时间:2023-12-09 17:29:14
引言:寻求写作上的突破?我们特意为您精选了12篇智能交通系统的核心技术范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
信息技术教学不仅可以根据学生的实际情况,提供生动有趣的画面,大大调动学生学习数学的兴趣,而且还能最大限度地发挥他们的优势及潜能。教师的激趣工作要从学生感兴趣的方面入手,以学生喜欢的形式呈现。
智障学生的接受能力弱,思维能力低下,传统的教学板书、绘图等教学手段很难提高他们的学习兴趣。专家指出,对他们进行数学教育,应当多开展触觉、听觉、视觉以及肌肉感觉的活动或训练。
如在教学《4的认识》一节时,先让学生看课件,3只小鸟在树上跳来跳去,让大家回答是几只小鸟。接下来点击电脑,又一只小鸟飞来了。此时,配合着电脑播放的悦耳音乐提问:“小朋友,现在有几只小鸟?”此时,学生的注意力被色彩鲜艳的画面和悦耳的声音所吸引,学习的积极性大大提高了。这不仅使学生获得数学知识,也促进了他们在审美、说话以及热爱生活等能力的整合发展。紧接着,学习“4”的书写。为帮助学生较好地掌握4的字形,电脑中出现了一面迎风飘扬国旗,然后利用电脑课件的闪动功能,抽象出4的字形,配合顺口溜“4像国旗空中飘”来帮助记忆,这一生动有趣的教学过程,不仅使学生学习了知识,还学习了语言。
二、有利于提高智障儿童的思维能力
由于数学具有抽象性和逻辑性,而智障儿童思维发展滞后,因此在数学教学中可利用多媒体,以直观感知开始逐步向抽象认识发展。例如:在讲解10以内数字的加减法时,为了让智障儿童理解加法的含义,笔者充分利用多媒体制作了课件:先出示1只小鸭在水中游,又游过来1只,问水中一共有几只小鸭?学生很快回答:2只。这样,在学生的大脑中就留下了增多了的印象,对“加法”有了初步的概念,再理解连加就容易多了。在教学中,笔者利用多媒体制作的课件:先出示5只小马在草地上跑,又跑过来1只,列式就是“5+1”,问学生是几只,学生很快回答6只。再跑过来1只,就是在“5+1的基础上再加上1只,列式就是“5+1+1”,一共加了两次,连加的含义很显然就是连续相加。这样,在教师细致地编排及带领下,学生在不知不觉中愉悦地消化和吸收了新知识,并且每名学生在学习上都获得了一种成功的体验,树立了信心,提高了兴趣。
三、有利于再现生活画面,创设问题情境
【分类号】:TG333.2
一、引言
随着经济的发展和人民生活水平的提高,“以车代步”已成为一种普遍的社会观念,因此一个国家的道路建设速度永远赶不上汽车的增长速度,交通拥堵越来越严重。现行的限购、限号等政策,不能够从根本上解决问题,伴随着物联网技术的兴起,可以用物联网下的智能交通系统的构建来解决。有效解决目前交通拥堵的关键是实现道路利用率的最大化,这就需要对现有路况下的人、车、路进行有效的监控。因此,智能交通应运而生。
二、物联网和智能交通系统的发展现状及发展趋势
1.物联网发展现状和发展趋势
目前,全球物联网产业的发展还处于初级阶段。全球物联网仍处于概念、论证与试验阶段,处于攻克关键技术、制定标准规范与研究应用的初级阶段,但已具备较好的基础。未来几年,全球物联网市场规模将出现快速增长,据相关分析报告,2007年全球市场规模达到700亿美元,2008年达到780亿美元,到2015年全球市场规模将接近3500亿美元,年增长率接近25%,未来十年物联网将实现大规模普及。西方发达国家对物联网高度重视,并将其作为未来发展的重要内容。以物联网应用为核心的“智慧地球”计划也得到了奥巴马政府的积极回应和支持,其经济刺激方案将投资110亿美元用于智能电网及相关项目。
“智慧地球”是物联网发展的一个愿景,M2M是目前重点发展领域和物联网的主要表现形式。M2M是“机器对机器(Machine to Machine)通信”的简称,即通过通信网络实现机器之间的互联、互通。M2M既是物联网四大支撑技术之一,也是物联网在现阶段的最普遍应用形式,在欧洲、美国、韩国、日本等国家实现了商业化应用,例如安全监测、机械服务和维修业务、公共交通系统、车队管理、城市信息化等领域。
2.智能交通系统及其发展现状
智能交通系统是在较完善的道路设施基础上,将先进的电子技术、信息技术、传感器技术和系统工程技术集成应用于地面集团交通管理所建立的一种实时、准确、高效、大范围、全方位发挥作用的交通运输管理系统它具有以下作用:充分发挥现有交通基础设施的潜力,提高运输效率,保障交通安全,缓解交通拥挤,改善环境保护。
我国现有的智能交通管理系统还处在初级起步阶段,多以人工干预和管理为主,路面上的信息采集点较少,车辆的管理不够集中,系统独立运作,缺乏统筹规划和技术手段落后是造成上述现象的主要原因所在。
三、面向智能交通系统的物联网体系结构
智能交通系统与物联网相结合,实际上是构建了一种全新的智能化交通系统。两者结合可以将以物联网为代表的智能传感技术、信息网络技术、通信传输技术和数据处理技术等有效的集成,并应用到整个的交通系统中。可以提高交通系统的运行效率,减少交通事故,降低环境污染,促进交通管理及出行服务系统建设的信息化、智能化、社会化、人性化水平。未来的智能交通系统应包含交通管理与规划、出行者信息服务、车辆运营管理、电子收费、智能车辆、紧急事件与安全、综合运输、自动公路、汽车移动物联网这9大领域。但这9大领域中,每一个都与物联网技术息息相关,下面只将一部分领域中应用的物联网知识作简要介绍。
交通管理与规划领域的建设应包括先进的交通管理系统、交通基础设施智能监控系统、交通运输规划决策支持系统,这三部分内容。而这三部分内容又分别包括全方位的交通信息采集与路网状态监控、在大量的交通基础设施上部署各类先进的传感设备实时获取状态信息、将基于智能交通系统和物联网的基础设施建设中获取的大量信息资源提供给规划人员等。汽车移动物联网是物联网在交通领域的具体应用。在物联网的技术背景下,交通系统中的人、车、路等组成要素的泛在感知能力将逐渐成为现实,这相当于提供了覆盖率极高的信息采集和终端。在物联网的环境中,以汽车移动计算平台为核心,利用泛在感知能力可以对现有的几乎所有智能交通系统进行升级强化,建设基于物联网的路网车辆状态监控系统、基于物联网的交通控制系统以及基于物联网的信息服务系统等。
车联网利用车载电子、标准信源、传感网络等技术手段实现车辆的信息采集,利用无线射频识别(RFID)、专用短程通信(DSRC)、广域无线通信等技术实现车辆的信息互联,基于信息网络平成对车辆的静态、动态信息的深度挖掘与综合利用,并根据不同的功能需求实现车辆的合信息服务和监管。通过在物体上植入各种微型芯片,使物体变的智能化,变的可感知和识别,甚至具有主动或被动、单方向或双方向的信息交流能力,然后借助无线通信技术实现人和物体、物体和物体之间的相互交流。车联网是物联网与智能交通系统相结合的产物,通过安装必要的车载设备,使车辆具备信息交流的能力,通过无线互联技术充分利用车辆的身份、属性、位置和行驶状态等信息,发现其中的应用价值,并以此来满足车联网参与各方的需求。通过车联网,汽车具备了高度智能的车载信息系统,进而能够随时获得即时资讯,做出与交通出行有关的明智决定。
面向智能交通系统的物联网体系结构,在逻辑上划分为硬件、系统软件、应用软件三个层次。各个环节分别在各个层次上有着不同的体现。在硬件平台层,包含了数据中心所需的强大的电源支持设备、大量数据存储设备、高性能的计算芯片等,数据处理和信号处理也是其中的一部分。在系统软件层,包含了数据中心所需的满足高可靠要求的服务器操作系统软件、高效的系统管理软件、数据库管理系统软件、通信管理软件、系统诊断程序等,也包含了车载设备、路侧设备上使用的实时操作系统、专用的图像接口、语音功能组件等。在应用软件层,覆盖的内容更加的丰富多彩,在与车辆相关的智能交通领域,包含编队行驶控制软件、商业管理软件、道路管理软件、智能化交通控制软件、车辆导航软件等。
2交通物联网的构成和特征
2.1交通物联网的构成交通物联网是在较完善的交通设施基础上,将新一代智能技术充分运用于交通运输系统所建立的一种实现。即把智能传感器件装备到各地公路、水路、公交、地铁各相关系统的基础设施中,把车辆、船只等运动设施,还有桥梁、大坝、隧道、车站、港口等固定设施,网络、视频、广播、通讯、遥感等各种媒体设施,在互联网的支撑下经过互联构成“物联网”。而后通过超级计算机系统、智能交通系统以及云计算将物联网软硬件资源整合起来,构成一个完整的交通物联网体系。智能交通系统是交通物联网中的核心系统。人们通过它能以更加科学的智能的和动态方式管理和控制交通。
2.2交通物联网的特征⑴全面物联:智能传感设备将交通所有基础设施物联成网,通过专用技术对网络系统实时感测和智能的控制,全面实现交通网络智能化管理。⑵充分整合:物联网与互联网系统完全连接和融合,将软硬件资源最大有效的整合共享,资源分配更加充分和合理。为低碳环保、减少资源冗余浪费,提供最佳的基础设施。⑶协同运作:有效地利用基础设施的潜能,各个关键环节进行和谐高效地协作,监管保障进一步到位,不断消除自身的隐患,达到智能交通的最佳状态。⑷学习创新:立足系统本身的知识学习、积累和更新,不断地进行科技创新和应用,加快交通智能系统的研发和升级,提高可持续发展的能力。
3智能技术在交通物联网的应用成果
3.1智能技术的应用应用智能技术解决交通运输问题,已成为公认的最为有效的途径。从第十二届多国城市交通通展中可以看到,集电子技术、信息技术、传感器技术、数据通讯技术、人工智能和计算机应用等技术于一体的跨学科的智能技术,在交通科技领域的普及应用越来越广泛。如“一卡通”解决方案、RFID无线射频识别技术、GPS智能导航系统、ETC不停车电子收费系统、道路控管系统、网络影像传输系统、电子警察抓拍系统、公路车辆自动监测记录系统、交通综合信息管理系统、道路交通仿真系统等等。将不同的系统集成并将它们智能化从而提升交通管理的水平,已初见成效。由此可见,智能技术有效地综合运用于我国交通运输管理体系,已呈现出巨大的潜力和发展空间。
3.2应用智能技术取得的成果⑴智能公交方面,建立统一的智能化公共交通综合信息平台,在公路、水路等客运行业逐步实现全国联网信息共享服务。城市公交实行全程实时监控,科学的调节车流的时空分布,优化了城市公交网络。展示和引导公众选择低碳出行,逐步拓展公共交通综合信息平台的应用领域,提高公交运营效率和服务能力。⑵交通停车诱导方面,建立动态停车诱导系统和汽车租赁信息服务系统,在完善停车场和公共交通组合的基础上建设驻车换乘信息诱导系统;利用网络媒体和手机、GPS智能导航等信息终端,为公众提供实时、便捷、个性化的交通信息服务。⑶出租车营运管理方面,应用了RFID无线射频识别技术。上海市启动了出租车电子标签试点,将识别芯片安装在出租车后窗的玻璃处,执法人员使用手持识别仪透过GSM将数据传送到指挥中心,快速的把出租车的车牌号、发动机号、车辆颜色、营运证等资料读出,以此快速地识别正规出租车和“克隆”出租车,借助交通物联网智能标签识别技术,有效的提高了出租车辆营运管理的水平。⑷公路不停车电子收费方面,计划到2020年,ETC(ElectronicTollCollection)电子自动收费系统全国覆盖率达到60%以上。ETC使公路收费走向网络化、智能化,提高公路的通行能力,降低了收费管理的成本,减少了车辆和路面的损耗,为解决交通拥挤、交通阻塞、交通事故和交通污染问题提供了有效的途径。⑸港口建设方面,以虎门港物联网工程为例,去年虎门港全面启动了“智能港及物联网应用工程”项目,他们采用物联网技术为基础架构,以RFID及其他传感技术为数据采集终端,通过有线和无线的网络传输技术,把数据资源汇集到港口数据中心,云计算平成海量数据的计算,实现港口在生产操作、仓储管理、物流跟踪、海关监管、环境污染等方面管理的智能化,依托物联网打造智慧型的港口,带动了港口建设一场新的技术革命。
4交通物联网建设方面的探讨
4.1要加强交通物联网标准化工作针对智能技术包含多学科的特点,由此带来的数据采集和处理技术的复杂性,需要制定和完善统一的物理层接口协议和标准。实现物理层接口的标准化,可以最大限度降低系统的瓶颈,保证整个系统接口的互联性,有助于物联网配套产业的新产品研发和标准化生产,促进智能技术的广泛应用。
4.2要改善基础设施的硬件品质对物联网中装备的各种智能传感设备及硬件,要制定标准采购目录和安装规范,尽量采用新一代智能产品。对老化的设备要定期检查和更新换代,特别是对采集设备的性能进行制度性评估,提高硬件设备的品质,不仅对杜绝各类事故提供可靠的保证,而且使智能技术更加有效的发挥。
4.3要加快智能交通系统的研发应用从交通物联网的现状来看,很多地区发展还不平衡,有的还未引入真正意义上的智能交通系统。许多在用的交通管理系统,智能综合分析的功能较少。有些交通指挥系统只是具备监测、记录、抓拍等被动性的监管功能。不具备主动性的智能预防、诱导分流和调控功能。在交通管理方面,对车辆流量、车速、车况、路况、环境仍处在人工监管状态,对突发事件应急反应上还缺乏智能处理的预案。为此,加快智能交通系统的核心技术研发,建立物联网智能预防系统显得格外重要。智能预防系统是智能交通系统一个重要的组成部分。通过多种智能技术实时感测和智能的分析,对道路、车辆、驾驶员、环境及时提出预报、预警、诱导和安全评估以及专家解决方案。可以实现有效的限速限载,合理的分流调控,排除事故隐患,减少人员伤亡和路产损失,为公共交通提供更加安全的保障。
5智能交通系统的研究
在建立交通物联网的地区,初步实现了交通运输、物流仓储、交通监管等方面的自动化、数字化管理。但物联网的智能化水平还远远不够,数据分析、安全预防、调控决策和重大事件的处理大部分还需要人工完成,处理的结果还未达到专家水准。因此,研发和应用智能交通系统,是今后交通物联网建设的关键所在。
5.1智能交通系统的是一个交通领域的专家系统智能交通系统是当前交通运输领域的前沿研究课题,是一个涉及领域多、知识面广的庞大的体系架构。采用云计算平台技术,使分布的系统硬件和软件资源充分地整合,通过虚拟化管理和调度,可以实现基础设施级服务(IaaS),平台级服务(PaaS)和软件级服务(SaaS)。人工智能是研究如何构造智能机器或智能系统,使它能模拟、延伸扩展人类智能的学科。人工智能技术包含计算机科学、控制论、信息论、神经心理学、哲学、语言学等,主要应用在专家系统、机器学习、模式识别等领域。智能交通系统就是采用人工智能和云计算技术构建的交通领域的专家系统,是实现交通物联网智能化的一个重要途径。
5.2智能交通系统的主要构成智能交通系统,也是一个功能完整的、有学习新知识能力的、并能进行逻辑推理的、在交通管理方面代替人类思维支配系统运行的知识系统。它由若干个子系统和知识库组成,各个子系统也是一个独立的专家子系统,根据专业技术领域可划分为:路桥专家子系统;车辆专家子系统;船舶专家子系统;水运专家子系统;物流专家子系统;交通监管专家子系统;应急救援专家子系统;安全预防专家子系统等。每个子系统由若干个完整的智能模块组成,按照功能的划分,每个智能模块对它管辖的范围进行实时的感测和处理。智能交通系统由日常处理、智能处理和专家处理几个层面系统组成。按照事件等级,日常处理只解决经常发生的简单事件,智能处理以快速响应、准确及时、合理调控、节约资源、预防事故发生为目的;遇到重大的复杂事件转由专家处理来决策。
前言:现阶段的中国,经济发展迅速,人们生活水平提高,出行工具不断更新,所以交通运输业也呈现出翻天覆地的变化来。交通运输是直接关系到千家万户利益和生活质量的热门产业。但是随之而来的是越来越严重的交通拥堵情况和管理问题,智能交通系统顺势而生。智能交通系统是一种实时、准确、高效的综合运输系统,也正是解决现在交通问题的关键所在,主要是解决交通拥堵的问题,其次是维护交通安全,紧急有效处理交通事故等。
1、智能交通系统的概念
智能交通运输系统(ITS)是充分利用现代高新技术,综合利用信息技术、卫星导航系统、道路监控系统等方式,建立起来的智能、便捷的交通系统,具有实时、准确、高效的特点,能够把人、车、道路有机的结合起来,实现控制车流量、提高交通系统的安全性和流畅性等目标[1]。智能交通系统利用地球卫星定位系统,接收卫星电波,确定每个时间点上的汽车位置、交通路况、畅通程度等,将汇集到的交通信息传到交通管理中心进行处理,然后传到信息平台上,出行者可根据提供的信息选择交通方式和交通路线,因而可以有效保持道路畅通;再与电子地图、无线电通讯网络、计算机车辆信息管理系统以及交通地理信息系统结合起来,可实现实时跟踪车辆,方便进行交通管理。地球卫星定位系统具有全球性、全天候、实时性等特点,可以实时记录报道车辆的具置和交通状况;交通地理信系统作为一种空间性数据管理系统,具有数据收集、数据分析、空间定向的功能,可以据此建立数据模型,分析动态交通系统情况,为交通管理提供方便服务;无线电通讯网络技术可以实现智能交通系统的信息大量传输,方便用户之间的信息传递,也便于交通管理部门进行高效的管理,这三者之间的有机结合,构成了智能交通系统的基本框架,达到交通系统的交通智能化和管理智能化[2]。
2、智能交通系统的内容
智能交通系统主要包括交通信息服务系统、交通管理系统、公共交通系统、车辆控制和安全系统、营运车辆运行管理系统、电子收费系统、紧急救援管理系统等。随着网络技术的不断发展,信息的迅速传递,信息网络系统逐渐建立并完善起来。用户可在交通工具上安装接收交通信息的接收器,得到由交通信息中心提供的道路交通信息、公共交通信息、换乘信息、交通气象信息以及其他与出行相关的信息。人们可根据这些信息确定自己的最佳出行方案,选择合适的出行路线。管理部门可以利用交通信息服务系统,提高道路的畅通程度,方便人们的出行,同时也提高交通运输的安全系数,均衡分配交通资源。用户若是在交通工具上安装了自动定位和导航系统,交通信息服务系统还会为用户自动选择最佳出行路线,使其出行极为方便。交通管理系统与交通信息服务系统之间存在密切联系,它们之间有一环节共用信息采集、信息处理以及信息传输系统[3]。交通管理部门实时监控道路交通状况,并进行及时有效的疏导和控制,有效处理交通事故,确保道路交通的安全和畅通。公共交通系统主要包括公共汽车、轨道交通、城郊铁路、长途客车等,致力于提高公共交通的效率,增强公共交通的安全性,为群众提供方便、快捷、安全、实用的公交系统。车辆控制和安全系统包括车辆辅助安全驾驶系统和自动驾驶系统,极大的保障了驾驶员的安全。车载传感器可测定出所运行的车辆与周围车辆的距离和其它情况,给驾驶员提供各种路况信息和安全警报,提高驾驶员对行车环境的感知能力和预先防范能力。自动驾驶系统可以自动导向,自动回避障碍物,智能的在高速度情况下保持与前后车的安全距离,但是这些智能功能大部分局限在智能公路上使用,在普通的公路上只能发挥其辅助安全功能。营运车辆运行管理系统是一个智能化的物流管理系统,综合利用卫星定位、地理信息系统、物流信息及网络技术来有效地管理车辆运输,提高交通运输的安全性和高效[4]。电子收费系统是指使用者预交通行费领到通行卡,安装在交通工具上,该卡与车道上的读取设备自动通信,在卡上扣除本次通行费,这样就极大的提高了车辆收费的效率,提高交通畅通度。紧急救援管理系统通过交通信息服务系统和交通管理系统把交通监控与救援机构结合起来,为突发交通事故提供现场紧急处置、拖车、救护、排除故障车辆等服务。
3、我国智能交通运输系统发展存在的问题
我国电子信息技术和网络技术薄弱,智能运输系统的发展水平较低,产品的精确度和先进性都与国外发达国家存在较大差距,应用的市场范围较窄。我国缺少智能交通运输系统中产品的核心技术,缺乏有中国自主研发创造的适应我国国情的有特色的产品。智能交通运输系统所需的设备、产品、系统大多是由国外引进,具有盲目性,且引进成本比较大,系统设备的日常维护和产品更新较为困难。在已经建立的智能交通系统中,各个系统之间的联系不紧密,没有充分的实现信息资源的交换和共享,使得智能交通系统的发展和推广遇到瓶颈。智能交通运输系统中的子系统:信息系统、管理系统、控制系统之间相互孤立,没有实现系统之间的信息协调。在研究领域中,有些领域重复研究,有些领域好处于研究的空白领域,研究的领域和资源的分配也不均衡[5]。
4、针对我国智能交通系统发展问题的建议
首先要重视设备、产品的自主研发,发展智能交通系统技术,这需要政府加大对科研项目的投资力度,并与企业、科研机构共同协商努力,建立适应我国国情的智能交通系统。第二,在交通部门和运输安全专家、信息技术专家、网络技术专家的共同指导下,联合社会各界的力量,借鉴国外先进经验,引进先进技术设备,增加研发的资金投资和技术投资。第三,对交通管理人员和信息技术人员进行专门的培训,在社会上积极地宣传智能交通系统知识,推进智能交通系统的推广,增加人们对于智能交通系统的认识。
结束语
科技的快速发展衍生了一系列的高科技技术,各种人工智能、云计算、大数据、互联网等在社会的各行各业当中发挥了重要的作用,这也就意味着,智能化将成为社会未来的发展趋势。基于此,相关的部门就必须要对当下的交通行业发展情况进行深入的调查和研究,然后充分地利用各种先进的技术构建出更加环保、便捷、安全、高效、公平的智能化交通系统。全面地将智能化交通系统运用到实际的管理过程当中,并且要根据实际情况不断地对智能交通系统进行更新。这不仅能够最大限度地提升交通行业的整体管理水平而且能显著地提升交通行业的整体服务质量。
1 面向未来智能社会的智能交通系统当中的重要智能交通技术
1.1 大数据挖掘
社会的快速发展最大限度地推动交通行业的发展进程,在这样的情况之下,各种先进的多元化集成技术被广泛地运用于交通行业的管理过程当中,从而有效地推动了交通行业的大数据发展。相关的工作人员通过利用计算机设备和大数据技术,能够在海量的信息当中挖掘出所需的重要信息,并且通过科学的预算和分析,快速地掌握数据变化的规律。管理人员通过计算机设备了解到这些大数据分析的结果和规律,然后能快速地对交通进行全面而准确的评估,从而作出正确的决策。另外,相关工作人员通过大数据能够快速地解决各种交通要道拥堵的问题,而用户通过相关的仪器设备访问这些数据,能够根据实际的出行需求选择最优的路线方案,最大限度地提升了出行的便捷性和高效性。相关的管理人员还可以利用大数据技术,全面地建立跨区域的具有较高的立体性和综合性的智能交通系统,从而实现跨区域的交通管理。例如利用全新的先进科学技术检测驾驶行为、完成交通信息诱导、实时地对事故进行处理和监测等。这样不仅有效地提升了大数据技术在交通管理过程当中的实际应用,同时也提升了交通管理的智能化水平。
1.2 无人驾驶
无人驾驶技术是一项全新的车辆自动驾驶技术,通过车辆当中配置的机械电子、自动控制、信息融合、组合导航、计算机视觉、人工智能等技术的配合,从而完成车辆的无人驾驶。无人驾驶中的导航设备可以与全球的导航系统相连,同时能够利用红外线、视觉、激光等多种方法来感知周围的环境和交通的情况。这样不仅能够快速地定位车辆的位置,同时还能够有效地规避行驶过程当中的障碍物和其他车辆。另外,车辆上的高智能计算机能够完成一系列的运算,用户通过向计算机下达指令能够完成转向、速度、启动等的操作。无人驾驶车辆不仅能够最大限度地提升车辆行驶的整体安全性和可靠性,同时还能够有效地缓解驾驶人员长期进行车辆驾驶产生的疲劳感,进而达到最大限度地预防各种交通事故的发生。无人驾驶车辆还能够很好地在极限条件下和恶劣条件的环境当中行驶,车辆的各方面性能远远优于普通车辆。无人驾驶技术可以广泛地使用于无人潜航器、无人艇、无人驾驶飞机、无人驾驶汽车等。无人驾驶设备通过详细的定位,以及利用网络云计算、自动控制、智能规划、自动规避、自动导航、视觉环境感知等技术,能够快速地将车辆信息和周围环境信息形成一个较为完整的整体。智能设备能够在这个整体当中快速地完成各项指令和操作。无人驾驶技术不仅仅是衡量一个国家工业水平和科技水平的重要因素,同时也是面向未来的智能社会发展过程当中智能交通系统构建的必然。
1.3 车联网
在构建车联网的过程当中,必须全面地遵循数据交互标准和通信协议原则,然后在车载移动互联网、车际网、车内网的基础上,构建汽车与互联网、车与行人、车与路、车与车之间的信息交换和无线通信的大网络。在构建车联网时,相关的工作人员需要合理地利用大数据对各种信息进行有效的分析和计算,然后再根据实际的情况和客户的需求,为客户推出一系列定制服务。可以不断地加强智能城市和助力智能交通的建设,也可以不断地完善政府企业车队、车行行业、4s行业、合力保险行业、云计算平台。在构建的过程当中,充分地遵循以人为本的原则,然后有目的性地向用户提供环保监测管理、车管业务、智能交通管理、资讯、增值服务、查询理赔、ubi保费计算等服务。车联网的建设包含了智能化汽车和物联网两个方面的内容,是交通系统当中全面应用物联网技术的典型案例。相关的管理人员通过车联网,能够实时对车辆智能化控制、智能动态信息服务、智能化交通管理进行一体化的管理操作。另外,车联网还会提供一系列的产品捆绑销售,例如车联网电商、车联网保险、无人驾驶技术、声控互联等。这不仅仅是交通行业对于传统的交通网络系统的优化和创新,同时也是交通行业全面地构建智能交通系统,迈向未来智能社会的重要体现。
