时间:2023-11-10 10:02:55
引言:寻求写作上的突破?我们特意为您精选了4篇培养学生逻辑推理能力的意义范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
案例一:凸透镜成像的规律是初中物理教学的重点。学生通过实验总结出当u>2f,2f>u>f,u
学生通过实验总结出当u>2f时凸透镜成倒立、缩小的实像,当2f>u>f时凸透镜成倒立、放大的实像,此时让学生分析凸透镜可成倒立、等大的实像吗?引导学生推理分析,当蜡烛逐渐向凸透镜靠拢的过程中,像逐渐变大,由缩小到放大,肯定在某一位置凸透镜成倒立、等大的实像。再进一步追问:当u满足什么条件可成倒立、等大的实像呢?不难得出“当u=2f可成倒立、等大的实像”。当u=f时,可提示学生蜡烛就放在凸透镜的焦点上,根据凸透镜对光的作用和光路可逆原理,可得出经凸透镜折射后的光线是平行光,光线不能会聚,其反向延长线也不能相交,所以此时凸透镜不成像。在此之后可以引导学生继续用推理的方法分析,在U>f时光线经凸透镜折射后会会聚,所以成实像,U
案例二:在探究影响斜面机械效率的实验中,学生通过实验总结出斜面的倾斜程度越大,机械效率越高;斜面越光滑,机械效率越高。学生很难理解斜面的倾斜程度对机械效率的影响,在教学中可尝试用极限的思维帮助学生进行推理,帮助学生理解。
学生通过实验方法总结出了“斜面的倾斜程度越大,机械效率越高”的结论。这时可以引导学生用推理的方法分析:若木板水平放置,即斜面的倾角为零,此时的有用功为零,所以机械效率为零;若木板竖直放置,即斜面的倾角为90度,此时的有用功等于总功,所以机械效率为1。然后引导学生分析得出斜面的倾斜程度越大,机械效率越高。
案例三:在完成探究阻力对物体运动的影响实验后,如何降低台阶,引导学生进行推理,真正暴露物体不受力的本性,是本节课的难点。实验收集数据如下:
引导学生分析下表可得出结论:平面越光滑,小车运动的距离越远,这说明小车受到的阻力越小,速度减小得越慢。然后引导学生推理,具体推理过程如下:
师:若木板表面绝对光滑,小车所受阻力为零,小车的速度将会怎样变化?小车将会怎样运动?
生:小车的速度不会减慢,将以恒定不变的速度永远运动下去。
师:请画出此时小车的受力示意图(让学生明白此时小车还受到重力和支持力)。
师:木板不可能无限长,当小车运动到木板末端时,若重力和支持力同时消失,小车会掉下来吗?此时小车受力吗?小车将怎样运动?
生:不会掉下来,此时小车不受力,将会做匀速直线运动。
师:那么我们可总结出当运动的物体不受力时,将会怎样运动?
生:将会做匀速直线运动。
通过上述推理,绝大多数同学能理解“运动的物体不受力时,将会做匀速直线运动”,达到较好的效果。
总之,初中物理教师要善于深挖教材,在日常教学中有意识地培养学生的逻辑推理能力,将对他们终生受益。
参考文献:
数学是一门严谨而抽象,科学而不失美感的学科,它对于逻辑推理能力和概括能力等有较高的要求。高中正是学生思维能力培养的关键时期,因而教师在具体的教学中应当注重培养学生的思维能力。只有培养了学生的思维能力,学生才能将数学知识学以致用,真正达到教学的目的。
一、数学思维能力及类型
数学思维能力是数学能力的核心所在,直接决定着学生的解题能力和得分能力。高中数学教学中要注重对学生数学能力的培养,即教师指导学生培养自身的数学思维,用数学的视角看待问题和解决问题。
数学思维能力包括抽象概括能力、逻辑推理能力、选择判断能力、探索能力等多种能力,这些能力都是能在数学学习中直接获得的。本文以数列的教学为例,谈谈教师应当如何培养学生的抽象概括能力、逻辑推理能力等数学思维能力。
二、高中数列教学中学生思维能力的培养
1.抽象概括能力的培养
抽象概括能力在数学中运用甚广,它主要表现在从普通中找出规律,找出差异,建立事物之间的联系等方面。抽象概况能力的运用能帮助学生发现问题的关键和实质,将具体的数学问题概括成某一类数学模型。抽象概括能力是高中学生学习数学、应对高考的必备能力之一,那在高中数学的数列教学中,应当如何着手抽象概括能力的培养呢·笔者认为,可以通过以下方式来达到这种目的。
2.逻辑推理能力的培养
逻辑推理能力所依赖的是严密的思维和强有力的推理。数学的各种运算、定理的证明等都要依赖于推理才能实现。在完整的数学知识的体系中,更是离不开完美、严密的逻辑推理方法。可以说,没有逻辑推理能力就没有数学教学,因此,高中数学的教学要大力培养学生的逻辑推理能力,数列教学也不例外。
