逆向思维培养方法范文

时间:2023-11-22 10:47:36

引言:寻求写作上的突破?我们特意为您精选了4篇逆向思维培养方法范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

逆向思维培养方法

篇1

Discussion on Training of Reverse Thinking of Mathematics Teaching

Abstract: Reverse Thinking has very important applications in mathematics teaching, which provides a great help for training students’ thinking ability, and improving the innovation and development capacity. From the logic of reverse thinking, this article discuss the concrete manifestation of reverse thinking ability in mathematics Textbooks and mathematics teaching.

Keywords:reverse thinking;mathematics teaching;logic relationship;application

逆向思维是一种重要的数学思维,是孕育创造性思维的萌芽,逆向思维能力的掌握对解决生活和学习中面临的问题提供了一种主动、积极的思维方法[1]。在数学教学中,逆向思维对学生提高数学学习兴趣、培养学生创新意识有很大帮助,是学生学习和生活必备的一种思维品质[2-3]。然而,在数学教学实践中更注重正向思维的培养,而淡化逆向思维的重要性,久而久之造成学生学习数学循规蹈矩、顺向定性的去认识和感知数学,缺乏创造能力和分析能力,这种思维方式也随之应用于生活和其它学习中,极大阻碍了学生思维能力的拓展和对新生事物的认知力和适应力[2]。因此,在数学教学中要充分认识逆向思维的重要性,强化学生数学方面逆向思维的培训,完善学生的数学知识构架,激发学生的求知欲和创新精神。本文从逆向思维的重要性和数学教学中逆向思维的意义出发,探讨了数学教学中如何培养学生逆向思维的方法

1 逆向思维的逻辑关系

“反其道而思之”是逆向思维的精髓,即从事物发生的对立面或者结果对事物进行分析,从问题结论出发对问题进行探索的思维方式。逆向思维是与正向思维相对立的,其将正向思维认知的事物在思维上向对立面方向发展,打破习惯性的沿着事物发展的方向去思考和分析事物,而是从事物产生的结果或者效应反向思考和推断事物和结果之间的辩证效应,尤其面对一些特殊问题,从结论反向推断,逆向思考,反而会使问题简单化[1-3]。逆向思维的优点在于行业需求的普遍性、对正向思维的批判性和思维方式的新颖性,逆向思维的培养往往会增强你对事物认知的兴趣,提高自身开拓能力和创新能力,试想一下,当大多数人以习惯性的正向思维方式去看待事物或思考问题,而你运用逆向思维方式思考和解决问题,以“出奇”达到“制胜”,这种效果就会使你在行业竞争、就业选择中脱颖而出。

数学中逆向思维的应用可以分为宏观逆向思维方法和微观逆向思维方法。从辩证唯物主义来讲,事物都是对立存在的,往往互为因果,这就为分析和思考事物提供了两种思维方法――正向思维方法和逆向思维方法,宏观逆向思维方法就是从事物的辩证特性出发,突破思考框架、摆脱思维定律,形成用逆向思维去解决数学问题的思维认知,欧几里得的《几何原本》就是宏观逆向思维的产物。微观逆向思维方法是针对性解决一个数学问题,数学证明中的反证法、举反例法都是逆向思维的体现。

2 数学教学中的逆向思维培养

学生逆向思维的培养对于提高学生创新能力、培养学生兴趣爱好、加强对事物的认知能力至关重要。在数学教学中,除了学生正向思维的培养外,要消除思想束缚,大胆尝试和训练学生的逆向思维能力,在数学教学中加强对学生逆向思维的培训,养成逆向思维思考问题的习惯,并且与正向思维相结合,双向思维进行数学问题的理解和思考,是培养学生数学能力的一种体现,更是培养学生创造性思维的一种重要途径。

2.1 数学定义的正、逆思维理解

学生对数学定义的理解即是一个对新事物认知的过程,在数学教学过程中,由于老师往往以正向思维方法对数学定义进行阐述,学生对数学定义的理解仅停留在数学定义的字面意思,而缺少对定义深部的挖掘和理解。在教学过程中利用正、逆思维对学生进行数学定义的分析和讲解,列举反例,引导学生利用定义进行反向思考,判别异同和是非,培养学生的逆向思维能力。

例1:已知函数是R上的单调递减的奇函数,若,求a的取值区间?

