时间:2023-10-26 09:49:50
引言:寻求写作上的突破?我们特意为您精选了4篇地质灾害评估与防治范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
中图分类号:F407.1 文献标识码:A 文章编号:
一、广西区域内的采矿条件及矿山地质灾害情况
广西是我国较为重要的有色金属矿产资源基地,但是由于广西地质情况复杂,各种矿山开采开发条件不一,各个有色金属矿产生产基地不断发生各种地质灾害,也严重制约了地区经济的进一步发展。
广西地质条件复杂、雨量充沛,因为形成了较为特殊的岩溶地貌,地质灾害主要有活动频繁、分布广泛、群发性强、危害严重等特点。广西主要的地质灾害类型主要有边坡崩塌和滑坡、危岩、岩溶地面塌陷、地基不均匀沉降、泥石流、矿坑突水、膨胀岩土地基胀缩、区域地下水位下降等等。近年来影响较为严重的是崩塌、滑坡和岩溶地面塌陷、危岩等,这几种地质灾害情况普遍存在广西的矿山地质环境中。
三、矿山环境地质灾害类型分析
矿山环境地质灾害分析主要分为现状评估、预测评估以及综合评估三个部分,根据不同的地质灾害情况,可以进行分类描述,描述的要点主要有以下几点:
1、滑坡:要查明滑坡构成要素及变形的空间组合特征,确定其规模、类型、主要诱发因素,预测发展趋势,评价其对矿山工程项目的危害,要描述清楚:①滑坡发育位置、地形地貌及规模;②滑坡的构成要素,准确写明滑坡周界、滑坡后壁、滑坡前缘、鼓丘、裂缝等要素,还要包括变形的空间组合特征和变形迹象;③分析滑坡区的地层、岩性、地质构造及其组合关系等;④滑坡类型、诱发因素分析,注意结合地质条件和降雨特征分析滑坡形成机制及发展趋势;⑤滑坡灾害历史记录,包括历次危害范围、对象及危害损失及处置情况;⑥当地整治滑坡经验;⑦附滑坡特征表等。
2、泥石流:要查明泥石流形成的地质条件、地形地貌条件、汇水面积、植被发育状况、人类工程活动的影响,确定泥石流的形成条件、规模、活动特征、侵蚀方式、破坏方式及程度,预测泥石流的发展趋势及对矿山工程项目的危害。
3、边坡崩塌:要查明与斜坡崩塌相关的岩性组合、坡体结构、高陡临空面发育状况、降雨情况、地震、植被发育情况、人类工程活动等因素,确定崩塌的类型、规模、运行机制、危害等,预测崩塌的发展趋势、危害等。
4、岩溶地面塌陷:要查明形成地面塌陷的地质环境条件,确定地面塌陷的成因类型、分布、危害、形态特征,分析重力和荷载作用、震动作用、地下水及地表水作用、人类工程活动等对塌陷形成的影响,预测地面塌陷的发展趋势。
5、危岩:要查明危岩成因类型及动态变化。对多因素产生的危岩应判明控制性因素及诱发因素,评价危岩对矿山建设及矿山生产的危害及影响。
6、地面沉降:查明评估区所处区域地面沉降区的位置、沉降量、沉降速率及沉降发展趋势,形成原因,评价地面沉降对矿山生产及周围环境的影响。
7、矿坑突水:要查明矿坑突水的位置、水量、原因、危害等,分析发展趋势。
8、不稳定边坡应重点关注不稳定斜坡,尤其是与重要工程相关的不稳定斜坡,应做到不遗漏。
9、其它不良地质作用:①包括岩溶、冲沟、地下水质污染、洪水、特殊土等,须描述其位置、规模、发育特征、分布规律等,分析其稳定性和发展趋势,评估其危害范围、对象及危害程度。②位于河边缘和沟谷出口地段之场地,应阐述洪水位和河流动力作用特征,分析河流可能对场地之危害。 ③特殊土须描述其分布规律、土体物理力学特征,分析评价其潜在影响和危害;④矿山火灾,煤岩、瓦斯突出,冲击矿压等应根据矿山的实际,针对具体指出原因,或预测发生的可能性和危险性。
