转换层位于3层以上时,层间位移角、剪力的分配及传力途径发生急剧突变,易形成薄弱层,抗震非常不利。对部分框支剪力墙高层建筑结构,其转换层的位置,7度区不宜超过第5层;8度区不宜超过3层。转换层位置超过上述规定时,应作专门研究并采取有效措施,6度时其层数可适当增加;底部带转换层的框架-核心筒结构和外筒为密柱框架的筒中筒结构,其转换层的位置可适当增加。
2)布置形式。沿高层建筑方向转换结构可以是分段布置,形成大框架套小框架的巨型框架结构;可以间隔布置,形成错列墙梁或析架式框架结构,这种情况是要求没有支撑障碍的宽敞内部空间,它必须采用大跨度楼盖结构,即采用一组三层水平构件的梁系统,由转换大梁来支撑主梁,再由主梁支撑次梁。这里的转换大梁起到解决大跨度楼盖和改变各主梁间距的作用,与用它来改变柱列是同一实质;错列剪力墙结构也可设置于建筑物的顶部,悬挂下部结构的荷载;叠层承托析架结构及多梁承托结构。
2.2结构加强层
当建筑物较高柔(例如框架-简体结构),整体刚度有可能不足时,在结构竖向的一定部位设置水平刚性楼层(即加强层),人为地加强结构的整体弯曲效应,这时转换层可同建筑物的加强层、设备层等统一考虑。由于刚度突变导致层间位移角、剪力的分配及传力途径发生急剧突变,形成薄弱层,就应控制好转换层的侧向刚度比,抗震时不应大于2。
2.3转换层结构计算的一般原则
1)带转换层的高层建筑结构可分别情况,按空间协同工作分析方法、三维空间分析方法或其它有效方法进行整体内力与位移计算。此时转换构件作为结构的一部分参与整体计算。巨型框架结构可将主框架连同次级框架一起作为整体结构进行空间分析。当次级框架梁,柱的刚度较小时,也可以将次级框架作为荷载,只对主框架进行空间分析,此时,次级框架只对竖向荷载进行内力计算。底层柱上端和转换梁(墙)宜采用平面有限单元法进行局部应力分析并相应配置钢筋。底部框支剪力墙在转换梁附近墙体宜采用平面有限单元法进行局部应力分析,此时宜采用高精度的平面应力单元。转换平板,箱形结构宜采用板单元或组合单元进行局部应力分析。2)转换层的高层建筑结构,其薄弱层的地震剪力应乘以1.15的增大系数。特一、一、二级转换构件水平地震作用计算内力应分别乘以增大系数1.8、1.5、1.25;8度抗震设计时转换构件尚应考虑竖向地震的影响。带转换层的高层建筑结构,其框支柱承受的地震剪力标准值应按下列规定采用:每层框支柱的数目不多于10根,当框支层为1~2层时,每根柱所受的剪力应至少取基底剪力的2%;当框为3层及3层以上时,每根柱所受的剪力应至少取基底剪3%;每层框支柱的数目多于10根,当框支层为1~2层时,每层框支柱承受剪力之和应取基底剪力的20%;当框支层为3层及3层以上时,每层框支柱承受剪力之和应取基底剪力的30%;框支柱剪力调整后,应相应调整框支柱的弯矩及柱端梁(不包括转换梁)的剪力、弯矩,框支柱轴力可不调整。
2.4结构布置
1)底部大空间部分框支剪力墙高层建筑结构在地面以上的大空间层数,8度时不宜超过3层,7度时不宜超过5层,6度时其层数可适当增加;底部带转换层的框架-核心筒结构和外筒为密柱框架的筒中筒结构,其转换层位置可适当提高。剪力墙和筒体底部墙体应加厚。转换层上部结构与下部结构的侧向刚度比;底部大空间为1层时,等效剪切刚度比Y宜接近1,非抗震设计时Y不应大于3,抗震设计时丫不应大于2。底部大空间层数大于1层时,等效侧向刚度比Ye宜接近1,非抗震设计时Ye不应大于2,抗震设计时Ye不应大于1.3。框支层周围楼板不应错层布置;框支剪力墙和筒体的洞口宜布置在墙体的中部;框支剪力墙转换梁上一层墙体内不宜设边洞,不宜在中柱上方设门洞。
2.5截面设计
1)截面的限制条件:框支梁与框支柱截面中线宜重合;框支梁截面宽度不宜大于框支柱相应方向的截面宽度,且不宜小于其上墙体截面厚度的2倍,且不宜小于400mm;当梁上托柱时,尚不应小于梁宽方向的柱截面宽度。梁截面高度,抗计时不应小于计算跨度的1/6,非抗震设计时不应小于计算跨度的1/8;框支梁可采用加腋梁;2)配筋构造:梁上、下部纵向钢筋的最小配筋率,非抗震设计时分别不应小于0.3%;抗震设计时,特一、一和二级分别不应小于0.6%、0.50%和0.40%;b.受拉的框支梁,其支座上部纵向钢筋至少应有50%沿梁全长贯通,下部纵向钢筋应全部直通到柱内;沿梁高应配置间距不大干200mm、直径不小于16mm的腰筋。框支梁上部的墙体开有门洞或梁上托柱时,该部位框支梁箍筋应加密配置,箍筋直径、间距及配箍率按规范采用,当洞口靠近框支梁端部且梁的受剪承载力不满足要求时,可采取框支梁加腋或增大框支墙洞口连度等措施;框支梁不宜开洞。若需开洞时,洞口位置宜远离框支柱边,上、下弦杆应加强抗剪配筋,开洞部位应配置加强钢筋,或用型钢加强,被洞口削弱的截面应进行承载力计算。
3结语
论文重点针对转换层设计是高层建筑结构设计中非常关键的部分。论文重点针对以带转换层的高层建筑结构为研究对象,分析了建筑设计中的安全问题,最后重点探讨了如何在建筑结构设计中如何提高建筑的安全性。希望对实际工程提供借鉴。
参考文献: