建筑抗震分析范文

时间:2023-12-07 15:40:39

引言:寻求写作上的突破?我们特意为您精选了4篇建筑抗震分析范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

建筑抗震分析

篇1

中图分类号:TU352.11 文献标识码:A

随着山西省经济的不断发展,太原作为山西省的省会城市,这座美丽的国家历史文化名城,焕发出新的色彩,城市建设迈开了大步。“十大建筑”坐落龙城,展现了古城太原迷人的现代魅力,迎接着四方的来宾。同时各种功能的超高层建筑也拔地而起。现就我参与设计的一个超限高层工程进行抗震分析,采取了各种抗震加强措施,以便为今后的设计工作提供一些参考。

1工程概况

本项目为集酒店、办公楼、商铺为一体的综合建筑体。建筑场地总用地面积约4806.12m2,总建筑面积约为114946.72m2,其中办公和商铺部分52944.86m2;酒店部分62001.86m2。地下3层,地上为1号塔楼26层,2号塔楼22层,塔楼之间裙楼5层。1号酒店塔楼建筑总高度为110.40m,2号办公楼塔楼建筑总高度为99.60m,1号塔楼为B级高层,2号塔楼为A级高层。1号、2号塔楼地上部分通过五层裙房连接,形成双塔结构体系。

2结构超限判定

塔楼采用钢筋混凝土框架—核心筒结构体系,各塔楼涉及超限内容如表1所示(依据晋建质字[2011]221号山西省抗震设防超限高层建筑工程界定规定)。1)1号酒店塔楼判定:a.采用钢筋混凝土框架—核心筒结构体系,建筑总高度为110.40m,规范规定的其高度限制(A级高度)为100m,本塔楼超过规范限制10.4%。b.一项不规则的内容:无。c.三项及三项以上不规则的内容:扭转不规则:考虑偶然偏心大的位移比大于1.2。X向占27%,最大值1.22;Y向占100%,最大值1.37。组合平面:本塔楼平面布置属于细腰型。尺寸突变:本塔楼属于多塔结构。其他不规则:局部楼层穿层柱。2)2号办公塔楼判定:a.房屋高度超过规定:无。b.一项不规则的内容:无。c.三项及三项以上不规则的内容:组合平面:本塔楼平面布置属于细腰型。尺寸突变:本塔楼属于多塔结构。其他不规则:局部楼层穿层柱。

3结构超限应对措施

1)1号酒店塔楼高度大于100m,按B级高度高层建筑进行设计,框架抗震等级为一级,核心筒抗震等级为特一级。2号办公塔楼按A级高度高层建筑进行设计,框架抗震等级为一级,核心筒抗震等级为一级。2)1号酒店塔楼考虑偶然偏心下位移比大于1.2,结构计算分析方面,采用两种符合实际情况的空间分析程序SATWE和MIDAS进行分析比较,采用考虑扭转耦连的振型分解反应谱法,同时考虑双向水平地震力作用影响,并取包络。3)1号酒店塔楼、2号办公塔楼平面布置为细腰,在相应细腰部位采用150mm厚钢筋混凝土楼板加强,配筋采用双层双向,对平面薄弱部位进行加强。相应楼板按弹性楼板进行补充分析。4)1号酒店塔楼、2号办公塔楼楼板采用钢筋混凝土楼板。地下一层顶板采用180mm厚楼板,按嵌固设计。采用双层双向配筋。针对楼板开洞较多的楼层,按弹性楼板进行计算,楼板厚度采用150mm,双层双向配筋进行补强,并增强楼板开洞周圈梁的抗扭性能,提高抗扭钢筋的配筋率,以增强结构整体性。对局部楼层穿层柱部位采用增大柱配筋率10%的加强措施。5)1号酒店塔楼、2号办公塔楼采用弹性时程分析方法进行多遇地震下的补充计算,采用两条天然波一条人工波,取多条时程曲线计算结构的包络值与振型分解反应谱法计算的较大值用于结构设计。6)针对多塔结构,1号酒店塔楼、2号办公塔楼采取了单塔与双塔两种模型分别计算,并按包络设计。同时验算了设防地震下,主要竖向构件,受弯中震不屈服以及受剪中震弹性验算。7)1号酒店塔楼、2号办公塔楼连梁部分,采取将截面较高的连梁分成两根截面较低的连梁协同工作,减小了连梁的刚度,保证连梁在小震下的弹性工作。在罕遇地震作用下率先出现塑性铰,起到耗能作用。8)1号酒店塔楼、2号办公塔楼采用PKPM静力弹塑性EPDA&PUSH验算罕遇地震下的弹塑性变形。9)1号酒店塔楼标准层周圈框梁采取加大梁截面的措施(500×900),以减少结构整体的扭转效应。与两个塔楼相连接的裙房部分,考虑到功能复杂,空间变化多,同时协调两个塔楼的共同工作,将其框架的抗震等级提高一级,按特一级框架进行设计。连接两个塔楼之间的楼板,均采用180mm厚板,双层双向进行配筋,在泳池底部的大跨空间部分,采用高度为1.8m,大跨钢筋混凝土井字梁进行设计,相应部分的框架柱,设计为型钢混凝土框架柱。