在完成现状评估之后,可以根据矿山建设项目的特点以及对地质环境条件的改变和影响程度,结合评估区现有地质灾害、不良地质作用的发育特征,分预测性分析矿山建设加剧已有地质灾害和诱发新的地质灾害的可能性,并评估可能造成威胁的范围和目标,评述其危害程度、危害对象。
四、广西矿山环境地质灾害防治措施建议
根据地质灾害类型、危害对象和程度、危险性大小的实际情况、不同地质灾害的成因等,应当采取不同的防治措施,其主要方式主要有以下几种:①避让:对于危险性大的区段和工程部位,必须根据实地情况提出避让或专项防治措施;②工程措施:支挡、抗滑、护(固)坡、排(截)水、保持水土、生物治理、拦碴坝等,针对矿山地下开采应注意选择合理的采矿方法、露天开采边坡开挖的和台阶的几何尺寸满足设计要求;③针对评估区中可能对拟建工程、自然和社会环境构成危害或影响的地质灾害及地质环境问题,提出方向性、原则性防灾减灾要求和建议;根据地质灾害处置与否对工程正常建设及使用的影响程度,指出“必须”、“应该”或“建议”进行治理的灾点。
1、边坡崩塌的防治措施。由于露天开采而导致的边坡崩塌在广西矿山地质灾害中较为常见。比如在露天开采深度大于5米后,由于采坑周界留下高临空面的边坡,在卸荷节理裂隙发育处或边坡角较陡时,雨季中极易发生边坡崩塌灾害并伴生地裂缝。对应这种情况首先要规范露天开采作业,严格按矿山开采设计要求放坡外,还要根据边坡不同地段节理裂隙发育、破碎程度和采坑深浅予以放坡。采用少孔、浅孔、少装药量爆破开挖,以减少爆破对露天采坑边坡稳固性的影响,采坑较深时或最终边坡前要预留保护带。
2、边坡滑坡的防治措施。露天矿山开采容易使矿山造成高陡边坡,坡面倾角过大。由于剥离面的破坏、岩层、在地下水渗透、坡面的失衡、岩石的风化等内在作用,以及例如受突然大暴雨和机械振动影响等影响外界作用,很容易造成滑坡现象。应对边坡滑坡主要采取以下防治措施:①消除和减轻地表水、地下水对滑坡的诱发作用;②改善斜坡状况,增加滑坡平衡稳定条件;修建抗滑桩、抗滑挡墙、抗滑片石堆等支挡工程,以增加斜坡的稳定性;采用锚固工程,加固滑坡;③加强监测预报,有效进行灾害预报。
3、岩溶地面塌陷的防治措施。采取地下水控水措施,通过对漏水的矿洞、河道、水库等地表水进行铺底防漏,严重漏水的洞穴用水泥灌注填实来控制地表水,还要对岩溶通道进行局部灌浆或者帷幕灌浆处理以减少地下水位升降导致的岩溶塌陷。此外,应采用一些工程加固措施避免岩溶地面塌陷的进一步发展。另外,还要对场地进行详细的岩土工程勘察,要查明岩溶发育情况,严禁场地及周边大量抽取地下水等,进一步从根本上避免或者减少由于人为因素所造成的岩溶塌陷情况。
4、危岩的防治措施。一般遵循预防为主,防治结合的方针。对一些岩体不大的危岩,在工程条件允许下可进行危岩的清除,或者进行锚索、锚杆等工程加固支护措施;对于一些危险性较大且难以治理的危岩,可采取搬迁、设立警戒范围等方法。另外,对于危岩的防治,应该早发现、早处理,未能及时处理的,应加强危岩变形监测,群测群防、做好监测预报工作,以便更好的保护生命和财产的安全。
四、结束语
矿山地质灾害是源于人类工程经济活动及地质开采而引发的环境地质问题,主要发生于采矿区周边。在进行矿山区域的建设性项目可行性研究时,需要做专项的矿山地质灾害危险性评估,将矿山地质灾害控制在可承受范围内,才能避免不必要的经济损失及人身伤亡。
参考文献:
[1]骆美相.浅谈广西矿山地质灾害[J].技术与市场.2012年第04期
[中图分类号] F407.1 [文献码] B [文章编号] 1000-405X(2014)-2-244-1