2 面向未来智能社会的智能交通系统的有效应用措施
2.1 全面地提升智能交通信息服务水平
现阶段,智能交通发展前沿的技术是车路协同技术。因此,中国在进行智能交通系统的构建时,需要全面地加强对车路协同技术的研究,不断地引进先进的车路协同技术来进行智能交通系统的建设。与此同时,为了能够更好地在智能交通和智能交通科技的发展过程当中占据优势,抢占发展的制高点,相关的工作人员还要根据我国的交通分布情况尽快地进行智能交通车路协同布局。相关人员需要加强交通仿真技术和交通信号控制技术的科研力度,不断地对现有的技术进行优化创新,从而尽快地摆脱智能交通核心技术依靠进口的现状。在未来智能社会的发展过程当中,车辆将作为重要的出行工具和移动终端,根据人们的需求汽车甚至还能衍生出比手机更加强大的功能性。因此,相关的部门必须要加强对车联网产业链的研究,不断地将大数据技术应用于车联网当中,全面地提升车联网的整体科技化水平和质量。
例如,智能公交就是通过GIS地理信息技术、通信技术、GPS定位技术,有效地对公交车辆进行全面的监控管理,然后按照实际的运行状况智能化地对公交车进行调度。通过利用车联网技术和大数据技术对出行人群的出行方式、出行路线、出行时间进行预测,然后制定最高效的优化路线,从而能够有效地解决城市当中的车辆调度问题。通过将导航规划技术和百度地图实时路况监测技术融合之后,能够对驾驶员的出行路线、出行习惯、出行方式等行为进行全面的监测,从而全面地完成驾驶人员的科学评估。
2.2 全面地加强对无人驾驶车辆的研发
1.我国智能交通系统的现状
1.1我国智能交通的发展前景
据不完全统计,截止到目前我国涉及到智能交通的企业已经多达2000家,这些企业主要是提供道路监控、收费站收费设备的生产制造企业和从事卫星定位、地理信息采集的信息服务企业。近年来车载播放器、导航仪等电子产品的日益普及表明汽车电子产品已经成为智能交通的一个重要部分,并不断地推进着交通运输业的快速发展。智能交通系统涉及到不同类型的企业,这些企业中既有提供信息服务的电信服务商也有提供传感器、电子产品的硬件制造商,如今我国大力推动智能交通的发展,尤其相关的上下游企业也必将不断发展壮大,反过来这些企业的壮大也会推进智能交通的发展,进而形成良性互动的发展环境。
1.2我国智能交通系统存在的问题。
(1)信息共享性差和“应用孤岛”现象抑制智能交通的发展。在我国智能交通的主要是由交通运输部、科技部、国家发改委等多个部门联合推动的,然而由于各部门是根据自身的业务需求进行推进的,各自有各自的系统,这也就导致了我国的智能交通系统存在着多系统并存、信息共享性差以及重复建设等问题,这不仅使我国智能交通系统缺乏一个统一的构建同时也抑制了智能交通的发展。此外“应用孤岛”也是制约我国智能交通快速发展的一个重要因素,所谓的“应用孤岛”就是由于区域经济发展不平衡导致一些新的智能交通技术在经济发达的地区有很高的普及率,但在一些经济欠发达的地区却得不到有效的推广,这就导致了智能系统无法形成一个统一的联动机制。
(2)对于些重要的技术指标还没有制定统一的标准,加大了技术的推广,不利于智能交通技术的普及和推广。在缺乏标准的情况下,不同区域一般会根据自身的实际需求构建自己的智能交通系统,在这种条件下形成的智能交通系统存在兼容性差、信息共享性差等问题,系统之间不能形成有效的配合和衔接。比如我国公路收费系统,各省份或地区都有自己的系统,这就对以后公路收费联网造成了困难。
(3)智能交通技术创新能力差,核心技术只给能力差,对国外技术依赖较高。一些智能交通设备成本高、稳定性差,严重制约着智能交通烦人推广与应用。
(4)在智能交通设备市场中,国产品牌的占有率很低,主要的市场份额仍掌握在国外企业手中,并且有扩大的趋势,国内智能交通设备企业的发展环境不容乐观。
(5)国内的智能交通研究水平低,研究体系不完善,研究机构处于无序竞争的状态,这些因素都严重制约着智能交通运输行业的健康发展。
2.基于车联网技术的智能交通技术分析
2.1系统工作原理
基于移动互联网的智能交通系统包括系统数据采集和移动互联网终端信号处理两部分,其中数据采集部分包括交通灯控制模块,GPS导航模块,无线测距模块,实现对相关信息的采集,然后通过信号无线传输模块将信息集成到移动互联网终端控制器作相应处理,最后将信息以交通灯显示警报模块,行车轨道记录引导模块和安全车距警报模块等具体形式展现给行车人员,以达到信息实时动态传输,高效率交通运行的目的。
2.2具体实施方案
(1)交通信号监控模块。现有的城市路通管理系统一般利用监控器实时监控各道路车流量,通过人工实时干预以实现对交通的的引导,但是在天气条件不理想情况下,得到的视频图像效果得不到保证,极大影响调控效果,而且这种实施方案使得车主处于被动干预的处境,不利于动态灵活处理。针对以上情况,本系统交通灯控制模块分为交通控制模块和交通信号无线传输模块,交通控制模块控制交通灯的显示转换并且将交通灯信号实时传输给交通信号无线传输模块,将交通信号实时发送给移动互联网终端控制器,当行驶车辆进入交通路口设定范围时,终端显示器将显示离前方交通灯距离,并且告知当前交通灯信号状态,当监测到车速过大或者行驶车辆处于闯红灯临界时段时,终端警报器被激活,提醒驾驶人员注意控制车速,以防触犯交通规则引起交通事故。
(2)行车导航模块。GPS系统利用24颗轨道卫星通过测量到达信号时间来计算用户端位置,同时通过GIS(地理信息系统)匹配将用户地理位置在地图上实时显示出来。该系统可实现对车辆的动态监测,轨迹记录,以及交通管理等功能,因此广泛应用于行车导航,物流管理,车辆防盗等方面,具有良好的经济和社会效应。GPS通过和车载GPRS系统进行信息的交互,包括ARM嵌入式系统,GPS卫星接收模块,GPRS无线通信模块以及其他扩展子卡。GPRS无线链路基于移动公司的GPRS移动通信公众网,包括MSC基站控制器,SGSN业务支撑节点,GGSN网关支撑节点。监控中心包括网关和信息服务器,车载卫星定位系统的数据流程,首先由车载系统设备上的GPS卫星接收模块采集GPS卫星数据,经过数据处理得到车辆的地理坐标信息,该信息通过车载系统的处理之后,由GPRS无线通信模块发送到GPRS无线通信网上。GPRS网络根据相应的协议在车载系统和接互联网基站的监控中心之间建立一条支持TCP/IP的数据通道。监控中心把通过这条数据通道传送来的车辆位置数据通过数据库和WebGIS技术显示在电子地图上,最终达到导航的目的。
(3)车距测量模块。本系统所采用测距方式为非成像激光测距,激光测距仪是一种光子雷达系统,通过测量向目标发射激光的传播时间来确定与目标物体的距离。该系统运行原理是向目标车辆发射激光速,激光束传播时遇到目标车辆发生反射,激光束返回发射端,控制中心计算发射时到反射光回收到接收端的时间,测算出目标车辆距离。
3.智能交通在道路桥梁施工中的应用
尽管我国智能交通起步比较晚,但是,它在一些发达国家已经有数十年的发展历史,并且已经形成了一定的体系,在技术方面也有了很大的进步。为了科学、有效地解决我国道路桥梁施工中的相关问题,需要一些先进的技术和设备作支持,尽可能地将智能交通系统运用到道路桥梁施工中,不断完善智能交通中与道路桥梁施工相关的系统。
3.1监控系统
在道路桥梁施工过程中,会遇到各种各样的问题,比如人员管理问题、材料管理问题、安全管理问题等。因此,使用监控系统可以进一步解决这些问题,例如,监督施工人员的工作情况,从而督促他们的工作;监控施工材料,可以有效避免建筑材料丢失的情况,一旦发现有不好的情况发生,就可以快速与管理人员建立通讯联系,并制止不良情况出现;对于一些难于发现的或不经常关注的施工部分,可以从整体性监控的角度出发,对其进行全面的掌控,从而避免一些突况发生,保障道路桥梁施工的安全性,维护施工的正常进行,改善施工的运行状态。
3.2道路桥梁管理信息系统
道路桥梁施工离不开信息的收集、管理和分析,而道路桥梁管理信息系统主要服务于城市道路桥梁管养一体化的目标。它通过建设桥梁信息数据库和信息服务平台,收集建筑桥梁施工中的相关信息,并准确、客观地分析施工中收集到的数据,从而使道路桥梁设施管理更具科学性和专业性,为道路桥梁施工设计提供更加准确的参考意见。录入建筑桥梁施工信息,可以为道路桥梁的问题治理、安全管理作出突出的贡献。
3.3紧急救援系统
紧急救援系统是道路桥梁施工中不可缺少的系统之一,它是以救援机构和相关设施为基础,同时与监控系统相结合而形成的服务系统。在道路桥梁施工中,难免会发生一些突发事故,当一些事故发生或对人员造成损害时,可以通过紧急救援系统为使用者提供车辆故障现场紧急处置、现场救护、排除事故车辆等服务。它是通过电话通信、互联网通信、交通网络形成一个紧密的连接网,从而协助救援机构展开援助工作,为道路桥梁施工安全提供保障。
结束语
虽然我国智能交通业起步晚,发展时间段,但是在解决城市交通问题方面发挥着巨大的作用,为促进经济社会全面协调发展、保障人民群众生命财产安全创造了安全、高效、畅通、绿色的道路交通环境。所以,要不断加强智能交通技术的运用,借鉴国外先进的技术,从而促进我国交通的发展。
参考文献:
中图分类号:U495;TN929.5;TP391.44 文献标识码:A 文章编号:1009-914X(2014)20-0369-02
0 引言
随着经济快速发展,交通运输业带来的能耗、污染和拥堵问题日益严重,而智能交通的出现为解决这些问题提供了新的方向。随着物联网技术的蓬勃发展,智能交通研究的不断深入,过多的技术引入到智能交通领用中,虽然大大提高了智能交通的技术水平,但是同时也带来了技术支持目标单一、缺乏互联互通,重复投资等问题,难以大面积推广。为了进一步改善交通问题,我们应该努力提高交通运输设施、设备的信息化和智能化水平。作为物联网产业链中的重要组成部分,智能交通具有行业市场成熟度较高,行业传感技术相对成熟等特点,智能交通系统在许多城市已经开始规模化应用,市场前景广阔,投资机会巨大,将成为未来几年物联网产业发展的重点领域,也将是我们发展智能交通研究的重要课题。
1 物联网在智能交通中的应用现状
(1)我国交通能耗、污染和拥堵问题的日益严重,交通越来越阻塞,交通事故也随之频繁发生,伴随着物联网、云计算等相关技术的出现,物联网凭借其网络化和智能化的特点,集合多领域、多学科的优势,在交通控制中拥有重要的现实作用,尤其可以促进智能交通的发展,为解决交通问题,智能交通系统应运而生。
(2)我国在物联网多领域实施了技术攻关措施达到了较好的效果,交通运输的智能化是依靠物联网设备和技术来实现的,是继互联网后产生的新兴产业,智能交通是物联网在现实中应用的典范,可以满足广大人们的需求,是最有市场前景的行业之一。
(3)在物联网中,物体可以无需人的干预直接就行彼此“交流”,通过RFID、传感器等的全面感知和存储信息,根据实际需要来完成物品互相联通的网络连接,然后进行通信以及交换信息,以至达到智能识别、定位、跟踪、监控以及管理的智能系统。随着智能交通的发展和普及,会带动智能汽车、导航系统等相关行业的发展,具有很高的应用价值和市场需求。
(4)智能交通系统是把多种技术有效集成应用在交通领域的综合管理体系,智能交通系统是物联网技术在交通系统中的高效应用,它将信息高速公路与实体高速公路恰到好处的融合在一起。
2 物联网技术用于智能交通的功效
(1)管理维护。通过RFID标签可以准确的定位到相应的交通标识,更可以通过程序设定,当交通标识发生破坏时自行发送维护请求,方便公路管理部门的管理,将RFID技术用来交通标识的个体标识,实现交通标识数据的有效追溯和数据的共享,从而达到优化交通标识管理维护的目的。
(2)警示作用。物联网技术应用于交通标识可以实现获取天气信息,如湿度、雨雾、阳光强度等信息,从而进行科学分析,自动触发相关行为,调整标志反射角度,并根据相应天气信息发出警示信号。
(3)交通诱导。交通标识对于道路的通行能力起着重要的作用,将物联网技术运用于交通标识中可以智能实现流量控制。通过采集监测到的交通数据流量,进行数据格式转换和数据库存储,从而建立智能交通系统的交通流量数据库。通过该数据库又可以自动或手动通过交通标识进行流量控制。