4抗震加强措施

1)针对该项目超限内容的相应措施:a.采用SATWE和MI-DAS两种不同的计算模型对结构进行分析,确保计算的真实性。由于本工程为双塔结构,故采用双塔与单塔模型分别计算,按包络进行设计;b.增大底部加强区剪力墙、框架柱的配筋率,满足中震下抗剪弹性、抗弯不屈服的性能目标要求;c.楼板大开洞及塔楼连体区域的楼板采用弹性楼板模型计算,根据计算结果加强其构造措施,增加楼板厚度,采用双层双向配筋;d.核心筒墙体约束边缘构件延伸至地上8层顶板,框架柱箍筋采用全高加密,以增强结构整体的抗剪、抗弯性能。根据大震验算结果,针对底部墙体破坏部位增设型钢;e.1号塔楼超A级高度10m,考虑超出A级高度较少,故其抗震等级按规范规定的B级高度高层确定为核心筒特一级、框架一级;2号塔楼虽为A级高度高层但考虑与1号塔楼的耦联作用,抗震等级提高为同1号塔楼;裙楼范围楼板存在大开洞情况以及其对双塔楼的约束作用较为重要,故其框架等级提高为特一级;f.针对关键构件及重要构件(剪力墙、框架柱)箍筋采用全高加密的形式,底部加强区范围内将其内力放大10%,构件配筋按提高10%设计。其轴压比以规范规定为基准,分别按降低0.05设计;g.裙楼框架柱及框架梁采用型钢混凝土结构形式,4层顶大跨井字梁适当增加起拱率;1号塔楼及2号塔楼与裙楼相接的框架柱及框架梁采用型钢混凝土结构形式,以增大其延性;h.裙楼顶板及其上下各一层楼板加厚,以150mm厚设计,配筋采用双层双向.裙楼大开洞周圈楼板、核心筒连接区域采用150mm厚,配筋双层双向,塔楼部分角部楼板采用120mm厚,配筋双层双向.针对楼板大开洞周圈框架梁配筋进行加强;k.1号塔楼核心筒外墙设置双连梁且在±0.000至裙楼以上两层范围内每层设置一道配筋加强带(暗梁),按不少于上下各420配置,底部加强区部位(水平筋,竖向筋,J箍筋)比计算提高10%设计,提高剪力墙的延性;l.加大1号塔楼裙楼以上各层周圈框架梁的截面,以减小其扭转效应。

5结语

根据以上分析陈述,本项目存在高度超限、扭转不规则、细腰、刚度突变、穿层柱等情况。但通过结构布置的优化、薄弱部位及重要构件的加强、以性能目标为基准的构件截面设计、对钢筋配置等构造措施加强后,可满足“小震不坏、中震可修、大震不倒”三水准抗震设计要求。

参考文献:

[1]JGJ3—2010,高层建筑混凝土结构技术规程[S].