在高中数列教学中,教师要积极引导学生培养自身的逻辑推理能力和直觉推理能力。逻辑推理能力让学生的思维更加缜密,考虑事情也更加全面;直觉推理能力则能帮助学生让自身思维变得更加敏捷、灵活而富有创新性。学生的主动思考和积极动脑对于逻辑推理能力的培养意义重大,因此教师在数列单元的教学中要鼓励学生自己去想。同时,在数列教学中,教师应当注意推理过程的教学,如求等比数列的通项式,在已知某等比数列的第二、第四项的情况下,教师应当让学生了解如何一步步求出数列通项,可以先求公比,然后求第一项,再根据公式写出数列的通项。虽然题目简单,但学生能从题目的解答中掌握每一步都要有根据,同时,学生在熟练掌握了解方法之后,就能渐渐缩短解题步骤,但仍要有理有据。这样一来,学生就能在数列的学习中逐步加强自身的逻辑推理能力。
3.选择判断能力的培养
选择判断能力作为数学能力的一个重要方面,表现为对数学推理过程和结论正确与否的判断,也体现在学生对数学方法、数学定理、解题思路的选择等方面。具有较高选择和判断能力的学生,能够在解题时选择适合的方法,运用合理的思路,得出正确的方法。选择判断能力实质上是学生的一种自我反馈能力的体现,它能够帮助学生更快、更准确地作出判断,同时以最简单明了的方式做出正确的解答。既然选择判断能力对于学生来说如此重要,那么教师在高中数列的教学中应当怎样培养和提高学生的这种能力呢·笔者根据自身多年的教学经验,认为可以从以下几点着手。
注重培养学生获取有用信息的能力,这是培养学生选择判断能力的基础。每一道题里都有已知的信息,同时也会有一些有迷惑性或者是搅乱视线的文字,因此,学生要有甄别和提取有用信息的能力。在数列教学中,教师要注意学生信息获取能力的培养。比如,在一些数列的应用题中,尽可能地获取更多的信息就很重要。
请看下面的例子:甲、乙两人分别从相距70米的公园和车站出发,两人同时动身且相向行走。已知甲第一分钟走2m,以后每分钟比前一分钟多走1m,乙每分钟走5m,请问:①甲、乙开始行走后几分钟相遇·②如果甲、乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m,乙继续每分钟走5m,那么开始运动几分钟后第二次相遇·
在这个例子中,学生就应当先理解题目的意思,读懂题目已知条件和要求。关键信息有70米,相向行走,甲和乙的各自行走速度等,根据这些有用的信息,学生才能够继续做题,列出相应的等式,如假设n分钟后两人相遇,则有:
故第二次相遇是在开始运动后15分钟。
在数列教学中,帮助学生树立起正确的价值理念也是十分有益的,这些价值理念就是学生进行选择和判断的依据。比如达到在最短的时间里得出正确的解,学生在解题过程中应当结合使用数形结合、转换的思想,这一种思想的灌输使得学生下次再碰到类似的题目时能够又好又快地解决。
4.创新思维能力的培养
创新思维能力的培养是建立在抽象概括能力、逻辑推理能力和选择判断能力等基础上的一种创新思维能力。在这一过程中,教师应当不断地鼓励学生大胆假设、验证假设,以及修正假设。具体来说,它要求学生敢于发问、严密论证和积极探索。不仅要对正在探索的问题进行创造性的解释,还要能够举一反三,做到触类旁通。要想培养学生的创新思维能力,在数列教学中教师就应当将学生带入一个未知的领域,从而激发出学生强烈的求知欲,提高他们的学习热情。
数学教学与思维能力的培养有密切的关系,因此教师在高中数列教学中应当注重培养学生的思维能力。
中国的教育难度大,其中以数学为甚.经过小学和初中的积累,高中数学在难度上达到了一个转折点,无论代数还是几何,都提高了难度.例如,很多省、市在高二的时候实行文理分科,进一步提高了理科班的数学难度,立体几何、三角函数、数列等内容不仅提升了难度,而且要求高中生充分理解并要拿到高分.数学题难度太大,致使很多学生对数学产生了抗拒、畏惧心理,从此失去了学习数学的信心.
2.高中数学成绩差距大
数学反映在成绩方面的问题是分差特别大.以文科学生为例,很多学生就是因为数学成绩太差所以选择了文科,但是数学依旧是高考的必修科目,而且分值为160分,是所有参加高考的学生都不能避免的,分差大这个问题在文科学生中表现得非常明显,有些学生能达到150分以上,但是有的高中生数学成绩却仅能拿到70分.这样的成绩差足以说明目前高中数学教学的现状之一就是学生数学能力差别过大、成绩分差过大.