(4)指导路线。借助于系统的智能技术将各种交通方式的信息及道路状况进行登记、收集、分析,并通过远程通讯和信息技术,将这些信息实时提供给需要的人们,以增强行车安全,减少行车时间,并指导行车路线。
3 物联网在智能交通中的应用范畴
(1)城市公共交通。可以建立城市交通“一卡通”信息系统,实现公交车、出租车多种城市交通消费一体化;智能公交调度系统,利用GPS、RFID、人像识别、车内视频监控等技术掌握实时信息;站台车辆信息平台建设,方便乘客查询相关乘车信息,合理制定乘车方式。
(2)物流交通领域。通过道路运输GIS系统定位跟踪与运输导航、RFID、3G网络提供广域移动车载通信手段实现货物状态位置实时管理;通过电子标签及识别自动收集货物信息,从而缩短作业时间,提高运营效率。
(3)电子收费和证照。IC卡电子证件嵌入了RFID逻辑加密芯片,具有高可靠性、高安全性、高性价比等特点,它可以加快路桥收费站车辆通车速度,加快效率、减轻或避免车辆在收费用站口拥堵问题。基于射频识别技术的汽车电子牌照等对于防止假牌假证具有积极作用。
(4)道路设施监测。通过将道路基础设施被赋予电子标签,通过特定的信息传输通道和平台,能够实时掌握对象实体的状态信息,并将有强大的后台数据挖掘分析功能及丰富的展示平台,用于提高交通运输综合管理和服务能力。
4 物联网在智能交通中的利用形式
(1)中心型。主要由交通管理系统、突发事件管理系统、收费管理系统、商用车辆管理系统、维护与工程管理系统、信息服务提供系统、尾气排放管理系统、公共交通管理系统、车队及货运管理系统及存档数据管理系统等十个分支系统组成。系统运用具有相对的独立性,位置的设置不受交通基础设施的约束,各分支系统间依靠有线通讯联系。
(2) 区域型。主要由道路系统、安全监控系统、公路收费系统、停车管理系统和商用车辆核查系统等五个分支5系统构成。系统在使用中一般情况下需要在特定的位置安装设备,如检测器、信号灯、信息搜集板等设施,并以有线连接的方式与一个或者多个中心型系统相连,与通过检测设备路段的车辆信息进行互换。
(3)旅行者。主要服务于旅行者或者是旅行行业的经营者,通过应用智能交通系统功能对不同的团队实施有效的技术支持,以达到旅行畅通的目的,节省时间成本。在使用中可以通过有线或无线连接方式与其它类型的系统进行直接的信息传递工作。
(4) 车辆型。使用中一般根据车辆的种类,把车辆行交通系统分别普通车辆系统、紧急车辆系统、商务车辆系统、公交大客车系统和工程车辆系统等五大类。也可以根据现实中的不同需要,将这些系统与之上三种系统中任意一个系统相联系,与各车辆系统间进行联系。
5 应用于智能交通的主要物联网技术
(1)无线通信技术。UHF和VHF频段上的无线调制解调器通信被广泛用于智能交通系统中的短距离和长距离通信。目前提出的长距离无线通信方案是通过基础设施网络来实现。使用长距离通信方案目前已经比较成熟,车辆已经能够通过多种无线通信方式与卫星、移动通信设备、移动电话网络、道路基础设施、周围车辆等进行通信,并且利用广泛部署的WiFi、移动电话网络等途径接入互联网。
(2)计算技术。根据汽车电子领域的最新进展,未来车辆中将配备数量更少但功能更为强大的处理器。发展的趋势是使用数量更少但是更加强大的微处理器模块以及硬件内存管理和实时的操作系统。同时新的嵌入式系统平台将支持更加复杂的软件应用,包括基于模型的过程控制、人工智能和普适计算。
(3)感知技术。智能交通系统中的感知技术是基于车辆和道路基础设施的网络系统。交通基础设施中的传感器嵌入在道路或者道路周边设施(如建筑)之中,因此它们需要在道路的建设维护阶段进行部署或者利用专门的传感器植人工具进行部署。车辆感知系统包括了部署道路基础设施至车辆以及车辆至道路基础设施的电子信标来进行识别通信,同时利用闭路电视技术和车牌号码自动识别技术对热点区域的可疑车辆进行持续监控。
(4)视频车辆监测。利用视频摄像设备进行交通流量计量和事故检测属于车辆监测的范畴,它不需要在路面或者路基中部署任何设备,当有车辆经过的时候,黑白或者彩色摄像机捕捉到的视频将会输入到处理器中进行分析以找出视频图像特性的变化。根据不同的产品型号,单个的视频监测处理器能够同时处理1~8个摄像机的视频数据。
(5)全球定位系统GPS?。车辆中配备的嵌入式GPS接收器能够接收多个不同卫星的信号并计算出车辆当前所在的位置,定位的误差一般是几米。GPS信号接收需要车辆具有卫星的视野,因此在城市中心区域可能由于建筑物的遮挡而使该技术的使用受到限制。GPS是很多车内导航系统的核心技术。很多国家已经或者计划利用车载卫星GPS设备来记录车辆行驶的里程并据此进行收费。
(6)探测车辆和设备。部分国家开始部署所谓的“探测车辆”,它们通常是出租车或者政府所有的车辆,配备了DSRC或其他的无线通信技术。这些车辆向交通运营管理中心汇报它们的速度和位置,管理中心对这些数据进行整合分析得到广大范围内的交通流量情况以检测交通堵塞的位置。
6 促进智能运输系统发展的对策
(1)加强智能交通基础理论研究。虽然在物联网技术在实际应用中取得了显著成绩,但与实际需要还有一定的差距,与其他成熟的技术相比较,由于国际上智能交通理论处于发展时期,物联网技术在智能交通中的运用还有不小的差距,在今后的工作中还应积极加强与智能交通开展较先进国家的交流,深入细致地进行理论研究,尽快接近或达到世界水平,以适应当前交通快速发展的需要。
(2)建立智能交通管理专门机构。中国交通运输体制目前仍是条块分割状况,铁路、公路、民航、公安,建设等部门分头管理,现已出现了各自发展自身智能交通的势头,这将造成中国资源上的巨大浪费。应尽快完善由国家相关部门统一领导的专门管理机构,并对智能交通发展战略、目标、原则和标准进行健全和完善、并促使其规范运行,特别是制定有关智能交通的技术规范和整体发展规划,实现智能交通技术和产品的通用性,兼容性和互换性,加强政府的宏观调控,以减少局部利益的冲突和有限资金的浪费。
(3)注重专业人才的培养。随着智能交通的进一步发展,与之相应的是对不同层次的专业人才需求情况与以往大不相同,为了推动工作的开展,相关责任部门要派出人员专门进行学习培训,采取走出去、请进来的方式,积极学习其他国家的先进经验,将最新的智能交通技术溶入交通运输专业的教学内容和科研之中,以高素质的智能交通人才去迎接新世纪的挑战。
7 结束语
随着物联网技术的不断成熟,交通控制朝着智能化的方向发展已经是大势所趋,智能交通系统是交通事业的一场革命。通过有效的结合与应用先进的信息技术、通信技术、控制技术、传感技术、计算机技术和系统综合技术,使人、车、路之间的相互作用关系以最优的方式呈现,进而实现高效、准确、实时、安全、节能的目标。发展基于物联网的智能交通系统,是当今世界城市交通发展的趋势和特征,它能够更加及时准确的收集各种交通信息,通过信息传输、分析和处理,为出行者提供更全面和准确的交通信息,使人们出行更加方面和快捷。
参考文献
[1] 李鹤艺,熊燕舞.交通在行动[J].交通建设与管理,2010,(7):16-20.
[2] 徐波.基于物联网的智慧交通系统建设思考[J].浙江交通职业技术学院学报,2012,13(3):27-31.
深圳市早在2009年就在国内率先实践了“一城一交”的大交通管理体制,实现了智能交通工作的统筹管理,为智能交通系统一体化规划、建设、管理和应用提供了良好的体制机制保障。在“十一五”末期,随着深圳市智能交通系统建设总体工作方案、技术方案以及智能交通“一个平台、六大系统”(“1+6”系统)的设计和建设工作启动,交通、交警等各部门、海陆空铁等各方面交通信息得到整合,形成了统一资源共享平台,交通监测、交通管理、道路交通调控、公共出行信息服务、交通指挥应急、交通管理决策支撑等六个信息系统逐一建立。
深圳市交通运输委员会目前已完成交通运输行业GPS监管平台、轨道交通指挥中心系统、公交图文管理系统、深圳港危险货物监管系统、尾气排放强制检测系统、公路桥梁管理系统等在内的十余个信息化系统的建设工作,交通监控指挥中心、交通信号控制、网格化机动车识别、干线交通诱导、停车诱导、交通事件检测、交通违章管理等系统,城市交通仿真系统、数字深圳空间基础信息平台系统正在不断完善。
据了解,深圳对交通基础网络的搭建如今已初具规模,对交通行业人、车、路动态信息采集得以支撑。道路信息采集上,完成142个路段车牌识别点,840多个停车场车牌识别点,初步形成网格化。现有道路交通专用闭路监控摄像头800余处,原特区内主干道覆盖率达到90%左右。固定式全自动电子警察数量达2678台,覆盖全市900多个路口或路段,覆盖率达到70%以上。深圳市1474个信号控制路口的1138个路口已通过GPRS技术接入中央联网控制,并设置了707套线圈检测器,可以实现自适应控制的路口102个。在车辆信息采集方面,卫星定位行车记录仪全面推广,依托营运车辆GPS监控平台,实现对深圳市包括14700多台出租车、4800多辆长途客车2400多辆危险化学品运输车和2900多辆重型自卸车等进行监测,实现对车辆超速、GPS掉线等违规行为的实时掌握;通过已接入的视频监控点,深对出城通道、高速公路收费站、客运场站实现可视化运行监管,及时发现车流及客流拥堵情况,为行业管理部门及时调配运力提供了情报推送。
1+4平台
“1+4”平台建设项目同样是深圳智能交通规划的重要一步。从去年开始,深圳市交通运输委员会着重以顶层为核心的智能交通架构体系智能交通体系框架,明确了智能交通的建设目标。在综合交通运行指挥中心为载体的基础上,加快建设智能设施、智能公交、智能物流、智能政务四大平台,以实现“数据办理、工作监测、抉择方案支撑、信息和协同效力”。
记者从深圳市交通运输委员会了解到,深圳市在整合已有的多个业务系统的基础上,接入运政管理、营运车辆GPS、深圳通和地铁客流等数据,运行指挥中心通过接入深圳市交通行业的8大类(交通视频数据、城市公共交通、城际交通、两客一危、驾培、高速公路、应急指挥、交通气象)、29个系统、51项数据,初步构建了海、陆、空、铁、城的“交通数据中心”。同时,深圳市公安交警局开展了交通共用信息平台系统建设,实现交通信息的接入、融合、查询、、共享,以及事件数据向干线诱导系统的实时数据。深圳市运行指挥中心通过对海量交通数据的分析和挖掘,每周、每月编制《道路交通运行周报、月报、季报》、《深圳市交通运输行业GPS监测周报》等,及时为交通管理部门提供了科学、全面、深入的分析报告。
标准化
中图分类号:E91 文献标识码:A 文章编号:1674-7712 (2012) 14-0026-01
一、前言
随着社会的进步,汽车成为人们出行必不可少的交通工具,车辆堵塞、交通事故等问题也日益显现。汽车数量的快速增长造成了公共交通效率低下、交通事故频发。建立起现代化的智能交通系统便被提到日程上来。智能车辆(Intelligent Vehicles, IV)作为智能交通系统(Intelligent Transportation Systems,ITS)的重要组成部分,也是系统的运行主体,能够提高驾驶安全性,大幅改善公路交通效率,降低能源消耗量,由于众多优点,该技术的研究日益受到国内外相关机构的关注。
智能交通系统能够有效缓解交通压力,合理调配公共交通资源和道路资源。基于机器传感技术和控制技术,驾驶系统采用信息传输技术和计算机视觉技术监测道路路面、交通标志、其他车辆、行人以及交通事故等道路环境状况,有效保证智能车辆在各种路况下的安全行驶,并能对一些异常状况进行及时处理。在过去的10多年里,相关技术取得了很大的进步,有些国家已经成功开发了一些基于视觉的道路识别和跟踪系统。其中,具有代表性的系统有:LOIS系统、GOLD系统、RALPH系统、SCARF 系统和ALVINN系统等。从这些先进技术的应用便可看出,感知外部环境模块是智能车辆的核心技术。
二、环境感知传感器在智能车辆上的应用现状
智能车辆在道路上畅行离不开相应的传感技术,其中最重要的是道路环境感知模块,该模块将先进的通讯技术、信息传感技术、计算机控制技术结合起来系统利用。智能车辆系统主要有环境感知模块、分析模块、控制模块等部分组成。环境感知传感系统主要由机器视觉识别系统、雷达系统、超声波传感器和红外线传感器组成。
(一)机器视觉识别系统