所谓地质灾害,指的是受到自然因素、人为因素等所引发的一系列灾害,给人们的生命安全、财产安全等带来严重的影响。例如山体滑坡、泥石流、地面裂缝、塌陷、崩塌以及地面沉降等地质灾害。因此, 对于这些自然灾害进行评估,运用正确、科学的评估原则、评估方法和量化指标,并采取一定的措施达到防治的目的。
1地理区域性地质灾害危险性评估的原则、方法和量化指标
1.1评估原则
在对地理区域性地质灾害的危险性进行评估时,首先要对其评估原则进行考虑,主要遵循以下三个原则:
1.1.1地质灾害危险性程度的划分
在对其危险性程度进行划分时,将我国国土资源相关部门颁发的地质灾害文件作为主要的划分依据,对其危害性级别分为大、中、小三个级别。
1.1.2坚持“就急、就重”的原则
在对某个地质区域的灾害危险性进行评估时,要将危险性进行明确的登记和分区,注重就急不就缓、就种不就轻。
1.1.3坚持“区域相异、相似”的原则
在对地理区域性的相关的拟建工程的危害级别、程度进行考虑时,首先要对该地域的地质环境条件、发展等方面进行了解,对其进行划分的过程中,主要以地质灾害危险性程度为重要的参考依据。
1.2评估方法
首先将地理区域性地质灾害危险性评估原则作为重要基础,然后通过对地理区域的地质灾害的分布情况、存在形式以及严重程度进行了解,最后提出有效的防治措施进行解决。
1.3评估量化指标
在对地质灾害的量化指标进行评估时,主要对灾害分布的长度、土方体积、灾害影响范围、灾害带来的经济损失、灾害种类以及灾害程度等方面进行考虑,然后对地质灾害进行预测评估、现状评估和综合评估。
2对地质灾害危险性的评估
2.1现状评估
对于地质灾害危险性进行现状评估,不仅要具备大量、全面、系统的地质专业知识,而且还要采取专业性强的评估方法,对其进行现状评估,主要对以下两个方面:
(1)对地质灾害区域的水文、地质、地形、气象、岩体工程以及地震构造等方面进行分析和了解。
(2)对地质灾害区域周围正在建设的工程和以往的建设工程项目进行认真的分析和评估,只有在对所有的区域信息进行全面、认真的评估之后,才能更好的进行现状评估。
2.2预测评估
对地理区域性地质灾害的危险性进行预测评估,其主要的评估范围是对工程建设项目的施工现场以及建筑工程施工项目建设中存在的安全问题。对实际的施工情况进行分析后,具有足够的论证后,对滑坡、泥石流以及崩塌灾害周围半径不超过50米的区域设置施工项目。立足于建设工程角度,需要对项目工程建设过程中可能存在的灾害和危险进行良好的控制和把握,进而对其灾害性进行评估。
2.3综合评估
综合评估,指的是在实现预测评估与现状评估的互相结合的前提条件下,对地质灾害区域可能存在的安全隐患以及区域环境分布情况的差异性进行评估的一种方式。另外,在对区域内适应性进行评估之外,还要对区域级别进行划分,主要将级别分为适宜、适应性差、相对适宜三个级别;对其灾害危险程度进行划分,主要分为大、中、小三种程度。
3地理区域性地质灾害的防治措施
3.1制定科学合理的地质灾害防治方案
通过对地质灾害危险性评估结果进行分析后,针对其结果制定出一套具有科学性、合理性、有效性的地质灾害防治方案。所制定的灾害方案除了明确地质灾害防治的重点之外,还要对灾害种类、灾害级别以及灾害情况等进行全面的了解,然后选择具有针对性、目的性、严密性、可操作性的防治建议和措施。
3.2滑坡地质灾害的防治措施
针对出现的滑坡地质灾害进行防治时,首先要采取避让措施,尽量绕开出现滑坡地质灾害周围的区域。如果不能完全避开滑坡地质灾害区域,那么就要对滑坡地质灾害的覆盖范围、规模以及种类进行考虑,然后确定具体的防治措施。例如通过采取设置挡土墙设施、建造排水系统以及更改滑坡体等防治措施。此外,尤其要注意,在进行深挖方工作时,最大程度的防止在滑坡体前缘位置进行该项工作。