篇2

我国是一个地震灾害比较频繁的国家,对于高层建筑来说,一旦遭遇地震,往往会遭受巨大的损失。因此在进行高层建筑结构抗震设计的过程当中应该充分考虑当地的地质情况,有针对性的进行相应的设计,尽可能的降低地震造成的损坏。

一、建筑抗震的理论分析

1、建筑结构抗震规范建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2、抗震设计的理论拟静力理论。拟静力理论是20 世纪10~40 年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。反应谱理论。反应谱理论是在20世纪40~60 年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20 世纪70-80 年广为应用的地震动力理论。它的发展除了基于60 年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

二、高层建筑抗震设计结构设计的方法

对高层建筑结构的抗震设计时,要从减小地震作用力的输入和增强地震抵抗力两个方面进行考虑。下面将从五个方面进行分析:尽可能减小地震作用能量的输入,运用高延性设计、推广消震和隔震措施的运用,注重抗震结构的设计,重视建筑材料的选择,增多抗震防线的建设。将减小地震作用力和增强建筑的地震抵抗力二者结合起来,从两方面入手,进行建筑抗震的设计施工。

1、减少地震发生时能量的输入

在具体的设计中,积极采用基于位移的结构抗震方法,对具体的方案进行定量分析,使结构的变形弹性满足预期地震作用力下的变形需求。对建筑构件的承载力进行验收的同时,还要控制建筑结构在地震作用下的层间位移限值;并且更具建筑构件的变形和建筑结构的位移之间的关系,确定构件的变形值;根据建筑界面的应变分布以及大小,来确定建筑构件的构造需求。对于高层建筑来讲,在坚固的场地上进行建筑施工,可以有效减少地震发生作用时能量的输入,从而减弱地震对高层建筑的破坏程度。

2、运用高延性设计、推广消震和隔震措施的运用

现在在我国,许多高层建筑进行抗震设计时,多采用延性结构,也就是适当的控制建筑结构的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,从而消耗地震作用时的能量,使地震反应减小,减弱地震给高层建筑带来的破坏和重大损失。如果某高层建筑的承载能力较小,但是具有较高的延性,那么在地震中它也不容易倒塌,因为延性构件可以吸收较多的能量,经受住很大的结构变形。延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒。

进入20 世纪以来,人们对建筑物抗振动能力的提高做出了巨大的努力,取得了显著的成果,其中阻尼器的使用在高层建筑的抗震方面有很大的作用。通过对阻尼器的利用,进行减震和能量的吸收,可以巧妙的避免或减弱地震对高层建筑的破坏作用。

3、注重抗震结构的设计

高层建筑抗震设计的结构应该得到人们的重视。我国150m 以上的建筑,采用的3 种主要结构体系(框.筒、筒中筒和框架- 支撑体系),都是其他国家高层建筑采用的主要体系。我国钢材生产数量已较大,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。

我国传统文化中“以柔克刚”具有价高的思想价值,可以指导很多实际问题。在高层建筑结构的抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济,有效地减弱地震作用过程中释放的冲击力。比如,在高层建筑的拱形结构中有这样一个例子:迪拜帆船酒店,外观如同一张鼓满了风的帆,一共有56 层、321m高,就是运用拱结构抗震减灾的很好的例子。

4、重视建筑材料的选择

在高层建筑的抗震方案设计中,建筑结构的材料选择也非常重要。首先,我们可以对建筑材料的参数进行抗震性能的分析,从整体上对材料的参数变异性进行研究,而不能仅考虑建筑材料的承载力忽略其他因素。从抵抗地震的角度来讲,就是要控制建筑结构的延性需求,这就要求我们从高层建筑建设施工的各方面,来选择符合抗震需求而且经济适用的建筑结构材料。