解答:

变形为

是奇函数

,根据奇函数定义

又函数递减,

解得

2.2 数学公式、法则的逆向推断

数学公式和法则是揭示相关数量间数学关系的衔接桥梁,数学公式和法则本身上是具有正、逆两向的,正向公式和法则的运用必然会产生等量关系的建立,而数量间已经产生的定量关系也是公式和法则的逆向体现。学生对公式和法则的理解,受到固定正向思维的影响,仅仅停留在相关数量间等量关系的建立,而缺乏对公式和法则的推断、变形,更不会去利用逆向思维对公式、法则进行思考和分析。在解题过程中,除了公式、法则的正向运用外,常常面临公式、法则的逆向运用,而学生逆向思维的缺乏,增加了解题难度。

例2:已知,,求的值?

解答:=27/16

该题运用的主要为同底数幂除法性质和幂的乘方性质,逆向思维进行计算,不仅提高了运算速度,而且对结果的正确性更有把握,如果利用正向思维进行解答,这道题无从下手。类似题目的练习不仅提高了对公式、法则的认识和熟练程度,还在很大程度上培养了学生逆向思维的能力。

2.3 数学解题方法中正、逆思维的运用

数学是一门灵活学科,对于数学问题的解答存在多种方式,但归结起来就是正向解题和逆向解题方法,其中逆向解题法主要有逆推分析法,间接法,(排除法),等,逆推法主要运用与条件证明结论的数学问题中,反证法是经典的逆向解题方法,而间接法主要运用在选择题中。

1.逆推法的运用,对于条件推断结论的数学问题来说,从仅有的条件出发,数学问题往往不知从哪下手,很容易出现思维瓶颈,造成结论解答的困难。而逆推法是从结论出发,逆向推断结论产生所需的条件,这样往往可以简化问题,明确解题思路,并且能培养学生的逆向思维能力和解答类似数学问题的兴趣。

2.反证法的运用,首先假设结论不成立,然后利用已有的定义、公式或者法则证明结论的不成立与题目条件相矛盾,从而证明命题成立。该方法是一种很实用的证明数学命题方法,并且对培养学生逆向思维能力有很大帮助。

例3:证明:在一个三角形中,至少有一个内角小于或等于60度。

反证法解答:假设命题不成立,即三角形三个内角都大于60度;

则三个内角和必然大于180度;

这与定理“三角形内角和等于180度”相矛盾;

所以假设不成立,故原命题得证。

3.间接法(排除法),这种方法主要应用于数学竞技考试中,对于一个选择性的数学问题,正向思维解题寻找答案耗费时间较长,并且容易出错,而在竞技考试中时间是最重要的,所以可以选用将答案选项带入题目中,进行错误答案排除法。

例4:当b=1时,关于x的方程有无数多个解,则a等于( )

A:2;B:-2;C:-2/3;D不存在

该题目是典型的竞技考试选择题类型,如果正向思维解题,将b值带入方程,并进行化简和求解,耗费大量时间。而运用逆向思维方法,将答案带入到题目中,很快就会发现答案应选A。

3 逆向思维培养的保障

学生逆向思维的培养关键在于数学教学中逆向思维的日常培训,如何保障学生逆向思维的培养是数学教学需要探讨的重要问题。学生逆向思维的形成与提升主要受到周边环境的影响,这些环境包括教师教育理念、学校学习氛围、学生兴趣培养等等,不同环境影响下的学生对数学理念的认识、问题的处理和兴趣的培养有着不同的见解程度,这对学生随后的学习和生活起到很大程度的影响。数学逆向思维的培养,教师的教育理念至关重要,因为学生的思维方法受到老师的影响程度深,先进的教育理念重视运用正、逆思维思考和解决数学问题,尤其在数学定义、公式和法则的认识和讲解中,重视逆向思维的运用,并且在日常训练中,有意加深对逆向思维的练习。学校学习氛围是培养学生运用逆向思维思考兴趣的平台,学校注重学生的逆向思维培养,构建逆向思维训练对象和竞赛,培养学生的逆向思维兴趣。