机器视觉识别系统是指智能车辆利用CCD等成像元件从不同角度全方位拍摄车外环境,根据搜集到的视觉信息,识别近距离内的车辆、行人、交通标志等。机器视觉也有其弱点,容易受到环境的影响,在能见度较低时效果不理想,因此,在传感器类别中属于被动型。与雷达系统相比较,视觉识别系统价格低廉,一辆车上可以安装多处,监测范围更大,搜集道路信息更为全面,通过对其所得的图像进行处理可以识别、检测周围路况,这些也是主动型传感器无法替代的。所以越来越多的人对利用机器视觉感知车辆行驶环境产生很大的兴趣,该系统在现实生活中随处可见,普及率最高,机器视觉在智能车辆研究领域得到广泛的应用, 成为最受欢迎的传感器之一。
(二)雷达系统
雷达系统是一种主动型传感器,利用微电磁波探测目标距离、速度、方位等。雷达不需要复杂的设计与繁复的计算。雷达系统的使用不受光线、天气等因素干扰,无论是白天还是黑夜,晴天或者下雨,雷达系统都能够正常运转。由于雷达是靠电磁波反射原理来工作的,这会导致相近的不同雷达间电磁波相互干扰而影响工作效能。但是,瑕不掩瑜,由于雷达在准确提供远距离的车辆和障碍物信息方面有着得天独厚的优势,因此在车辆的防碰撞系统中有着广阔的应用前景。
(三)超声波传感器
顾名思义,超声波传感器是指利用超声波为检测方法的传感器。使用超声波探测得来的的数据处理简单、快速,超声波传感器可以发射定向长生波,能够在较小范围内检测到物置。这种技术在医学应用上比较广泛和成熟。汽车工业上的利用首见于在欧洲销售的的BMW 车上的超声波停车装置。这种系统利用一片单片机进行控制,超声波遇到障碍反射回传后,根据传感器探测距离发出不同的提示音。
(四)红外线传感器
红外线传感器是利用红外线来进行测量工作的传感器,技术更加先进。红外线传感器不受黑暗、风、沙、雨、雪、雾的阻挡,环境适应性好,且功耗低。这些特点使它远超其他传感器。与超声波传感器相比,反应速度更快,探测范围更广,由于其探测视角小,方向性和测量精度有所提高。与机器视觉结合使用,红外线传感器可以增强机器视觉识别的可靠性,使黑夜如同白昼,因此常被用于智能汽车中的夜视系统中。
三、多传感器的综合利用
在复杂的路况环境下,单一传感器都有其局限性,仅仅安装单一传感器难以提供路况环境的全面描述,因此设计智能车辆必须配置多种传感器。例如夜间行驶时红外线传感器是必不可少的;而停车、倒车时主要使用超声波、雷达探测周边障碍物的远近;机器视觉除日常应用外与其他传感器结合起来可以使得智能车辆驾驶安全性更加可靠。
随着计算机信息技术、通信技术、控制技术和电子技术的进步,智能车辆技术研究中多传感器信息融合技术的应用取得了许多令人振奋的成果。如车载系统互联技术、欧洲的Peugeo系统、美国的IVHS系统等。Tsai-Hong Hong等利用激光传感器采集图像获得车辆前方的距离信息,在正常的路况环境下,采用彩色摄像机与激光传感器联合感知道路表面和定位道路边界。这些技术经过不断改进,相信在不久的将来引起汽车工业的革命。
四、结语
在智能车辆的环境感知模块技术研究中,传感器是智能车辆控制系统的关键。如何使传感器技术更好的应用到汽车行业上来,未来将成为传感器技术研究领域的一个发展方向。
整合各种类型的传感器技术,使其为智能车辆提供更加真实可靠的路况环境信息,对智能汽车技术的发展来说是至关重要的。由于实际的应用环境所得到信息大多数都是不确定信息,传感器回馈信息融合还原真实路况还有很大的困难。
纵观全球,我国的智能车辆研究工作还处于起步阶段,同欧美日等相比还很落后。但随着我国社会经济的发展,汽车保有量不断膨胀,严峻的交通现状迫使我们把发展智能交通尽早提到日程上来,只要我们勇于创新,结合我国具体国情,不断进行深入、细致的研究,我国智能化交通必能早日实现。
智能交通系统利用物联网技术将车辆、驾驶员、道路设施及管理部门有机地结合在一起,通过把握交通信息流,并以交通信息的采集、传输、处理、为主线,实现运输的智能化和自动化,满足了人们交通出行的安全、畅通和环保的需求。
我国道路交通系统的现状
道路交通系统由于其固有的接入随意性,处于随机状态,相比而言,铁路、航空、水运等其他交通方式的组织化程度较高。随着汽车数量的不断增加,道路交通系统的管理和控制将面临更多的问题,如交通拥堵和交通事故。此外,道路交通的低效率还带来一个严重的负面影响,即汽车尾气排放造成的环境污染问题。在低碳和环保经济理念不断普及的今天,这些问题已经成为世界经济实现可持续发展面临的严峻挑战。
1.汽车车速慢、路网运行效率低
高效的交通是城市经济竞争力的核心,严重的拥堵不仅延长了人们出行时间,还降低了道路网络的运行效率。以北京为例,2011年北京市机动车保有量已经超过500万辆,平均拥堵时间为55分钟。
目前,我国交通运输行业的石油消费量仅次于工业,且能源利用率较低,其中30%的汽油均消耗在堵车的与此同时,道路拥堵也加重了汽车尾气的排放量,一方面,堵车延长了汽车在路上的时间,且堵车时汽车发动机仍然保持运转,依然对环境造成污染;另一方面,堵车导致汽车频繁起、停,发动机在起动或加速的瞬间所排放的尾气量较大,对环境污染更严重。 3.交通安全事故发生率高
我国道路交通事故绝对死亡人数占世界总数的比例最高,2009年全国共发生道路交通事故23.8万起,造成
面对机动化水平提高带来的交通拥堵和道路安全等问题,世界各国政府和交通专家都开始研究电子通信技术在交通领域的应用,形成了早期的智能交通系统。20世纪80年代的信息技术革命不仅带来了技术进步,也对传统的交通发展理念产生了很大冲击。
物联网技术为智能交通运输系统的实现提供了核心技术支撑。通过物联网实时交通信息采集技术、物联网传输技术及信息处理技术的应用,实现了车辆与道路、出行者与车辆、出行者与管理者之间的互联互通,以最终实现交通的智能化管理。 1.实时交通信息采集
实时、准确地获取交通信息是实现智能交通的依据和基础。交通信息包括静态信息和动态信息,其中静态信息主要包括:基础地理信息、道路交通地理信息、停车场信息、交通管理设施信息、交通管制信息以及车辆、出行者等出行统计信息。静态信息的采集可通过调研或测量来获取,采取的数据被存放在相应数据库中,保持相对的稳定。而动态交通信息则包括时间和空间上不断变化的交通流信息,如车辆位置和标识、停车位状态、交通网络状态(如行程时间、交通流量、速度)等,这些动态交通流量信息的采集,就需要采用环形线圈传感
目前,我国已经进入城镇化及城市机动化的发展期,解决城市交通拥堵问题最有效的途径是建设和使用先进的、适用的区域交通控制系统。根据我国城市交通控制与管理的需要(比如,在城市路口曾出现过这样的情景:道路交叉路口上,一个方向已经没车了,可是绿灯仍然亮着,而另一个方向道路上的车辆却排起长龙在红灯下等候。)智能交通控制系统应涵盖交通信息采集、控制策略、系统集成、系统仿真等理论和技术。其中,引入高效的交通控制系统,通过控制交通信号对交通流进行有
智能交通诱导系统产生后,受到了人们的普遍关注。许多发达国家(如美国、德国、日本等)均将其列入国家研究计划,投入大量的人力、物力和财力进行研究、试验和开发。随着相关技术的成熟和系统的实用化,智能交通诱导系统在未来智能交通管理中将发挥越来越重要的角色。
城市智能交通诱导综合信息服务平台将通过各种采集方式(如浮动车检测、视频检测、感应线圈检测、抓拍识别等)采集的各种交通流参数发送至交通指挥中心、信息服务器、行车路线优化服务器等,以供不同部门使用。其中,交通指挥中心可根据交通流信息融合的结果,来实现交通信息的公共和个性化行车路线的优化决策。而信息服务器则可实现系统与基于Internet的交通信息网、交通诱导屏、交通广播媒体等多种平台的相连。
城市智能交通诱导综合信息服务平台系统即把人、车、路综合考虑,通过诱导驾驶员出行以改善路面交通状况的一种系统,其不但可防止交通阻塞的发生,减少车辆在道路上的停留时间,而且能实现交通流在路网各个路段的负载均衡;同时,采用该系统还可提供准确、全面的交通诱导信息,在提高老百姓出行效率、质量的基础上,有效提高了道路交通的监控力度和管理水平,通过道路交通分析,提供合理的交管方案。
随着高速公路的发展,截至2009年底,我国已建成且运营的高速公路达6.5万公里,同时高速公路通信、监控和收费系统的市场规模也呈现高速增长状态。
不停车收费系统(ETC)是一种用于公路、大桥和隧道的电子自动收费系统,也是物联网技术在道路收费管理中的一个重要应用。其通过在车辆上安装具有身份识别的标签,在收费口安装对应的通信和计费装置
智能交通系统的发展,提高了交通安全水平,提升了交通运输管理的效率,缓解了交通拥堵,节省了出行时间,同时也减少了能源消耗和污染排放。随着机动车保有量的快速增长,小汽车越来越普及,出行距离不断增加,机动车尾气排放量不断升高,道路交通尾气排放的污染物比例不断升高,交通已经成为影响空气质量的重要因素。发达国家早在十年前,已经倡导低碳、绿色交通出行理念,从交通节能减排方面,开展智能交通系统的研究、试验、示范工程建设,探索可持续的绿色交通发展之路。
一、国外生态型智能交通的成功经验
(一)欧盟EcoMove项目
EcoMove是欧盟第七框架下的科研示范项目,通过研究基于车车通信、车路通信的协同交通系统,优化驾驶员的驾驶行为,降低汽车的油耗,引导驾驶员选择最环保的行驶路径;通过车队管理系统,为驾驶员提供一个自主学习的驾驶教练系统,指导和鼓励驾驶员选择能耗更低的规划路径;通过交通管理系统优化交通信号灯的科学配时,提高整个路网车辆的运行效率,减少能耗。这个项目的目标是通过实施EcoMove生态型智能交通系统,提高交通系统的运行效率,减少20%的油耗和CO2排放。
EcoMove包含6个子项目:
1.SP1项目协调和宣传
2.SP2核心技术集成
开发共同和核心技术用以保证整个项目技术的一致性。主要包括通用通信平台:浮动车信息、交通管理信息、交通状态信息通信,及绿色电子交通地图、生态交通模型、生态交通战略模型。
3.SP3生态智能驾驶(ecoSmartDriving)
开发面向小汽车驾驶员的生态驾驶解决方案。不合理的驾驶行为是增加汽车油耗的一个重要的因素,通常驾驶员没有足够的信息,判断自己的驾驶行为是否合理,导致驾驶员缺乏节能减排的意识。ecoSmartDriving系统通过整合车载系统信息,包括导航信息、交通管理信息,向小汽车驾驶员提供低能耗的驾驶方案和驾驶路径,在驾驶员出行前、出行中提供信息,并收集驾驶员出行后的反馈信息。SP3的目的是开发和验证驾驶员信息系统,为驾驶员提供低能耗的驾驶方案,培养驾驶员的绿色驾驶行为和驾驶意识。
4.SP4生态货运和物流(ecoFreight &Logistics)
开发面向货运和物流管理的生态驾驶解决方案。货车油耗是物流和运输企业最主要的成本之一,通过ecoSmartDriving培训系统训练驾驶员,降低货车10%~15%油耗。
SP4包含三个应用:
(1)生态驾驶教练
为货车驾驶员在出行前提供驾驶行为优化的模拟驾驶培训,在出行中为驾驶员提供实时的低能耗的驾驶建议,并检测驾驶员的驾驶行为,即出行后分析驾驶员的驾驶行为和行车路径,作为奖励低能耗驾驶员的依据。
(2)生态物流规划
结合交通管理信息、驾驶行为数据和物流运输信息,帮助物流企业找到能耗最低的车辆、驾驶员、拖挂车和行驶路径的配置方案。
(3)生态货车导航
根据货车的特定属性,包括交通量数据、绿色地图,为货车提供能耗最低的行驶路径。
5.SP5生态交通管理和控制
生态交通管理和控制系统,是通过优化城市交通信息系统,从整个路网的角度,减少车辆的停车次数,缓解城市的交通拥堵。通过信号灯协同控制,平衡个体与集体的车辆运行效率,并为个体驾驶员提供个性化的信息服务。
6.SP6验证和评价
评价EcoMove项目对驾驶员的驾驶行为、机动性、路网的效率和环境问题的潜在影响,并测算实施该项目的成本收益。[1]
(二)欧盟EasyWay项目
为了能够加速智能交通系统(ITS)在欧洲的普及,欧盟在欧洲范围内进行道路交通信息服务的统一设计,让ITS能够在欧洲各国间互通有无,形成更高的效益。
EasyWay主要是由2001~2006年所进行的TEMPO(Trans-European Intelligent Transport Systems Projects)项目延伸而来,该计划是建立连结跨国道路网络的基础设施,例如电子收费系统(Electronic Toll Collection System,ETC),而EasyWay则是接续其后在2007~2013年实施的新项目,更注重应用服务的发展。
EasyWay是欧洲各国在交通信息服务、交通管理和货物运输物流方面采用兼容统一的ITS技术和服务,它是欧洲范围道路网最大的ITS合作项目,使将近30个欧洲国家的150个运营商以及相关的合作商多年来共同协作致力于该实际平台的建设,目前该项目已通过各成员国的认证,正在欧洲范围内实施。