3.3崩塌地质灾害的防治措施
首先要对出现崩塌地质灾害的位置区域进行及时、快速的处理,有效的避免给以后工程建设的开展埋下安全事故隐患;其次,对于稳定性不强的后壁陡边坡进行治理,有效的防止崩塌灾害造成的重大威胁;最后,严格的根据实际的工程建设情况,按照建设工程治理标准规范对其进行治理和防范。例如对于那些建设工程中切坡高度大、开挖量大的工程项目来说,要着重对其中可能存在的危险进行关注。
3.4斜坡不稳定地质灾害的防治措施
在部分区域中,其沟谷比较深,进而会很大程度的出现高陡边坡。所以,在对该类工程项目进行建设的过程中,可以运用将路基段转变为高架桥以及侧移等方式,来有效的避开出现高陡边坡的现象。另外,如果工程建设过程中遇到的高陡边坡,不能采取有效的方式进行避让,那么可以采用控制开挖深度、加固以及设置安全坡比和坡型的方法,来有效的保证高陡边坡的稳定性。
4结语
总之,伴随着我国城市建设规模的逐渐扩大,建筑工程建设数量在不断的增加。如果人们没有引起对地域性灾害防治和地质环境条件勘测的重视,那么很可能导致建筑工程在建设过程中留下安全事故隐患,进而给人们的生命、财产安全以及社会的稳定带来严重的影响。因此,需要加强对地理区域性地质灾害危险性评估工作的重视,并采取积极有效的防治措施来对地质灾害进行预防和控制。
参考文献
某开采区主要位于矿区中南部,其长度为207m,平均宽度为70 m,底部采场平台的面积为14525m2。采矿最大标高在矿区的南部,为450m,最小标高在矿区的北部,为310m。本矿区的斑状花岗岩矿体比较厚,呈现带状,产出比较稳定,矿体结构比较简单、稳定,大部分覆盖面积已经被剥离,黑云母花岗岩作为围岩,属于中等稳固岩石。在此矿区进行开采的时候,主要采用自上而下分水平台阶的露天开采方式。
1.矿山地质环境地形地貌
此矿区是丘陵地貌,矿区以及主体山脉主要为东西走向,次要山脉为南北走向。矿区的一般标高是300-440m之间,最大高差为280m。此矿区的地形切割比较深,坡度一般均在25°之上,具有自然的排水设施。其地表主要由洪冲积物和第四系残破积组成,覆盖率达到了70%之上。综上所述,此矿区地形地貌属于中等复杂程度。
2.矿山地质环境影晌现状评估
2.1地质灾害影响
通过对矿区的勘查发现,现阶段的地质灾害主要为崩塌与滑坡。崩塌主要指的就是土质边坡剥落崩塌,边坡高度为2-5m,崩塌体上含有较好的杂草,土层成分主要包括石英粉砂、粘土、石英砂等。崩塌体的长度大概是5m,厚度大概在2-3m之间,宽度为6m,呈现椭圆形,体积为20m3,属于小型崩塌,影响范围大概是30。
2.1.1崩塌
(1)位置。
崩塌位置主要位于矿区的西侧,和采矿区的距离比较近,此崩塌基本上就是90°陡坡土体的下坠,落距比较小,属于最近形成的。其土层是第四系残破积层,主要包括粘土、石英砂、石英粉砂等成分,呈现灰黄色、浅黄色,大概厚度是2-5m,具有良好的植被情况,崩塌体体积在3-5m3之间,影响范围大概是15。
(2)现状及危害。
崩塌体后陡壁主要是土质边坡,具有良好的植被情况。崩塌体属于最近形成的,散乱堆积在一起,规模比较小。其产生变形的原因主要包括:强烈的土体风化作用,土质松散,边坡开挖等施工活动影响等等。同时,雨季降雨会对其产生一定的冲蚀作用,出现下渗等现象,对矿区稳定性产生一定的影响,进而出现崩塌灾害。导致发生崩塌现象的主要原因就是边坡开挖施工,其次就是强降雨。当发生崩塌灾害之后,会对矿区公路运输以及行人安全产生威胁。