4 结 论

数学教学中逆向思维的培养,对提升学生学习兴趣,激发学生创新能力和思维能力,对学生的学习和生活具有重要意义。培养学生的正、逆思维能力,可以在解答数学问题的时候,寻求更便捷的解题思路,克服了学生正向思维的固定思考模式。学生逆向思维的培养是个复杂过程,注重数学教学中逆向思维的培养,充分认识到逆向思维的学生思想、创新能力的重要性,从数学学习的兴趣培养中构建学生的逆向思维体系。

参考文献

[1]刘汉民. 论逆向思维[J]. 重庆工学院学报,2005,19(9):96-100

[2]李福兴,盘荣华. 数学中的逆向思维方法[J]. 数学教学研究,2009,28(7):62-64

[3]许娟娟. 数学教学中逆向思维能力及其培养[J]. 基础教育研究,2012,(3)上:44-46

篇2

引言

逆向思维作为一种具有创造性的思维,是发散性思维的一种。在遇到问题的时候,人们往往喜欢顺着事物发展的角度对问题进行分析并探索解决问题的方法。而逆向思维恰恰相反,但是利用逆向思维思考问题有时可以使得问题大大简化,从而降低解决问题的难度,达到正向思维所达不到的效果。因此,在当前初中数学教学过程中,注重学生逆向思维能力的培养对于提高学生分析问题和解决问题的能力,以及提高整个初中数学教学工作的质量和水平都具有十分重要的意义。

一、培养逆向思维的重要性

作为发散性思维的一种重要形式,逆向思维最突出的特点就是从解决问题的常规思路的对立面对问题进行思考和分析,对于一些定义、定理、公式等进行反向运用,从而摆脱思维定势的束缚,找到解决问题的新思路和新方法。逆向思维的重要性主要表现在以下方面。

(一)逆向思维可以进一步拓展学生的想象空间。

在初中数学教学过程中,一些运算与逆运算、定理与逆定理等蕴含着双向思维的知识是非常多的,而在平时对于公式或者定理运用的过程中,学生习惯从左向右利用公式,而教师也不大注重对学生逆向运用的引导,这就导致学生在利用公式或者是定理的时候形成固有的思维定势,限制思维的发展。如果教师在教学过程中有针对性地进行适当引导,往往就会给学生带来对于公式或者定理的新的理解和思考,从而在解决问题的过程中能够多一种思考问题的角度。

(二)逆向思维可以进一步加深学生对于课本上的基础知识的理解。

比如正比例函数与反比例函数两个概念,在教学过程中就可以利用逆向思维的方式,将反比例函数当做是正比例函数的一个逆向的运算来理解,同时要注重函数中自变量及常数值K的要求,这样进一步加深学生对于两个函数概念的理解。

(三)逆向思维可以进一步拓展学生的解题思路,克服思维的迟滞性。

当学生在解决问题过程中利用正向思维没有办法找到解决问题的方法时,逆向思维的运用可能会使整个问题大大简化,从而使得问题解决的难度大大降低,因此在教学过程中培养学生“从右到左”的逆向思维能力有助于克服学生的思维定势,提高学生的思维能力,使学生分析问题和解决问题的能力进一步提高。

二、初中数学教学过程中逆向思维的培养策略

逆向思维有助于学生在分析问题和解决问题的过程中打破思维定势,形成对问题的简化,降低解决问题的难度,进一步完善学生解决问题的方法和手段。在初中数学教学过程中,培养学生的逆向思维能力可以从以下方面入手。

(一)在备课过程中注重对于学生逆向性思维的培养。

教师是数学课堂教学的实施者和引导者,在课堂教学的设计过程中,要有意识地将一些蕴含着逆向思维的问题和知识引入课堂教学之中,引导学生从正反两个方面对问题进行相关的探讨和分析,从而进一步提高学生对问题的思考能力。比如在进行因式分解的教学时,教师可以将因式分解与整式乘法二者结合起来,在课堂上进行对比,让学生能在对其解决问题的过程进行充分的比较之后得出两者之间的关系是一种互逆的关系这一结论,从而进一步加深学生对于因式分解的理解。学生在解决因式分解问题的过程中可以在其对立面也就是整式乘法的角度思考问题,从而进一步拓展解题思路。