二、在高中教学教学中培养数学思维的意义
1.有助于提高学生的逻辑推理能力
数学是一种比较严谨的科学,需要认真仔细地推理每一步运算,才能得出最后的正确结果.因此,培养学生的数学思维也是提高其逻辑推理能力的过程.同时,逻辑推理能力也是学好数学的基础.只有学会推理,才能掌握整门科学的精髓,一知半解是无法学好数学的,要从整体入手,一步一步地认真推理、严密运算.由此可知,培养数学思维可以提高学生的逻辑推理能力.在日常生活中,人们也是离不开逻辑推理的,每个人的一生都会发生一些始料未及的事情,然而推理能力强的人就会瞬间冷静下来,将事情的来龙去脉分析清楚,并推理出接下来的事情发展态势.
2.有助于提高学生的数学成绩
高中数学教学最根本的目的还是要提高高考成绩,而没有数学思维的学生是无法真正取得高分的.以立体几何的解析为例,如果高中生只是会记题型,就只能保证在已经掌握的题型上面得到高分,但是数学题是千变万化的,需要学生真正掌握解题思路,培养数学思维是提高分数的基础.此外,心理学研究表明,高中阶段是人的大脑高速运转的活跃阶段.在高中数学教学中培养数学思维,能够促进学生的大脑活动.真正具有数学思维能力的学生不会生搬硬套数学公式,而是会寻找解题思路,主动解题,将抽象的习题转化成具体的解题模式,从而用推理的方法解决数学问题,各种难题都能够迎刃而解.
3.有助于培养学生的创新能力
数学思维要求学生在解题过程中充分利用已有知识解决数学难题,并形成自己的解题思路,其实这就是创新能力的培养过程,能够让学生在学习中发挥主动性.例如,在遇到数学难题时,一个重要步骤是大胆假设,然后反推已知信息,如果假设成立,这道难题就顺利解开.这种在解题技巧上的大胆假设,其实就是创新的过程.
4.为学生提供锻炼意志品质的机会
在高中数学难度如此大的环境中,解数学题绝非易事,需要长时间的知识积累,才能换来高考时的卷面高分.因此,高中数学教学也是一种对学生意志品质的磨练.例如,高三的数学题往往不是通过一次运算就能够得出结果的,多数习题是多个问题组成的,而每一道小问题也需要复杂的运算.这并不是简单的数字运算,而是在考验高中生的意志力.
三、培养高中生数学思维的方法
1.改善教学环境
如果数学教学单纯以高分为目的,那么教师和学生的关注点就都集中在分数上,而不会注重培养思维能力.为了让高中生都能够具有独立思考、推理分析、创新等能力,就应该彻底改变教学环境.学校为高中生营造一个有利的环境,让学生乐于主动挑战数学难度,能够在解题过程中找到乐趣,而不是以提高成绩为目的强迫学生学习数学.素质教育环境下的数学教学,能够培养学生的数学思维,让学生意识到数学是对自己的一生都有积极意义的基础科学.
法律逻辑学是一门与推理和论证相关的法律类工具学科,其主要的任务是让学生能够厘清各种逻辑理论的具体内涵,以及灵活地运用各种逻辑方法于司法实践当中。而法律思维是指按照法律的逻辑来认真地观察和分析各种法律案件的思维方式,其与法律逻辑学的主要任务具有相关性,所以法律逻辑学对于培养学生的法律思维能力也具有非常重要的意义。
一、法律逻辑学可以培养法律思维能力
法律是社会公众的行为规范准则,其承担保障社会正常运作的职能,同时人们还要依靠法律来保证自身的权益不受侵犯,同时惩治社会犯罪行为。所以法律的严谨性和准确性非常重要,否则法律的权威性就会受到质疑,这也就要求法律的各个环节都必须具有严密的逻辑。但是在现实生活中,我们很难完全依据传统的逻辑方法来解决生活中的实际问题。而法律逻辑学就是为了解决这一状况而产生的,其主要的教学内容是法律推理和法律论证,分别是法律逻辑的基本规律、基本概念、逻辑推理、逻辑论证、案例论证和反驳等知识,学生通过学习法律逻辑学能够掌握普通的逻辑分析方法,同时形成较强的法律思维能力。
法律思维能力是指以法律的逻辑来观察、分析、解决法律问题的职业思维方式,主要表现为观察、分析法律事实的能力,搜集和判断法律证据的能力,归纳、概括案件争执焦点的能力,判定案件性质和认定案件事实的能力,正确阐释法理和适用法条的能力,严谨进行法律推理和论证的能力。一般来说,法律思维能力必须要经过长期的司法实践才能形成,但是学生通过学习法律逻辑学,可以初步形成法律思维能力。