(3)稳定性评价。
此崩塌体均散落在坡底,已经稳定。在后期降雨、风化侵蚀等作用下,时有发生掉块现象,但是规模比较小,危险性也比较小,最终评估结果就是矿区崩塌危险性小。
2.1.2滑坡
此矿区滑坡主要位于北部旧排土场边坡处,矿山地质灾害点现状说明见表1所示。排土场土层主要就是第四系破残积层,主要成分是粘土、石英砂、石英粉砂,呈现灰黄色、浅黄色,具有少量块石。因为在进行排土的时候,没有严格按照有关规范标准的规定与施工措施执行,导致台阶分级施工质量较差,加之土层较为松散,具有很好的边坡角,致使其相对高差超过了15m。在降雨、下渗等因素的影响下,导致其稳定性、土饱和性均较差。在排土场临空位置处形成滑坡体,在坡脚处的影响范围长度达到了20m,宽度为12m,形成了约100m3的滑坡土方量,影响范围大概在150左右,属于小型滑坡。因为滑坡体距离公路与村庄比较远,前面还是排土场的空地,主要就是因为排土堆放不规范引起的,没有出现财产损失与人员伤亡,具有的危害性比较小。
由此可以看出,在此矿区开采过程中,发生的崩塌、滑坡等灾害规模比较小,基本没有造成财产损失与人员伤亡,对矿区开采影响比较小,因此,矿山地质灾害现状评估为危险性小,基本不会影响地质环境。但是,需要对不稳定边坡进行监测与处理,保证其安全性、稳固性,避免出现财产损失与人员伤亡。
2.2含水层影响
此矿区开采底层界限处在侵蚀基准面上,其含水层主要为块状岩类裂隙含水层,具有较弱的富水性,采坑还没有露出含水层。通过相关野外调查分析,流经地表的水的pH值是7.5,矿化度要低于1g/L,属于淡水。现阶段,矿区开采还没有导致含水层结构出现变化,同时也没有出现水体恶化、水位下降等不良情况。所以,矿区开采对地下水、地表水的影响非常小,对含水层影响程度较轻。
2.3地形地貌景观影响
此矿区主要为丘陵区,其地形基本为西南高东北低,具有良好的植被情况,矿区周围没有风景名胜与自然保护区等。在进行矿区开采的时候,主要就是露天开采,在进行开采的时候,必然会对其植被情况产生破坏,对原来地形地貌景观的破坏影响程度非常大。因此,其地形地貌景观影响评估为严重。
2.4土地资源影响
此矿区已经开采了很多年,破坏面积达到了5.6h其中采矿区的面积为4.8h,原有的排土场面积大概为0.8h,职工生活区、道路等均会占有一定的土地面积。通过对矿区现场的勘察,大部分破坏土地为林地。
2.5矿山地质环境影响现状评估
根据矿山地质环境现状评估情况,对矿区地质环境条件差异性与地质环境问题分布、危险性等进行考虑,并且分析其受影响程度与社会经济属性,进而对矿区分段的影响程度进行分析,明确其量化指标,在“区内相似、区际相异”原则的条件下,运用半定量分析法、定性分析法对矿山地质环境影响予以等级分区。在进行实际划分的时候,一定要对地质灾害、含水层、地形地貌景观、土地资源这四方面的影响进行分析,进而对其程度予以明确,矿山地质环境影响程度分级如下:当矿山地质环境影响程度为轻度时,针对地质灾害而言,其表现为:灾害规模小,发生几率小。对分散性居民、小规模工程设施产生影响,造成的经济损失与人员伤亡较低;针对含水层而言,其表现为:矿井的涌水量低于3000m3每天。矿区含水层水位下降幅度较小,不会影响周边生活、生产用水;针对地形地貌景观而言,其表现为:对原来地形地貌景观影响程度较小,对自然保护区、风景名胜、交通等的影响程度也较低;针对土地资源而言,其表现为:占用破坏林地、草地的面积不超过2h。当矿山地质环境影响程度为中度时,针对地质灾害而言,其表现为:灾害规模中等,发生几率较高。