(二)利用多种形式对学生的逆向思维进行锻炼。

学生对于逆向思维的学习不能仅仅停留在理解的层次,更重要的是能够在实际解决问题的过程中对逆向思维加以利用,从而进一步体会到利用逆向思维解决问题的优点。因此,教师可以通过一些课下的作业或者是课堂的练习为学生设置一些蕴含着逆向思维的题目,让学生在解决实际数学问题的过程中对于逆向思维加以利用,让其体会到利用逆向思维解决问题的优越性,从而进一步提高学生对于数学学习的兴趣。

(三)在教学环节中注重逆向思维的运用。

教师在授课过程中,要充分利用讲授的新知识与原有的知识之间的互逆关系进行教学组织和课堂设计,在教学过程中注重逆向思维的渗透,将反面思考法、转换法、倒序思考法等一些渗透着逆向思维的教学方法和解题方法在课堂中进行综合运用,在教师进行各种方法展示的过程中让学生体会到逆向思维在解决问题过程中发挥的重要作用。同时要注重在问题解体的具体过程中进行逆向思维的应用,比如在教学一些几何证明题时,可以引导学生由所需要证明的结论出发,要得出这个结论需要具备哪个条件,要具备这个条件需要各个线、角之前满足怎样的几何关系,从而帮助学生找到解决问题的症结,进而利用逆向思维的方式找到解决问题的办法。

结语

逆向思维有助于打破学生的思维定势,让学生从反向的角度思考问题,进一步完善学生解决问题的方法和手段。在初中数学教学过程中,教师要注重对于学生逆向思维的培养,提高学生利用逆向思维解决实际问题的能力,从而进一步提高初中数学教学的水平和质量。

参考文献:

篇3

关键词:逆向思维;艺术设计教学;思维训练

引言

随着社会经济的快速发展,设计行业的步伐与效率也在不断加快,各大高校也开设了艺术设计课程。在艺术人才培养方面,教学的关键是对学生进行思维方法的培养,因为只有具有创造性思维能力的设计人才,才是当前社会急需的人才。逆向思维方法作为一种有效的思维模式,具有提升艺术设计创作水平的实用价值,在艺术设计的训练与应用上都有重要作用。

1.逆向思维的基本概念

1.1 逆向思维的内涵

逆向思维也叫求异思维,具体而言就是改变人类常规的思维方式,从另一种角度去思考问题[1]。逆向思维表现的事物发展往往与正常事物发展对立统一,这种思维方式让人们可以从事物的反面去深入探索,从而树立新的思维与新的思想,创造新的事物形象。这种思维方式正是利用了大多数人常规思维方式的缺陷。

1.2 逆向思维的基本原则

逆向思维包含四种原则:专业性原则、目的性原则、适用性原则、导向性原则。专业性原则指的是在设计的各个领域中,创新逆向思维方法时一定要积淀一定的专业知识,设计人员只有充分掌握设计专业的相关理论,才能把握好逆向思维的方向与尺度,进而形成有创造力的艺术作品;目的性原则指的是进行逆向思维时一定要明确设计的目的,逆向思维也要有一个具体的指向,不能偏离,这也是设计策划与进行创意设计的重要环节,明确了逆向思维并不是漫无目的的创作与想象;适用性原则指的是设计师在创作过程中可以从对象的不同属性出发,进行合理的创作,因此在进行相应的创作前,设计人员一定要深入剖析设计对象的各种属性,了解产品的使用群体;导向性原则指的是在进行设计创作的过程中不能一味的为了达到创意的个性效果以及视觉效果而摒弃正确的情感或者价值导向。

1.3 逆向思维的特点

逆向思维具有普遍性,在设计过程中的普遍性指的是可以在作品的结构与位置上进行上下或者左右互换,或者进行高低对立位的转换[2]。

逆向思维具有批判性,在艺术创作中,当所有人都以赞扬的态度去表现事件时,逆向思维者往往会以批判的心态去看待事件,这是对人们习惯性、常识性以及传统性的批判。

逆向思维具有独特性,常规思维循规蹈矩、按部就班,很多人都能想到的,而逆向思维则能够打破这种僵化的局面,往往能让人耳目一新。

2.艺术设计教学中逆向思维的训练

2.1 创新意识的培养

进行艺术教学时,教师应该积极培养学生的创新创造意识,要求学生深入研究创造主题,找出对象的不同属性,这样才能不断激发学生的逆向思维,使设计专业学生的设计水平不断提高。另外,在进行设计创作活动中,教师也应积极引导并提倡学生进行探索,找出解决问题的新方法与新方式。创新意识的培养往往是基于学生文化知识的积累量,为了提高学生的文化内涵,教师在平常上课时应积极鼓励并督促学生多读书,多欣赏一些大师的作品,培养学生逆向思维。