5、增多抗震防线的建设

高层建筑结构防震可以设置多道抗震防线,增强对地震的抵抗力。高层建筑物设置多层的地震抵抗防线,第一道防线遭到破坏之后,有后备的第二道、第三道甚至更多的防线对地震的作用力进行阻挡,避免高层建筑物的倒塌。高层建筑结构进行抵抗地震设计时,可以采用具有多个肢节和壁式框架的“框架剪力墙”等防震结构。

框架剪力墙具有性能较好的多道防线抗震结构,其中的剪力墙是第一道抗震防线也的主要的抗侧力构件。所以,剪力墙要足够多,保证它的承受能力较高,不小于高层建筑底部地震倾覆力矩的一半。同时,为承受剪力墙开裂后重分配的地震作用,任一层框架部分按框架和墙协同工作分配的地震剪力,不应小于结构底部总地震剪力的20%和框架各层地震剪力最大值的1.5倍两者的较小值。剪力墙结构中剪力墙可以通过合理设置连梁(包括非建筑功能需要的开洞组成多肢联肢墙,使其具有优良的多道抗震防线性能。

总之,在建筑结构抗震设计方法的研究与进展,尤其是各国历次大地震对人类造成的严重灾害的经验教训,使世界各国地震工程学者及抗震设计人员逐步取得了较为一致的认识,经济与安全的关系,是建筑结构抗震设计的重要技术政策。

参考文献:

篇3

中图分类号: TU208.3文献标识码:A文章编号:

Abstract: The high-rise buildings aseismic work has been building is the design and construction of the key. This paper introduces the seismic design of high-rise building the basic principle, the detailed analysis of the seismic design of high-rise building points.

Keywords: high building; Seismic design; points

抗震设计是根据地震灾害和工程经验等所形成的基本设计原则和设计思想,进行建筑和结构的总体布置并确定细部构造的过程,是结构工程师运用“概念”进行分析,做出判断,并采取的相应措施,是工程结构设计人员从宏观上、总体上和原则上去决策和确定高层结构设计中的一些最基本、最关键的问题。高层建筑抗震工作一直是建筑设计和施工的重点,应对建筑抗震设计进行必要的分析,探索高层建筑的抗震设计要点,从而采取必须的抗震措施。

一、高层建筑抗设计的基本原则

1、结构构件应具有必要的承载力、 刚度、 稳定性、 延性等方面的性能

(1)结构构件应遵守 “强柱弱梁、 强剪弱弯 、强节点弱构件、 强底层柱(墙)”的原则。

(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力 。

(3)承受竖向荷载的主要构件不宜作为主要耗能构件。

2、尽可能设置多道抗震防线

(1)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。 例如框架--剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。

(2)强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。 抗震结构体系应有最大可能数量的内部 、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

(3)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“ 有效屈服” 保持较长阶段,保证结构的延性和抗倒塌能力。

(4)在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

3、对可能出现的薄弱部位,应采取措施提高其抗震能力。

(1)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。

(2)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中 。

(3)要防止在局部上加强而忽视了整个结构各部位刚度、 承载力的协调 。

(4)在抗震设计中有意识、 有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

二、高层建筑抗震设计要点

1、选择良好的抗震结构体系

高层建筑结构在抗震设计时,应选择合理的结构类型,设计的结构既要考虑其抗震安全性,也要尽可能的经济。结构应布置多道抗震防线,避免部分结构或构件失效而导致整个体系丧失抗震能力或丧失对重力的承载能力。此外,结构应拥有良好的整体性和变形能力,使结构的强度、刚度和变形能力三者达到统一。

2、建筑布置宜规则

高层建筑应重视体形和结构的总体布置。由于建筑体形不合理或结构总体布置不合理而造成的地震灾害,在国内外的大地震中都有所见。抗震设计选择的建筑平面和立面布置宜对称、规则,避免采用严重不规则的结构。结构的刚度宜均匀变化,竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小,避免有刚度和承载力突然变小的楼层,造成薄弱层的出现,地震时该部分容易破坏。