主要对城镇与村庄居民、交通、主要工程设施等产生影响,出现了一定的经济损失与人员伤亡;针对含水层而言,其表现为:矿井的用水量在3000-10000m3每天。地下水水位下降幅度比较大,呈现半疏干状态。对周边生活、生产用水产生了一定的影响;针对地形地貌景观而言,其表现为:对原来地形地貌景观影响程度较大,对自然保护区、风景名胜、交通等产生了一定的影响;针对土地资源而言,其表现为:占用破坏耕地2h以下,占用破坏林地、草地2-4h。当矿山地质环境影响程度为严重时,针对地质灾害而言,其表现为:灾害规模大,发生几率高。对城镇、村庄、交通、主要工程设施的影响较为严重,造成的经济损失也比较大,并且会出现一些人员伤亡;针对含水层而言,其表现为:矿床含水层结构被破坏,出现导水通道。矿井的涌水量超出了10000m3每天。地下水位出现下降的情况。矿区周边含水层的水位也在下降,或者呈现一种疏干状态,出现地表水渗漏的现象;针对地形地貌景观而言,其表现为:破坏了原有的地形地貌景观,对自然保护区、风景名胜、交通等产生影响,破坏了生态环境;针对土地资源而言,其表现为:破坏了基本田地,占用破坏耕地2h以上,占用破坏林地、草地4h以上。
3.评估区矿山环境问题的防治难度评述
3.1地质灾害影响防治难度
在此矿区中发生的地质灾害主要为崩塌、滑坡、泥石流。在发生崩塌等灾害的时候,会对现场工作人员、机械设备等产生一定的威胁。此时,可以通过种草植树、土钉挂网植草等方式进行加固,避免发生崩塌等灾害;同时,也可以在边坡台阶上植树种草,有效提高土层的稳固性。这些防治措施非常简便,防治难度也比较小。针对泥石流灾害而言,可以通过规范堆土场、压实、修筑截水沟与排水沟、种草植树等方式进行防治。其防治措施比较简单易行,相应的防治难度比较小。
3.2地形地貌景观影响防治难度
在此矿区开采中,地形地貌景观影响主要就是由矿山露天开采导致的,在进行开采的时候,容易形成高陡坡,不仅具有一定的危险性,还会影响边坡周围的美观。并且,在矿区开采、破碎的时候,一般均会产生大量的地表、粉尘等,非常容易出现水土流失现象,对矿区自然环境产生一定的影响。通常情况下,可以通过绿化措施、分区湿式凿岩、洒水抑尘等方式进行治理,可以有效达到预期的防治效果,相应的难度也比较小。
3.3现状评估及预测评估
在此矿区内,矿山开采、道路边坡、旧排土场边坡等均具有小规模的崩塌、滑坡现象,矿山开采的含水层影响程度评估为轻度、土地资源影响程度评估为严重、地形地貌景观影响程度评估为严重。通过对矿山地质环境影响的现状评估结果,可以对其进行预测评估:矿山地质灾害主要为崩塌、滑坡、泥石流,其中崩塌、滑坡灾害的危险性比较小,造成的危害也比较小,其评估为轻度;泥石流灾害的危险性比较大,造成的危害也比较大,对矿山地质环境有着非常严重的影响,其评估为严重。矿山开采对含水层影响程度为轻度;对地形地貌影响程度为严重;对土地资源影响程度为严重。
4.结束语
总而言之,随着矿山开采规模与范围的不断扩大,人们对其地质环境的变化也越来越重视。在矿山开采中,一定要对其地质环境影响程度进行分析,这样才可以对可能发生的地质灾害进行预防,并且全面了解矿区的地质条件,为矿区的高效开采提供可靠依据。同时,在实际开采过程中,一定要对矿山地质灾害、含水层、地形地貌景观、土地资源这四个方面进行详细的分析,了解其影响程度与防治难度,保证矿山开采的有序进行,实现矿山开采的经济效益与社会效益。 [科]
【参考文献】
[1]何芳,徐友宁,乔冈,刘瑞平.中国矿山环境地质问题区域分布特征[J].中国地质,2010(05).