2.2 鼓励学生积极创作与实践

为了满足日益变化的社会需求,要求教师在实际教学中打破常规思维,创新教学理念,摒弃以往固化的教学方式,尝试用逆向思维进行教学,并鼓励学生利用逆向思维进行创作。具体的实践中,鼓励学生将生活引入到创作中,联系实际,将逆向思维运用到实际的工程建设中,对比用逆向思维创作出的作品与常规思维创作作品的差异,通过找出常规设计的不足,寻找解决问题的途径与方法。

2.3 构建创新型的教学氛围

为了更好的培养学生的逆向思维,教师应做好教学环节、教学环境与教学方式上的转变,通过搭建创新型的教学氛围,使学生主动投入到逆向思维的训练中。运用逆向思维教学方法时,可以安排学生进行小组作业,让学生自动组队,推举组长,通过分工合作的方式进行设计创作,由学生自己宣讲成果,创作互动交流的课堂学习氛围。

2.4 激发学生的创造个性

逆向思维训练的关键是帮助学生打破传统思维的束缚,从反方向去思考问题。初步训练时,教师可以借助词汇来训练学生,让学生从正反两方面理解,对比两种方式的不同,在初步训练有一定的成效后,引入日常生活中常见的问题,让学生运用逆向思维解决,进行不断的创新设计,培养学生的创造个性。

训练学生的逆向思维,可以改变学生的思维结构,使学生的思维变得更加灵活,在思考问题时也能从正反两方面考虑,这样使学生处理问题是更加全面,也让学生设计出的作品具有强烈的视觉冲击力,达到出其不意与吸引注意力的功效。

3.逆向思维在艺术设计中的应用

3.1 “错觉”逆向思维的案例

逆向思维在艺术设计中的成功案例数不胜数,其中“错觉”就是很多艺术家设计时常用的技巧,这种方法就是借助了逆向思维。如图1,是非常著名的鲁宾杯,我们第一眼看到的是杯子,而将背景调换,我们能看到两张相对的脸,这个由格式塔心理学家爱德加・鲁宾设计的图形被人们广为流传。

3.2 “解构重组”中的逆向思维案例

解构重组与事物固有的图形有一定的差异,学生们可以将非常规的图形重新结合起来,打破图形原有的局限,设计出全新的作品,使学生打破传统的思维定式,通过逆向思维的创作,让学生的作品更加具有吸引力[3]。比如在际的课程讲解中,在选择“保护自然动物”为主题的创作中,学生可以用各种贴近主题的事物进行重组在一起,如在实际的设计教学中,有学生就设计了一个画面下放是动物牛与鹰的头像,而画面的上面则是人的手臂以及捕杀动物的工具,该图片表示的意义是提醒人们保护野生动物,吸引了其它同学的注意力。

4.结语

随着艺术设计教学改革的不断深入,许多高校在培养学生上更加注重思维能力的培养,逆向思维作为设计专业学生的能力组成之一,是学生创造力的的核心体现,在实际教学中,通过逆向思维方法的训练,能够有效挖掘学生的潜能,不断提高学生的思维,培养高素质的艺术专业人才。

参考文献

篇4

在当今社会,教育以分数为重的现象依然很突出,教学的功利性非常越明显。填鸭式教育不仅无法做到寓教于乐,重理轻文,重智力轻德育,重知识灌输、轻能力培养的现象使一大批学生背负着沉重的学习压力,最终的结果是他们逐渐变成学习的机器,渐渐失去学习兴趣,成为教育的牺牲品。为了改变这种现状,激发学生的学习热情和积极性,必须进行课堂教学改革,而数学教学中逆向思维的培养是一种有效而且必需的方法。