EasyWay由TEN-T(Trans-European Network for Transport)项目支持,其主要目标是增强安全性、减少拥挤、降低对环境的影响,通过应用共享一致的实时信息、交通管理和货运物流服务,促进地区及欧洲ITS服务的连续性。在避免拥挤、方便出行和提高机动性方面,EasyWay通过采用可靠的、高质量的交通信息和交通管理系统增加道路网的有效性,其目标是至2020年在欧洲目标路网(TEN)内交通拥挤降低25%;在挽救生命,增强道路安全性方面,EasyWay在国家及欧洲层面具有同一个目标,即通过数据采集和处理、信息使道路事件显著降低,其目标为至2020年在欧洲目标路网(TEN)内致命的和严重的伤亡事件降低25%;在减少CO2排放、保护环境方面,广泛地优化道路设施及其使用,其目标为至2020年在欧洲目标路网(TEN)内CO2排放降低25%。
在发展方向上,欧洲ITS协会提出将道路、车辆、卫星和信息通信系统进行集成,将欧洲各国独立的系统逐步转变为车与车、车与路、车与人的合作系统, 实现人和物的移动信息交互。今后几年计划实现的服务主要包括:路侧紧急呼叫、车内和路侧速度提示、通过浮动车和蜂窝电话监测交通状态、危险货物车辆和被盗车辆跟踪等。另外,欧盟十分注重服务,期望在欧盟的框架下,建立一致性的道路交通信息系统。[2]
(三)欧盟CVIS项目
欧洲CVIS(Cooperative Vehicle Infrastructure Systems)项目通过创建一个车辆信息平台,实现车辆可以直接与路况“对话”。比如,只需要通过一个简单的红绿灯、十字路口或者是其他基础设施上的接受器模块,就能直接获得最新路况,了解潜在的危险,为未来可接受即时路况信息奠定基础。这个项目计划在德国经过测试后,将会在道路基础设施中广泛应用。它有60多个合作者,由欧洲智能交通协会(ERTICO)统筹,从2006年2月开始,其目标是开发出集硬件和软件于一体的综合信息平台,这个平台运用到车辆和路边装置能提高交通管理效率,其中车辆不仅仅局限于私人小汽车,还包括公共交通和商业运输车辆。地图数据提供商Navteq作为该项目其中一个主导,将与德国航空航天中心一同开发这种创新的定位平台,用来解决交通通信问题。而这项新技术将结合几种不同的定位技术,包括欧洲伽利略卫星导航系统和GPS(全球定位系统),以及WLAN无线局域网、车辆传感器、基础设施等技术。
2010年智能车和车路合作系统进入测试,即“i2010智能车辆计划(i2010 intelligent car initiative)”。在欧洲道路上对1000辆以上安装了各种智能化车载设备的各品牌汽车进行试验,测试8种不同的高新技术,通过大量的数据采集来检验这些技术安全、效能和舒适的程度,进而研究智能车辆对安全、能源与效率以及社会的影响。智能车辆计划通过采用一个综合的欧洲方案,确保各欧盟国家技术的兼容统一和互操作性,支持基于ICT(智能车技术)的研究、开发及其实际应用,支持对更智慧、环保和安全车辆的研究和开发,并促进其市场化。通过广泛宣传,使驾驶员和政策制定者意识到智能车辆的好处,帮助驾驶员预防交通事件的发生,并提供路网实时交通信息给驾驶员,优化引擎性能,提高能源利用效率。[3]
(四)巴黎Autolib绿色电动车项目
Autolib项目是法国巴黎的电动汽车租赁项目,于2011年12月开始投入应用。目前Autolib一共有3000辆电动车,在巴黎市一共有1120个充电站和停车场(巴黎市中心城区共有700个停车点,500个在路内、200个在路外,平均每隔300米就有一个充电站)。Autolib项目是基于巴黎2007年成功实施的公共自行车租赁项目Velib bike。Autolib为公众提供了热线、手机客户端、网站等租赁服务手段,并以每半小时作为收费单位,用户用信用卡来支付。目前Autolib系统已经拥有37,000名使用者,其中13,000名是年用户,3000辆电动车平均每天被使用2500次。政府希望这项服务未来能替代2万辆私家车的潜在购买需求,并与轨道交通、地面公交等公共交通系统完美结合。[4]
(五)美国IntelliDrive项目
美国ITS五年发展战略(2010~2014年),即IntelliDrive战略,计划达到如下四个目标:显著减少高速路上的车辆碰撞及其后果;各种类型的车辆能够和交通信号灯之间进行通信,以消除不必要的停车等待,有助于以能耗最低的方式驾驶;出行者能获得所有交通方式和路径选择的准确的行程时间信息,以及对其所选出行方式潜在的环境影响;交通管理部门通过获取数据能准确评估多模式交通系统的性能。IntelliDrive采用一系列的技术及应用,采用无线通信技术为车辆之间,车辆与道路设施之间,车辆、道路设施和用户无线设备提供互联;战略计划充分利用无线技术,使交通运输更安全、智慧和绿色,最终有利于民众的生存;研究计划的核心聚焦于与车辆互联的技术、多交通模式ITS应用,以期达到安全,车辆(汽车、公交、卡车和其它车队)基础设施和用户设备之间无线互操作互联以支持安全性、机动性和环境友好性;研究如何将警告信息有效地传递给驾驶员,以增强整体的安全性,减小对驾驶员的干扰。除此之外,五年计划也支持技术转让和全国范围内的ITS专业知识和技术的开发。[5]
(六)日本Smartway项目
1.三个发展阶段
日本是最早研发ITS的国家之一,日本ITS的发展大致经历了三个发展阶段。
第一阶段,1996~2004年,为ITS推进实用化阶段。1996年相关5省厅提出了关于推进ITS的整体构想,VICS系统是将道路拥挤、交通限制等的道路交通信息即时地向车载导航器发送的系统,从东京地区开始服务,2003年覆盖全国。VICS系统是目前世界上规模较大、实际使用价值较高的道路交通信息系统之一,是日本一家具有半官方性质的交通信息处理、中心。城市道路和高速公路的道路交通堵塞、驾驶车辆行经道路旅行时间、交通事故、道路施工、车速及路线限制、停车诱导等交通实时信息通过道路上设置的检测装置分别由警察部门和高速公路管理部门负责提供。第二阶段,2004~2010年,为日本ITS普及并为社会作贡献的阶段。为将事故防患于未然,日本开始研究智能公路系统,即通过车辆及道路的各种传感器实时监测车辆行驶道路周围环境及车辆状况的状态信息,并将这些信息实时提供给驾驶员,在必要的情况下还可对车辆实施强制控制。该阶段以Smartway项目综合应用为标志,其发展目标为:提高安全性;畅通化,减轻环境负荷;提高便利性;促进经济地区活力。第三阶段,2010~2015年,主要是推进大范围的智能交通信息的综合传递。
2.实现交通社会
日本通过构建包括智能车辆、智能公路、紧急救援系统的Smartway,实现安全、高效、便利、舒适低排放的交通社会。
(1)日本Smartway的提出背景
2004年,ETC用户达到400多万(平均利用率超过20%),日本国土交通省考虑以ETC系统为基础,集成车载导航系统(VICS)和已基本开发成型的安全驾驶系统(ASV),形成新的智能道路系统——Smartway。Smartway于2005年初由政府、企业共同参加的联合体作为开发联盟,它提供一个开放共用的基础平台,强调基础设施的共用和车载装置的一元化;提供与安全有关的信息、提供前方道路状况、提供大范围拥堵信息、收费服务(包括高速公路、停车场等),即由一个集成的车载单元提供多种服务,包括导航、安全辅助驾驶、ETC、停车库收费管理、VICS功能、与因特网的互联,路边设施称为 ITS 服务点,ITS服务点与车载单元之间利用DSRC接口进行高速通信。2009~2010年间,日本全国高速公路设置了1600个ITS服务点,拟在5年内发展1000万个用户。[6]
(2)Smartway系统的6项信息服务
①辅助安全驾驶信息服务:通过路侧设置的一系列传感器检测前方道路转弯处或视线死角区域是否发生交通阻塞或存在路面障碍物等,并通过车路通信系统向驾驶者提供实时道路信息。
②静止图像信息服务:通过闭路电视摄像机采集的前方道路交通状况信息,以静止图像的形式提供给驾驶者,如在隧道入口处可以清楚地了解到出口处的车流情况等。
③浮动车信息采集服务:基于浮动车技术实现实时交通信息的获取,并通过车路通信系统,连同天气、路面情况以及高危地段等信息,迅速提供给临近的车辆。
④道路合并处辅助信息服务:通过专用短程通信(DSRC)天线检测行驶于主干道上的车辆,当车辆接近道路合并处时,将通过车路通信系统向有关驾驶者发出警示信息。
⑤停车场电子付费服务:通过车路通信系统实现停车场电子付费服务。
⑥宽带互联网上网服务:通过车路通信系统实现宽带互联网连接服务。
日本在一些城市还推出了绿色地图,特别标出了适宜慢行交通和步行的通道,方便为本地居民和游人提供绿色出行参考。
二、上海发展生态型智能交通系统的启示
借鉴发达国家发展生态型智能交通系统的经验,为了实现上海建设生态文明城市的发展目标,建议上海在智能交通系统的发展战略、建设内容和技术路径上,需要作出调整,需要充分体现公共交通优先发展战略,鼓励绿色出行,精细化公共交通运行管理,创建和完善步行、自行车等慢行交通环境,提供多模式换乘交通综合信息服务。为此,提出上海在生态型智能交通系统方面的重点发展领域和建设内容。
(一)完善和优化道路交通信息系统,发展智能道路系统(smart-way)
智能道路系统也可理解为新一代道路交通控制和诱导系统,包括交通信号协调控制、公交信号优先、动态路径诱导、交通违法监测、交通视频监视、智慧驾驶服务(Eco-driving)等。建设内容包括,道路交通流多元采集、路侧信息、动态车载导航、车车和车路协同的车联网系统,驾驶行为的辅助信息服务系统。在全面感知道路交通状况的基础上,提供更加精细化的服务内容,包括交通状况、交通事件、旅行时间、驾驶速度建议等。
目前上海在道路交通监控和诱导方面投入较大,但是功能上以安全监控、执法、信号控制为主,在车路协同、公交信号优先联动、驾驶提醒、旅行时间服务等方面,与生态智能交通的发展要求还相差甚远。从发展趋势看,今后可以通过CAN总线监测技术,监测驾驶员的驾驶行为数据,包括加速、急刹车信息等,给驾驶员,优化驾驶行为,通过车路通信系统与交叉口信息灯控制系统通信,实现车辆的绿波出行,减少在交叉口的等待时间。
(二)全面落实公共交通优先战略,大力发展智能公交系统(smart-bus)
智能公交系统包括公交企业资源管理、智能公交调度、安全监控和乘客信息服务系统等。在目前基于GPS车载终端的调度监控系统基础上,充分利用客流采集技术、CAN总线技术、移动互联网技术等,逐步推进基于时刻表的公交计划编排、运营、调度,进行准点运行考核和服务水平评价,提供公交时刻表方式的旅客信息服务,推进新型多功能一体化车载终端和无线宽带移动通讯网络应用,构建高质量的“公交优先”运行环境和服务系统,为减少自驾车出行和减少社区人均机动车保有量、为构建公交出行为主导方式的绿色交通系统提供技术保障。通过公交线网优化、集群调度、公交专用道监测、公交站点信息服务、公交网站信息服务等信息化手段,提高地面公交运行效率,实现公交快速准点,以全面提高地面公交的吸引力。
目前,上海公交信息化还处在起步阶段,以车辆位置、车内和车站视频监控功能为主,公交信息系统标准化程度低,多方式公共交通换乘信息服务以静态信息为主,行车计划编制以经验为主,离发达国家普遍采用站点时刻表化的运行管理和动态换乘信息服务模式,还有很长的路要走。
同时需要加强公共交通与其他交通方式、道路交通管理系统的信息共享和资源整合。在智能集群化调度模式下,根据道路交通状况和实时客流信息,许多常态的调度管理工作可以由系统自动完成,实现公交整个网络运能运力调配和区域公交客流时空分布相匹配,合理配置车辆和人员,提高公交运行效率。[7]
(三)规范停车秩序,开发和应用智能停车系统(smart-parking)
智能停车系统,包括区域停车诱导系统、停车换乘P+R信息系统、停车场(库)内部诱导、车辆位置查询、不停车付费和自助缴费系统,以及道路停车咪表和停车费手机支付系统等,构建一个文明、有序、便利、智能的静态交通环境。
随着小汽车的快速增长,城市中心区“停车难”的矛盾将日益突显,需要整治和规范停车秩序,合理分配道路空间,错时利用和共享停车资源。因此,发展智能停车系统,可以规范和引导车辆停放,减少道路拥堵,节省出行时间,也减少尾气排放和污染。[8]