[2]王飞,吴浩,刘灏.我国矿山地质环境存在的问题及其防治[J].科技致富向导,2011(21).
Abstract: in order to explore the regional geological disasters mass intensity activity principle, method and evaluation index system, from the basic meaning of geological disasters strength fast measurement and technical requirements of the two aspects briefly analyzes the impact of cluster activities of the main geological disasters intensity index and parameters, and reference magnitude of calculation and division (macro) basis, this paper puts forward the distribution of geological disasters in the bedding face for measuring the density regional geological hazards activity intensity index of the basic ideas and grading standards, and list the two most bedding face the calculation method of density.
Keywords: geological disasters intensity evaluation surface density
中图分类号:[P954] 文献标识码:A 文章编号
区域群发地质灾害(崩塌、滑坡、泥石流)活动强度分析评价,一直是一个世界性的难题,长期以来,在是否需要进行地质灾害活动强度分析评价、如何进行地质灾害活动强度评价等方面还没有形成有意义的共识。但是,不同地区地质灾害活动强度差异是很明显的,包括历史上累计的叠加活动强度和一次群发地质灾害活动强度,不同地区、不同的诱发条件下都可能存在明显的差异。以下,本文就地质灾害活动强度分析评价的原理、指标、计算方法进行分析、阐述。
一.地质灾害活动强度分析评价的基本原理
从物理学的基本定义分析,地质灾害活动强度是指地质灾害事件发生过程中释放的能量的大小。例如,地震震级与能量的关系,国际上统一将地震强度的大小用震级(M)表示。地震发生时,震源处急剧释放出能量,并以弹性地震波的形式向四周传播。地震震级分为9级,一般小于2.5级的地震称为无感地震;2.5级以上的称为有感地震;5级以上的地震会造成破坏,称为破坏性地震;4.5级≤M<6级的称为中强震;6级≤M<7级的称为强震;M≥7级的称为大地震。
长期以来,对于一次泥石流、滑坡、崩塌等灾害事件的释放能量的定义,在地质灾害强度等级的划分中,并未得到明确定义、划分,通常是根据灾害物质体积的大小进行规模等级的区分,而需要进行严格定义的灾害内容应是速度与体积。针对泥石流,可分别测量其体积与流速;由于速度相对较快、测量较为困难,且与释放能量成正比,因此山体滑坡、崩塌的强度定义应以体积为标准进行划分。
在一定区域内的地质灾害活动强度指标,其主要包括:距离、体积与速度、数量与频率、面密度与点密度等指标因子。目前由于我国尚未明确统一标准,从而很难对地质灾害活动强度加以描述、量化。根据基本的物理定义进行分析,地质灾害活动强度主要包括发生灾害时,具体活动的数量与频率、速度与规模,严格意义上说,是灾害活动速度、规模、频率的乘积(I=F×V×S)。然而,在实际测量时,若想快速、逐个测定群发灾害活动的速度与体积,需要极为先进的相关配套设备与技术,目前以我国的科技水平与技术方法难以实现。在发生地质灾害后的十天到三十天内,倘若没有及时进行活动强度级别的测定,强度指标也就失去了现实意义。由此,若要实现强度的快速测定,必须进行测量技术的研究、开发,或是针对测量标志进行简化,而技术开发过程较为缓慢,我们可以侧重于测量指标简化手段,分析、探索一个能够快速测定地质灾害强度释放的重要指标,可以地震灾害的震级计算为理论基础,放弃以往测量一次群发地质灾害活动所释放的全部能量,而是针对灾害面波质点运动,测量其最大值。