一、逆向思维的涵义

逆向思维是指与正常思维正好相反的一种思维方式。在教学中,逆向思维是指从结论逆向一步步找出结论需要具备的条件,从而达到解决问题的目的。逆向思维具有极其严密的逻辑性、推理性,能更好地培养学生的逻辑思维能力。初一数学教材中有着大量互逆关系的数学知识,如互逆公式,互逆法则,互逆定理,等等。在教学中,培养学生运用逆向思维解决实际问题的能力,必须加深学生对互逆关系的理解与分析,从而不断培养学生逆向思维的灵活性,从正向思维向逆向思维的持续能力。

二、逆向思维能力培养策略

课堂教学实践表明:许多学生之所以处于低层次的学习水平,有一个重要因素,即逆向思维能力薄弱,定性于顺向学习公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和开拓精神。因此,加强逆向思维的训练可改变其思维结构,培养思维的灵活性、深刻性和双向思维能力,提高分析问题和解决问题的能力。迅速而自然地从正面思维转向逆向思维,正是数学能力强大的一种标志。笔者认为,培养学生逆向思维能力有以下几种途径。

1.重视在概念、定义教学中培养学生的逆向思维。

数学中的定义是通过揭示其本质而来的,定义都是充要条件,均为可逆的。所以,其命逆题也是成立的。因此,定义既是某一个数学概念的判定方法,又是这一概念的性质。在教学中应充分利用这一特征,尤为注意定义的逆用解决问题。在定义的教学中,除了让学生理解定义本身及其应用外,还要善于引导启发学生逆向思考,从而加深对定义的理解。

如绝对值是这样定义的:“正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值是零。”除了从正向理解计算,还要教学生逆向理解。如“计算|5|=?|-5|=?”,这是从正向理解计算,“一个数的绝对值等于5,这个数是多少?”,这是逆向理解计算。

2.在兴趣培养过程中增强逆向思维意识。

随着年龄的增长,初一学生的有意注意进一步发展,但兴趣在学习中仍起着重要作用。由兴趣引起的无意注意在学习中仍是不可缺少的因素。所以教师应根据授课内容,创设良好的教学情境,激发学生的学习兴趣和求知欲望,促进学生积极思维,有利于培养学生的逆向思维,取得最佳教学效果。我们以学生为主体,教师为主导,通过层层设问,及时指点启迪,创设良好的思维情境,结合图形,激发学生联想,引导学生步步深入,形成逆向思维。

3.将逆向思维渗透到解题方法的教学中。

教师对定理的教学、命题的教学、公式的教学都是为了一个相同的目的。这个目的就是帮助学生迅速准确地解题,在解题过程中同样可以运用逆向思维。

(1)反证法。数学中有一些命题很难从正面推断出结论,对于这些命题可以采用反证法。反证法是一种间接的证明方法,即根据已知条件推理判断命题的相反面是错误的,进而说明命题是正确的。反证法的运用能够拓展学生思维的深度。

(2)举反例法。学生在做选择题时使用反证法往往会收到事半功倍的效果。举反例法就是找到某个满足命题的条件,但在这个条件下命题结论无法成立的例子,这样做的目的是说明命题不正确。能否熟练运用举反例法取决于学生思维是否敏捷。

(3)分析法。分析法也叫做逆推证法,分析法在各个题型中都适用,在条件探究题中使用较多。使用分析法的前提是学生知道解题过程可逆,从结论倒推命题成立的条件。分析法对学生的综合能力要求比较高。

4.设置习题训练,锻炼学生的逆向思维。

数学问题的解决方法有很多种,如分析法、反证法等,这些方法的应用实际就是对逆向思维的运用。分析法是几何课程中锻炼学生逆向思维能力的重要方法。所以,教师在几何教学中要加强对学生分析法的授予。如根据定理“同位角相等,两直线平行”进行平行线判定时,笔者首次向学生讲述了分析法的应用。教师要结合课本实例进行例题分析,使学生充分理解分析法的内涵,从而提高学生的逆向思维能力。

初一数学教学对学生逆向思维的开发有助于学生摆脱固有的思维模式的束缚,不断发现新的思路和新的方法,帮助学生全面地分析问题和解决问题,从而为学生更高水平的学习奠定坚实的基础,为培养学生的创新能力和创新思维提供指导。

参考文献:

[1]周兰萍,夏海峰.逆向思维在初中数学习题中的应用[J].数学学习与研究,2013,24:30.

友情链接