3、选择合理的结构计算简图和地震作用传递途径

目前大多数高层建筑都可以利用计算机进行程序运算,为保证计算结构的可靠性,要求工程设计人员要熟练掌握结构的简化计算方法, 得到结构构件在荷载作用下的计算见图,结构在地震作用下的传力途径要简单、直接,利用合理的力学模型和数学模型获得更为符合实际的抗震验算结果。

4、选择合理的结构类型

高层建筑从本质上讲是一个竖向悬臂结构,垂直荷载主要使结构产生轴向力与建筑物高度大体为线性关系;水平荷载使结构产生弯矩 从受力特性看,垂直荷载方向不变,随建筑物的增高仅引起量的增加;而水平荷载可来自任何方向,当为均布荷载时,弯矩与建筑物高度呈二次方变化 从侧移特性看,竖向荷载引起的侧移很小,而水平荷载当为均布荷载时,侧移与高度成四次方变化 由此可以看出,在高层结构中,水平荷载的影响要远远大于垂直荷载的影响,水平荷载是结构设计的控制因素,结构抵抗水平荷载产生的弯矩 剪力以及拉应力和压应力应有较大的强度外,同时要求结构要有足够的刚度,使随着高度增加所引起的侧向变形限制在结构允许范围内。

高层建筑有上述的受力特点,因此设计中在满足建筑功能要求和抗震性能的前提下,选择切实可行的结构类型,使之在特定的物资和技术条件下,具有良好的结构性能、 经济效果和建筑速度是非常必要的 。高层建筑上常用的结构类型主要有钢结构和钢筋砼结构 。钢结构具有整体自重轻,强度高、 抗震性能好、施工工期短等优点,并且钢结构构件截面相对较小,具有很好的延性,适合采用柔性方案的结构 。其缺点是造价相对较高,当场地土特征周期较长时,易发生共振 与钢结构相比,现浇钢筋砼结构具有结构刚度大,空间整体性好,造价低及材料来源丰富等优点,可以组成多种结构体系,以适应各类建筑的要求在高层建筑中得到广泛应用,比较适用于提供承载力,控制塑性变形的刚性方案结构。 其突出缺点是结构自重大,抵抗塑性变形能力差,施工工期长,当场地土特征周期较短时易发生共振 。因此,高层建筑采用何种结构形式,应取决于所有结构体系和材料特性,同时取决于场地土的类型,避免场地土和建筑物发生共振,而使震害更加严重。

5、选择有利于抗震的场地和地基

高层建筑设计中要选择对建筑抗震有利的地段,避开对建筑抗震不利的地段。当无法避开时,应当采取适当的抗震措施,不应在危险地段上建造高层建筑。此外,设计前应估算建筑结构的自振周期,并与场地卓越周期错开,防止地震时结构发生类共振现象的破坏。

随着社会的发展、结构设计理念的创新及施工技术的进步,促使高层建筑往更高的方向发展,其在地震作用下的安全性也变的尤为重要。但由于高层建筑抗震设计属于繁重而复杂的过程,设计时一定要从从抗震设计的基本原则、计算方法、理论分析及设计分析四个方向入手,从而获得即经济又安全可靠的设计结果。

6、 提高结构的抗震性能

由于高层建筑的受力特点不同于低层建筑,因此在地震区进行高层建筑结构设计时,除应保证结构具有足够的强度和刚度外,还应具有良好的抗震性能 通过合理的抗震设计,使建筑物达到小震不坏,中震可修,大震不倒 为了达到这一要求,结构必须具有一定的塑性变形能力来吸收地震所产生的能量,减弱地震破坏的影响。

框架结构设计应使节点基本不破坏,梁比柱的屈服易早发生,同一层中各柱两端的屈服历程越长越好,底层柱底的塑性铰宜晚形成,应使梁 、柱端的塑性铰出现得尽可能分散,充分发挥整体结构的抗震能力 为了保证钢筋砼结构在地震作用下具有足够的延性和承载力,应按照 “强柱弱梁”、“ 强剪弱弯”、“ 强节点弱构件” 的原则进行设计,合理地选择柱截面尺寸,控制柱的轴压比,注意构造配筋要求,特别是要加强节点的构造措施。