(四)大幅度减少道路交通排放,研究和开发交通环境监测与信息服务系统
通过研究公共交通、自驾出行、慢行交通等多种交通出行方式的能耗和碳排放水平,推出符合生态社会建设目标的交通排放评价指标体系,构建交通宏观和微观排放模型,分析评价和预测交通排放各项指标,编制“绿色交通地图(Eco-map)”,开发交通节能减排辅助决策支持系统,提供低碳和环境良好的出行方案建议和交通环境信息。
建议开发更低成本的机动车尾气检测装置和道路环境监测设备,对机动车尾气排放和道路空气质量进行实时监测。建立交通排放模型和空气扩散模型,对区域的交通排放进行推算,根据实时交通量和历史数据模型,计算出不同的区域和路段的机动车尾气排放量,根据乘客不同的起讫点,提供绿色出行路径建议。[9]
(五)推进交通信息资源整合和共享,建设交通综合信息服务系统
上海交通综合信息平台框架基本建成,但是目前存在交通数据挖掘和应用不足,交通信息资源整合的广度和深度有待扩展,交通决策支持功能简单,出行综合信息服务精细化不足等问题。因此,在各个专业交通信息系统发展到一定阶段后,需要利用云计算、大数据(Big-data)等技术手段,充实和完善交通综合信息平台,实现道路、公共交通、航空、铁路、长途客运、停车、步行、自行车、环境、气象等信息资源的整合、共享和交换,为出行者提供“一站式”的交通综合信息服务方式,即网站、移动终端、电话和交通广播电视等方式的交通综合信息服务,同时又提供个性化、多模式换乘信息服务内容和基于出行链的交通信息服务,获得出行方案选择和出行路径规划等全过程精细化的信息服务。
(六)积极倡导低碳绿色出行,推广公共自行车系统
自行车出行是绿色交通方式,在欧洲城市大量推广使用,取得良好效果,改善了出行环境,减少了机动车出行量,可以节能减排,还有健身、休闲,提升生活品质之功效。浙江杭州、上海闵行和张江等地开展了公共自行车系统的建设、运行和管理。公共自行车系统是一种交通方式的运行系统,也是城市智能交通系统的重要组成部分。公共自行车系统需要利用信息化、智能化的技术手段,构建完善的公共自行车网络和管理平台,实现自行车的通借通还,智能配送,做到自行车资源优化调配,实现和公交、轨道等的科学合理衔接。
(七)大力推广新能源汽车应用,推进建设小汽车共享系统(car sharing)
从交通工具能源使用方式上解决环境污染问题,是交通可持续发展的有效措施。政府需要在政策上扶持新能源汽车产业发展,规划和建设新能源汽车应用的基础设施,积极推进能减少环境负荷的低污染、低油耗车辆的研发,采取综合手段普及推广新能源技术,以减少交通工具尾气的排放,改善交通环境。[10]
小汽车共享系统是国外比较流行的一种交通出行方式,虽然本质上还是个体机动车方式,但是由于采用清洁能源和车辆共用,极大地提高了车辆使用效率,节省了能源消耗,减少了尾气排放,又给本地出行者和外来游客提供了机动化的便利。小汽车共享系统是一种交通运输系统,更是一种智能交通系统,既采用国际领先的智能卡管理和车辆运行监管技术,又体现国际通行的市场化运作模式,有利于使用新能源汽车,有利于以全新的出行模式诠释绿色交通的理念。在郊区新城和新型城镇化的规划建设方案中,建议规划布局小汽车共享系统。
参考文献:
[1]Jan Loewenau, Pei-Shih Dennis Huang. eCoMove Efficient Dynamics Approach to Sustainable CO2 Reduction[M]. 17th ITS world congress,2010.
[2]Soriano, F.R., Tomas, V.R.Deploying harmonized ITS services in the framework of EasyWay project: Traffic Management Plan for corridors and networks[M]. Telematics and Information Systems (EATIS), 2012.
[3]KaragiannisGeorgios, AltintasOnur. Vehicular Networking: A Survey and Tutorial on Requirements, Architectures[J]. Challenges, Standards and Solutions, Communications surveys & tutorials, 2011, 13(4).
[4]李忠东.巴黎推出电动汽车租赁服务项目[J].汽车与配件,2012(4).
[5]Arnaout, G.M.,Khasawneh, M.T.An IntelliDrive application for reducing traffic congestions using agent-based approach[M]. Systems and Information Engineering Design Symposium (SIEDS), 2010 IEEE.
[6]Kanoshima, H.,Hatakenaka, H. Development of next-generation road services by public and private joint research[M]. ITST, 2008.
[7]上海公交信息服务总体方案研究(2012)[R].上海市城市综合交通规划研究所,2012.
中图分类号:TP391 文献标识码:A
进入21世纪,随着信息技术的快速发展,物联网技术的研究取得了很大的进展。其英文名称是:“Internet of things(IoT)”。物联网发展的目的就是使我们的生活更便利,比如,物联网技术可以方便我们的出行。在物联网的发展浪潮中,车联网也就应运而生。
2009年,车联网的概念提出了,在车联网发展的这几年,城市的交通系统正在向着智能化、安全化、全面化迈进,而这也会带动未来几年汽车产商产业链的革新。当前汽车技术的发展,新能源汽车和车联网技术的普及应用是两大发展趋势。通用、丰田等汽车巨头和国内7家大型汽车制造商纷纷向车联网技术靠拢,势必会带来巨大的市场契机。因此,研究车联网技术有着十分光明的前景。
一、发展历史和现状
1970年,针对交通事故频频引发的人员伤亡惨重的问题,日本首先提出智能交通系统(ITS)的构想,车联网由此开始发展。1989年,欧洲提出具有最高效率和空前安全性的欧洲交通计划(PROMETHEUS),并在1990年提出道路基础设施和环境专用系统(DRIVE),二者自提出以来便成为西欧国家开展交通运输信息化领域的研究、开发与应用的主要指导计划。1992年,美国建立智能公路车辆系统(IVHS),IVHS不仅使交通建设与运行走上高科技之路,使交通运输产业有划时代的改变,而且对社会、经济、法律、土地利用等都将产生深远的影响。1994年美国根据IVHS的实际研究项目,认为IVHS的名称已不能覆盖其全部内容,因而把IVHS改为ITS,智能交通系统正式作为一个专用名词出现。智能交通系统是通信、信息和控制技术在交通系统中集成应用的产物,能够带来显著经济效益和社会效益。自此车联网的概念为更多人所熟知,车联网系统得以迅速发展。2003年,欧盟开发了能够采集动态的环境信息和进行自动驾驶的车联网子系统――欧洲智能交通协会(ERTICO),促进和支持ITS在整个欧洲的应用,共同创建一个成功的智能交通系统。
我国对车联网的研究起步较晚。在2001年,中国政府联合上海交通大学,吉林大学等高校提出ITS,开始车联网的研究。“十一五”期间(2006-2010),中国对车联网系统的核心部分的研究取得了很大突破,并于2008年用于北京奥运会交通的智能管理与信息采集。2009年的广州亚运会期间,智能化“3G”客车首次出现在亚运历史上,这也标志着车联网技术正式走向社会视野。与此同时,互联网汽车市场也发展得很快。
在地图方面,腾讯和阿里分别与四维图新和高德合作;在接口硬件方面,腾讯有路宝盒子,阿里将要推出智驾盒子。百度也推出了Carnet的开放车联网协议。淘宝网也已开始涉足汽车维修O2O。由此可见,虽然我国对车联网的研究起步晚,但发展速度较快,不过与国外相比,我国的车联网发展仍旧存在许多技术上的差距。
二、关键技术
1.终端
1.1 RFID
车联网是一个具有特定功能的通信系统,信息的采集是它必不可少的一个环节。随着无线通信技术和物联网技术的快速发展,WSN和RFID技术是实现对外界及系统内环境的信息进行采集的两种技术,车联网系统是ITS(智能交通系统)的一部分,在WSN的大背景下引入RFID终端能够比较好地实现车联网系统信息的采集。
RFID,也称为射频识别技术,它突出的优点是能识别高速运动物体并可同时识别多个标签。车联网的主体是道路上高速运动的车,RFID将能很大程度地弥补WSN难以察觉微弱的信息不足以及解决如何获提高速运动的车的准确信息的问题。RFID技术除了有全天候工作、成本低、易部署、多目标识别、不破坏环境、不受环境与光线的影响和寿命长等特点,还具备能对车辆进行身份识别和认证的独特优势。比如,通过RFID技术,我们能够快速准确地收集道路交通拥挤情况方面的信息。这些优良的特性能帮助我们获得更全面、更准确的车联网系统所需的信息。
RFID主要实现的是车与路、车与站场之间的通信,但是,由于RFID天线在功率、方向性以及通信距离上的限制,加之天线成本的居高不下,很难将天线普及安装到车辆上来实现车与车之间的相互识别。但只要车载RFID系统连接到合适的集成网络,它将能对有犯罪,逃税等嫌疑的车辆做出灵敏二准确的应答。RFID能够追踪目标车辆,从而很大地提高车联网系统的管理效率。
1.2 GPSONE
GPSONE是一种综合GPS和CDMA系统定位技术来提供GPSONE的定位服务。由于其使用范围、定位精度、定位灵敏度、终端耗电及启动速度方面比传统GPS均有显著地提高,也随之进入了人们的视线。GPSONE的定位精度可达5m~50m。GPSONE技术简化了终端的工作模式,解决了传统GPS技术过多终端性能的缺点。它由网络侧的定位服务器与终端相互配合完成定位工作,这种方式不仅减少了通信量,还降低了通信费用。作为一种低成本、高效率的定位服务,GPSONE是一种适合在车联网中使用的定位技术。
1.3 芯片
在无线宽带通信技术为车联网中车载终端与Intemet通信提供了便利的同时,车载电子系统也面临着木马、病毒以及黑客攻击等越来越多潜在的安全威胁。我国研制出了自主知识产权的可信芯,同时制定了相应的接口规划。
北京华力创通科技股份有限公司围绕车联网信息终端对通信、导航、识别、多媒体,以及车载总线一研发出了车联网前装车载终端智能SoC(片上系统)芯片关键技术,可保证车辆安全。在今后的研究过程中,我们要把更多精力放在高性能芯片的开发上以满足不断发展的车联网系统的需求。
1.4 车路协同关键技术
车路协同技术是未来ITS的核心技术之一。借助于车路协同系统,基于各种无线通信技术。可以实现车辆和基础设施之间智能协同与配合,从而提高道路交通安全系数,减少交通拥堵。
车路协同技术以信号优先、车辆与行人检测等为原则,并在国内外已经取得一定进展。2014年2月16日,863项目”智能车路协同关键技术研究”科技成果演示会在廊坊市河北清华发展研究院及其附近的试验场地举行,在河北清华发展研究院及其附近试验场地进行的实验演示彰显了智能车路协同系统实施后的交通出行新图景:10辆安装了车路协同系统的”智能车”,在”智能道路”上成功完成了车车协同换道、车车/车路协同避撞、车辆主动安全辅助、行人避撞、盲区预警、障碍物预警、紧急车辆信号优先、车队控制与和速度引导、车队协同路口通行等15个典型应用场景。这些成功的试验充分展现了车路协同的巨大优势和发展前景。
1.5 蓝牙技术
蓝牙采用跳频扩展频谱技术,且在跳频过程是伪随机的。蓝牙技术所具备的这些特征能够较好地承担起物联网末端智能传感和微微网移动通信功能,特别适合车联网的概念和技术要求。
起初,蓝牙技术主要应用在汽车的电话通信方面。但随着研究和应用的不断深入,在汽车智能化方面有了更多的蓝牙应用。蓝牙完全可以承担起车内传感器角色,它的微型化,高度集成化,休眠功能,廉价性等特点,使其能更好地实现车内安全预警和车与车之间信息的传输。