二、法律逻辑教学的开展策略
法律逻辑学的主要教学目的就是让学生能够将法律逻辑的知识转化为实际的法律思维能力,所以学生必须要掌握将逻辑理论知识转化为法律思维的技能和方法。但是从当前的法律逻辑学来看,其教学内容普遍以“形式逻辑原理”+“法律实例”的形式展开,但是从实质上来看,这种教学模式并没有脱离形式逻辑的范畴,并没有有效地将法律逻辑理论与司法实践结合在一起。笔者结合多年的工作经验,现重点探究法律逻辑教学的具体开展策略,希望能够切实达到培养学生法律思维能力的目的。
1.将形式逻辑和辩证逻辑方法有效地结合在一起
法律逻辑学包含的教学内容非常丰富,比如法律推理的标准,法律推理的技术准则,演绎、归纳、类比推理的形式推理方法等。其中形式逻辑推理是法律中最基本的、普适性最高的推理方法,但是在实际的案件当中,单纯运用法律形式推理的案件几乎不存在。辩证逻辑推理是对法律形式推理的必要补充,学生通过学习辩证逻辑推理,能够有效地拓展法律职业思维的广度和加深法律职业思维的深度,进而保证法律思维的逻辑严密性。所以教师在教学过程当中,也应当将形式逻辑方法与辩证逻辑方法结合在一起,使得学生能够灵活地运用这两类方法开展法律推理。
2.强化批判性思维训练
批判性思维是指在理性思维基础上产生的一种带有怀疑性质的、创新的思维,其存在的目的就是通过分析和推理已有的认知和事实,而形成一种与别与常理的见解,从而达到探求真理的目的。批判性思维属于创新性思维的核心内容,其既具备强的逻辑分析性,又具有高度的辩证性,所以强化学生的批判性思维训练,就是强化学生对于多种思维方法和思维方式综合运用的熟练程度。
在法律逻辑学的教学当中,教师应当有意识地渗透批判性思维,让学生能够养成自由思考的习惯,通过长期自觉理性的判断,使得学生不会盲目迷信“标准答案”,走出传统的思维定势的局限。在课堂上,教师可以经常出一些存在错误的案例,让学生主动地纠正其中存在的法律逻辑错误,从而让学生形成辩证的法律逻辑思维形式,增强学生法律逻辑思维的准确性和严谨性。另外,教师还要让学生学会提出恰当的问题,学会对所列示的证据材料提出合理的质疑,能够及时地识别其中存在的错误,并且用可靠的证据进行论证,最终得出合理的、具有说服力的结论。
3.培养学生的法律思维能力
法律逻辑学的教学内容主要包括形式逻辑训练和法律思维能力的培养,所以教师在教学过程当中应当重视这两方面内容的讲解。在培养学生的法律思维能力方面,教师首先要开展生活化教学,选择实际生活中出现的真实案例与教材的文字知识结合起来,在课堂上为同学们详细地分析一些现实中发生的事情、社会热点问题及有趣的逻辑典故。这样一方面可以使得书面知识直观化,使得法律逻辑学教学更加灵活、更加具有实用性;另一方面,也便于学生将抽象化的理论知识转化为实际的理性认识,提高学生的知识实践运用能力。其次是采用案例教学法,教师要选择一些案例来开展法律逻辑教学,选择的案例必须具有法律专业性、真实性以及可讨论性,能够引发学生产生不同的观点。只有教师在课堂上引用具有可讨论性的案例,才能使得学生之间产生不同的思维碰撞,以此来对学生进行逻辑思维训练,培养学生的批判性思维和法律实践能力。最后是运用论辩教学法,即引导学生针对某个具体的理论、实际的事例进行辩驳与争论,以此充分锻炼学生的法律职业能力。教师在采用论辩教学法的过程中,必须要给予学生充分的时间独立地思考问题,并且让学生能够在课堂上充分地表达个人的思考和理解。教师要鼓励学生大胆地思考和分析,通过课堂所学的知识去发现其中的规律和方法,最终得出合理的结论。这样的论辩过程,可以很好地考察学生对知识的掌握程度、逻辑分析的能力、语言表达的能力、思维的敏锐程度,能够很好地提高学生运用所学法律知识论证个人论点或反驳他人观点的能力,同时对于培养和提高学生的综合思维能力也具有非常重要的意义。
参考文献:
[1]张静焕.法律思维、法学教育与法律逻辑学教学[J].重庆工学院学报:社会科学版,2017,21(12).
[2]宋玉红.法律逻辑教学的三个注重[J].法律与社会,2011(10):236-237.