参考文献:

篇4

地震灾害是人们生存环境的重大天然灾害隐患,且地震灾害具有较大的破坏力,其灾害发生会带来巨大的损失。在绝大多数的地震灾害发生过程中,建筑物的抵御能力是不可预估的。例如上世纪在我国发生的唐山大地震和本世纪初在四川发生的汶川地震,其地震的等级都高达8级,地震烈度高达11度,都对当地的建筑物造成了摧毁式的打击,这两次的地震烈度都超过了抗震设防烈度,对当地的人民财产造成了灾难性的后果。因此,在提升建筑物的抗震等级同时,应不断增加其造价成本,综合考虑后达到一个最优的经济效果。本文对建筑物的抗震设防烈度进行重点分析,并阐述其对土建造价的影响。

1建筑物抗震设防烈度与抗震等级

地震等级是衡量地震强度的一个重要指标,而地震的强度则是建筑物受到地震影响时破坏程度最大的一个表现。在一般情况下,地震的抗震设防烈度都是取决于地震的基本烈度,其计算方法是根据建筑物的高度、大小和烈别来判断的,地震的抗震设防应具体以某种情况来确定。在正常情况下,某一个特定的地区在发生了地震的等级判断时不能确定地震的抗震顶级。其抗震设防烈度也一般在8~6度。这样就可以判断出建筑物的抗震烈度是否需要提高,以提高抗震等级,才能确保有效的保护建筑物的抗震能力。在建筑物的抗震影响因素中,主要包括抗震设防烈度、地震分组和地震的设计。发生地震时,还受到加速度和建筑物结构类型、高度、抗震设防分类的影响等。

2建筑物的土建造价

建筑物的土建造价主要包括装修造价、设备造价以及土建造价等。土建造价主要包括基础、楼板、墙柱、梁等结构构件所耗费的工料机费用及施工过程措施费。建筑设备的造价主要由排水、电梯、安防、空调等多种设备配合组成,其装修主要包含室内外的各种工程费用,以此来提升建筑物的抗震等级,从而体现建筑物土建造价成本。

3建筑抗震设防烈度对土建造价产生的影响

建筑抗震设防烈度的提升可以直接表现在会加大建筑构件的组成,提升内在计算能力就可以提高配筋率,加大了截面尺寸,最显著的影响就是加大了钢筋、混凝土的使用量,进而极大影响建筑物造价。例如,在一个10层高度的商业办公楼内,将一块框架结构主体高度在40m,首层高度3.6m,2~10层的高度在3.3m的楼层间上利用190mm厚度的围护墙进行混凝土加固。设定为地震一组,基本风压为W0=0.5kN/m2,地面的粗糙度为B类。通过地震环境下对不同的抗震设防烈度8~6度进行造价差异的比较。通过分析钢筋和混凝土的用量对造价影响进行分析。在规范允许下,全部构件均采用最经济尺寸。这里的土建造价是指包括人工费、施工机具使用费、材料费、企业管理费、利润等在内的所有分部分项工程费。通过分析可以看出,从8~7度的抗震设防需要增加六根柱的截面尺寸,从7~8度则需要增加到13根的截面尺寸。同时能够发现在各个配件上的配筋量也同时需要增加。在不进行设防烈度比较的前提下,假设抗震烈度增长为6度,那么在单方土的建设造价增加为2%。提高到7度时,增加率约为6%,到8度时,增加率约为11%。从6~7度约提高10.96%、从7~8度约提高8.65%。