德尔福汽车系统公司已经开发出可以让驾乘人员用语音进行操控的车载蓝牙设备;丰田汽车、日本电装、NTTDOCOMO、松下电器产业、日产汽车和东芝等6家公司共同制订了利用蓝牙技术的车内无线免提规格――“CCAP”。国内外对蓝牙的研究已经进入实质性阶段,蓝牙在未来势必在车联网系统中发挥更大的作用。
2.WSN
2.1 WSN技术
无线传感器网络(WSN)是一种分布式传感网络,它的末梢是可以感知和检查外部世界的传感器。WSN中的传感器通过无线方式通信,它是基于802.11q协议,上限速率比较大,带宽也比较理想,它基于无线通信技术形成了一个多跳的自组织网络。
WSN是由大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,它是车联网体系的重要组成部分。它是进行无线车与车之间通信的较好途径,但节也存在着点电源能量有限、通信范围较小、算和存储能力较弱等缺点。将WSN运用到交通领域需要攻克一系列关键技术,主要包括:WSN节点的交通信息采集、WSN节点的信息融合、WSN节点的网络拓扑控制及WSN节点的通信技术等。WSN节点的交通信息采集实时精确的交通信息采集是整个车联网体系的基础,是车联网提供的交通信息服务的依据。
2.2 WSN网络节点拓扑算法的设计
车联网的WSN系统节点数目庞大,分布密集,节点的增加、减少及变动都会引起无线网络的拓扑结构的改变。通过拓扑控制自动生成良好网络拓扑结构,能为各节点的数据通信、数据融合及节点定位等奠定基础。目前传感器网络拓扑控制主要是通过功率控制和骨干网节点选择,剔除节点之间不必要的无线通信链路。然而,在设计功率消耗率低的网络拓扑算法经常遇到这样一个问题,功率尽管减少了,但却使可用于信息传输的信道减少了。因此,需要开发一种合适的传感器网络拓扑算法,从而比较好地满足车联网的需要。
在车联网中,WSN节点分布的不均匀性使其节点能耗速度有着很大差别,这造成部分负载过重的节点因能耗过高而过早“死亡”,使网络生命期缩短。基于最小生成树(MST)的无线传感器网络拓扑控制算法利用贪心算法求各链接通信功率之和最小的拓扑结构,因为用该结构进行通信耗能最少,但节点交换全局信息所耗能量巨大,不适于大规模的车联网网络。有些专家提出基于本地最小生成树的拓扑控制算法,该方法利用可达邻居节点信息独立构建本地最小生成树,能有效降低维持全局连通的传输功率,但由于未提及负载分布问题,因此造成部分节点因负载过大而提前死亡。也有学者提出负载均衡的概念,并以节点数目平衡为标准进行分簇来实现簇内能耗平衡。刘林峰,刘业.提出度约束最小生成树拓扑控制方案(TCS),在一定程度上考虑均衡耗能问题,并以节点间距离和剩余能量为标准建立链接,提高通信的健壮性,但忽略了部分节点由于转发数据而使耗能过大的问题。
2.3 VANETs网络
VANET是基于MANET(mobile Ad Hoc network,移动自组织网络)的一类专用于道路交通环境下的网络形式。车载自组网的核心思想在于“自组”,它将每一辆汽车象化为一个网络节点,由这些网络节点组成一个智能的网络架构。类似的,车载自主网同样也可以分为两个部分:V2V(Vehicle To Vehicle)和V2I(Vehicle To Infrastructure)。
V2V,意为车与车之间的信息互换。V2V技术使用的是专用短程通信(DSRC),由类似FCC和ISO的机构设立的标准。有时候它会被描述成WiFi网络,因为可能使用到的一个频率是5.9GHz,这也是WiFi使用的频率。不过更准确地说,DSRC是类WiFi网络,它的覆盖范围最高达300m。车辆可以通过无线信号了解其他各车速度、方向、位置数据,实现信息的交流。
VANETs作为移动节点并以自组织的形式构成网络,作为一个通信系统,车联网需要能够高保真地快速传递多路信息。VANETs能够保证信息在很短的时间内安全地从信号源传递到目标接受源。VANETs能比较好地保证信息传输的安全性,实时性和准确性。这对车联网系统信息传输的安全有重要意义。
2.4 ZigBee
ZigBee是一种新兴的短距离、低功耗的无线通信技术。除了具有安全灵活等优势,它最大的优势是低成本和低能耗。此外其延时极短,安全性高。采用基于Zigbee协议的无线模块作为节点,可以实现数据的处理,并向周围车辆以及后台进行数据传输。由于采用载波侦听多点接入/冲突避免(CSMA/CA)的媒体访问控制协议以及应答确认的数据说明发生了碰撞,可进行重传。这种机制大大提高了通信可靠度。作为基于802.15.4设备可以使用64-bit的IEEE物理地址,也可以使用16-bit的网络短地址,这样整个网络规模可达到65000个以上的节点;另外ZigBee网络采用自组织网络(AdHocNetwork)的结构,在网络的组建和维护上都有相当大的灵活度,因而ZigBee在网络上的优势不容忽视。在真实的交通系统中终端数量众多,车辆移动速度相对较快,考虑到Zigbee技术具有的自组网和高可靠性,将其作为移动车辆节点和路侧单元的通信技术逐渐成为共识。
3.平台
3.1 大数据
车联网系统作为一个十分复杂的通信系统,将会采集到很多不同种类的信息。只有我们能够通过一种技术,实现对信息快速准确地处理,才能达到车联网设计的初衷。大数据有以下特点:一是数据体量巨大。二是数据类型多样。在车联网中,采集到的信息包括驾驶员的行为信息,周边环境的路况和车辆信息以及管理站的信息等。大数据能帮我们高效率地去除采集到的冗余信息,它对于我们采集道路上的关键信息具有重大的意义。
大数据所具有的特点与车联网中的数据特征相契合。而以车辆为信息节点的车联网每时每刻都会产生海量的数据,数据数据规模大且种类繁多,并且车联网对于数据的传输和处理速度要求很高。车联网还要对海量低价值密度的数据进行挖掘,以从中获得有价值的数据。大数据的预测功能是大数据技术的核心,该功能对于车联网行业也有着重大意义。通过对大数据的分析,可以对交通流量、车联网应用的发展趋势等进行预测,从而针对预测信息提出发展方案。
3.2 云计算
云计算是一种新兴的互联网技术,通过云计算可以实现将共享的资源按需提供给计算机或其他互联网终端。随着车联网业务规模的增大,车联网的用户不断增多,数据中心将源源不断地产生大量实时交通信息。云计算技术面向海量信息处理,不仅用户可以方便地参与,而且参与形态灵活。车联网系统需要处理海量的信息,而且实现了用户与车联网系统的无缝对接,云计算技术为其在信息的处理与融合提供了重要的技术保障。
3.3 信息安全技术
车联网信息安全所涉及到的主要技术有身份识别技术、密钥管理技术和安全防护技术。这些技术的应用能够保证数据传播时车联网中对数据的感知节点不被破坏,从而保证人与车接收到的信息真实有效。推动车联网迅速发展的一个重要原因就是通过互联网技术的引入提升了人和汽车的安全性,在车联网的平台下,由于智能化汽车从一个独立的个体逐步演变为互联网中的一个网络终端,新的车辆和云端的信息安全问题必将随之产生。在车联网的网络下,对智能汽车的远程遥控可能只需要一些简单的设备加上手机软件就可能实现,车辆传感器反馈给驾驶者的信息可能被恶意修改,系统存在的漏洞导致车辆的相关数据信息在互联状态下易遭到黑客窃取,这些对于车联网安全来说都将是灾难性的创伤。在这种情况下,保障车联网下数据的安全性和加强隐私的保护就显得格外重要。
3.4 中间件技术
中间件是一种独立系统软件或服务程序,分布式应用软件借助这种软件在不同的技术之间共享资源。针对车联网中各类不同的应用,可以参照车联网的相关标准开发不同的中间件。中间件技术使得开发人员能够面对一个简单统一的开发环境,从而大大减轻了开发者的负担。
三、应用场景
1.提供健康监控
我们可以把救护车看成一种特殊的车联网产物,它符合车联网技术运用领域大部分场景。我们希望当每一辆汽车车内的乘客发生突况时,汽车会变成救护车,但是这种想法现在看来是不符合实际的。所以,我们可以做到有效的预防。如今可穿戴设备日益兴起,汽车的移动智能终端可以与可穿戴设备进行适配连接,实时监控乘客的心率以及体感温度之类,同时汽车也可以自动计时车主行驶时间,如果行驶时间超过一定范围,汽车可以自动提示车主进行休息。防止过劳驾驶。
2.娱乐以及互联网
车行途中娱乐是一个必不可少的环节,如今在许多公交车上已经设立无线信号(WiFi),同时,在满足人们上网娱乐的需求,车联网技术更可以拓展到衣食住行乃至车内办公,汽车可以自动搜索附近的休息区域,购物商场,加油站。
3.ETC
当前我国ETC的覆盖率并不十分广泛,而且仅限用于高速公路上的缴费。在未来的几年内,ETC技术有望实现多功能化和普及化,不仅仅是完成高速公路的收费,同时也可以进行停车场的缴费,甚至是类似于支付宝形式的购物消费。通过拓宽缴费渠道来增加用户人群,可以相信在不久的未来,ETC可以充当汽车的支付宝。
四、展望和总结
在科技日益发达的今天,车联网的崛起已经是大势所趋。它的灵活性、自发性、智能化、系统化在我们的生活中渐渐扮演着不可或缺的角色。它不仅能够改变个体的生活方式,带来全新的交通体验,同时也将带来巨大的社会、经济效益。然而在车联网概念大热的同时,我们也需要冷静下来看清问题,由于车联网涉及的技术众多,许多关键技术还有待完善。再加上传统交通模式的改变需要较长的时间周期,车联网的真正普及与进化还需要我们更进一步地努力。在互联网及电脑核心技术相对落后的中国,车联网技术的研究与美欧日等发达国家有着不小的差距。我国的节能技术,无线通信,远程感应技术,识别技术,控制技术,数据融合技术及信息管理技术还有很大的提升空间。我们尤其需要关注的是零排放电动车技术的发展,未来电动汽车的发展肯定伴随车联网技术的发展,实现零排放,无污染。因此,在我国传统的电子汽车技术并不占优而电动车技术具备先行优势的情况下,我们可以考虑积极发展节能减排的电动车辆与车联网核心技术的结合,实现发展上的弯道超车。
参考文献
[1] Yan X, Zhang H, Wu C. Research and Development of Intelligent Transportation Systems[C]. Distributed Computing and Applications to Business, Engineering & Science (DCABES), 2012 11th International Symposium on. IEEE, 2012: 321-327.
[2] Dimitrakopoulos G, Demestichas P. Intelligent Transportation Systems[J]. Vehicular Technology Magazine IEEE, 2010, 5(1): 77-84.
[3] Yang L, Guo J, Wu Y. Piggyback Cooperative Repetition for Reliable Broadcasting of Safety Messages in VANETs[C]. Consumer Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE. IEEE, 2009: 1 - 5.
[4] J. Kephart and D. Chess, “The vision of autonomic computing”, IEEE Computer, vol. 36, no. 1, pp. 41C50, Jan. 2003.
[5] L. Figueiredo, I. Jesus, J. A. T. Machado, J. R. Ferreira, and J. L. Martins de Carvalho, “Towards the development of intelligent transportation systems”,in Proc. IEEE Intelligent Transportation Systems, Aug. 25C29, 2001, pp. 1206C1211. An intelligent traffic management expert system with RFID technology W.Wen.
[6]李淦山.日本智能交通(ITS)研究综述[J].中外公路,2000(4):33-35.
[7]邓爱华.欧洲:高度发达的智能交通网[J].科技潮,2007(11):16-17.
[8]王新晖,胡福乔.GPsOne――混合定位系统展望[J].计算机测量与控制,2004,12(7):610-612.