二.面密度是地质灾害活动强度评估的重要指标
实际在进行地质灾害的测量分析评价时,一次群发地质灾害活动的体积、数量、速度三种指标数据,其至少有两项数据的快速测定难以实现,通常需要搜寻有关事件的相似参数来进行大致的估测评价。地质灾害活动强度的快速测定,对于灾害现场的应急救援有着重要意义。为实现灾害活动强度的快速评估,测量目标的频率可用数量来代替,将体积进行简化更换为面积,而速度可用位移来代替,在外在的环境条件、人为因素相同的情况下,速度越快,位移越大。由于数量、位置可以进一步反映面积,从而地质灾害活动强度评价的主要参数一般为面密度。点密度,也可将其作为参考指标,倘若比例尺图较小,难以进行面密度的测量,或是单一的地质灾害活动规模不超过1000M3,地质灾害活动强度的评价可选用最大点密度作为参考指标。但对于一些超大规模的地质灾害活动,例如我国08年的汶川地震,往往存在点密度失真的现象,灾害活动过程中的大量崩塌、滑坡灾害成复合增长,从而只有采用最大面密度,才能够真实、全面的反映区域地质灾害活动强度。随着我国科学技术的发展,地质灾害活动最大面密度的快速测量,利用GIS技术与遥感技术是完全可以实现的。从物理学角度出发,采用与地震等级划分相类似的灾害面波质点运动极值计算,有助于针对不同地区的地质灾害活动强度进行对比、分析,从而降低了地质灾害活动强度等级划分的难度。
三.地质灾害活动最大面密度计算方法与技术
随着我国科学技术水平的快速提升,GIS技术与遥感技术,在地质灾害活动强度评估中得到了充分运用。针对区域地质灾害活动最大面密度的快速测定,可通过GIS平台的快速计算、高精度的摇感解译调查来实现。整个统计、分析、计算的过程,通常是在比例为1:10000或更大的图纸上进行。以下,本文列举两种较为实用的计算方法,以确保最大面密度的真实性与全面性。
(一)以统计学栅格原理为计算依据:
在进行分析计算的过程中,以统计学栅格原理为主要依据,充分利用规格相同的栅格,设计步长为2千米、3千米、5千米等。对于一些地质灾害活动分布密度较高的区域,测量间隔可设置为一千米,各栅格内的灾害体积可自由进行统计,通过与栅格面积的相除,可得出相应的灾害面密度,直至最后方可获得最大面密度。此种计算方法相对简单,通过GIS平台的应用,实际的操作较为简便。但其也带有一定的弊端,例如栅格的大小难以确定,从而难以获得可靠的依据。从原则上来看,栅格的步长应在两千米以上,但由于一些单体滑坡的面积大于一千平方米,由此使步长的大小失去了原有的意义。在进行实际的测量时,多数灾害活动区域的最大面密度分布较为集中、范围较小,故步长太大也将失去最大面密度的意义。因此,常规情况下,建议步长应设置在2千米到3千米之间较为合适。
(二)以地貌分析为基础的计算:
此种计算方法,可在灾害区域的地形、地貌分析基础上进行。首先,应选择地质灾害活动密度相对较大的小流区域、自然斜坡区域,针对每个区域的灾害面积进行面密度的统计,对各个不同小流区域的测量结果进行分析、比较,由此得出最大面密度。通过此种方法获得的最大面密度统计结果,其具有一定的地貌、地质依据,从而突显出了明确的地表意义。
在进行实际测量的过程中,上述两种方法都较为简单、方便,两种计算可同时进行,从而能够彼此验证、互相补充,由此确保测量的准确性与全面性。
结束语:
综上所述,地质灾害活动强度评估需要的各项指标,其应用、普及的过程较为缓慢,在此期间需要不断的修改与完善。对于实际发生的灾害活动强度评估,应选用具有针对性的计算方法与技术。在未来,随着新技术与设备的研发,我国地质灾害活动强度的评估将更加准确、全面,在实际的灾害救援过程中发挥更大的作用。