4提高建筑抗震设防烈度的方法

第一,抗震烈度的设防是从6度增长到8度的,在此情况下可以通过对构件的横截面尺寸以及配筋率的配比办法来提升建筑物的抗震能力。在建筑物的抗震设防烈度大于8度时,就需要各种抗震设防烈度的提升。由此看来,可以通过对横截面的尺寸、配筋率的改变来提升抗震性能。但是,这不仅降低了使用面积的有效性,而且增加了构件的纵向尺寸,更增加了地震的作用力,所以这不是最经济有效的方式。第二,在科学技术水平不断发展的今天,建筑物的抗震技术也在进行日新月异的变化。在大多数情况下,建筑物的抗震造价具有明显的对比性,其效果好的抗震性能材料也具有绝对的倾斜支撑能力。建筑结构的横纵向构建也是目前承载的压力之一,对于一旦承载水平压力就变弯的构件就需要考虑对横截面的尺寸加大,进而增加了钢筋和混凝土使用量,非常不经济。通过倾斜支撑体系中构件的主要性能可以发现,目前的抗震材料还主要以拉压式的构件为主,这种构件的水平拉压能力非常具有抵抗能力,并且从相对应构件的尺寸上也满足建筑物的配筋率的条件,这样能够大大降低土建的造价成本。第三,在建筑物的本身造价上,也受到建筑结构本身的影响。如果采用较好的减震和隔震材料,就会加大建筑抗震的安全保障,这种措施的加强无疑在造价上需要增加,也降低了建筑构件上的地震作用,从而降低了建筑结构尺寸和配筋量,对建筑造价的增加产生了影响。部分设计者不考虑建筑物的抗震性能、安全性,而只考虑奇特的建筑造型、奢侈的室内外装修,反而降低了抗震、安全等方面的造价投入,这样“轻结构、重外观”的建筑物在地震时让人们付出的代价非常惨痛。建筑物的立足之本是结构,必须提高建筑结构的稳定性、安全性,方能使人们的生命财产安全得到保障。在很多设计者和施工人员的观点中,不同的建筑造型往往可能会花费较大的造价成本,为城市建筑增加一个亮点,但是在抗震结构和安全的角度考虑就放弃很多抗震材料,从而达到节约土建造价成本的目的,这类建筑物的建设实际上是华而不实,重在外观的设计,而疏漏了内部质量和减震效果,一旦灾害来临,将带来惨痛的后果和教训。

5结语

近些年来,我国的经济水平不断提高也给建筑行业标准带来了新的机遇和挑战,尤其是在费用日益增加的室内装潢上,需要各种仪器设备的投入,还需要请专业的设计人员进行设计。且在目前我国的建筑总造价整体上升的一个趋势来看,单纯的土建造价相对来说也是重外观而轻质量。从人类长期发展的角度来考虑,人类的日常生活离不开建筑,目前抗震性强、高稳定、高安全性的建筑物已经越来越被人们所重视。不同地区地域的建筑所采取的抗震设防烈度不同。在建筑施工过程中,建筑物的抗震、安全性能取决于建筑的结构。不能仅仅重视建筑造型新颖、室内外高昂的装修,提高结构的安全度,建筑物土建造价增幅并不大,相对于整个建筑物的造价,只占很小比例,特别对于那些昂贵的地价和豪华装修的费用,所占比例就更小。而结构产生过大的变形或破坏,昂贵的装修和设备管线等也将付之东流,甚至引起失火、漏电等次生灾害,造成人身伤亡。所以,加强建筑结构抗震性、安全性的投资力度非常有必要。只有这样才能确保结构的安全性、稳定性、抗震性,必须做到合理、科学、经济地建筑建设投资。

参考文献:

[1]阿不来提•买提尼亚孜.提高建筑抗震设防烈度对土建造价的影响[J].中小企业管理与科技(上旬刊),2011,(04):87-89.

[2]刘晓东.新版国家标准《中国地震动参数区划图》(GB18306—2015)的主要变化[J].中国标准导报,2015,(09):72-74.

[3]高小旺,李荷,肖伟,等.工程抗震设防标准若干问题的探讨[J].土木工程学报,1997,(06):90-95.

友情链接