时间:2023-12-14 11:39:28
引言:寻求写作上的突破?我们特意为您精选了4篇智慧城市和轨道交通范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
1. 通信信号方面
通信系统是保障城市轨道交通安全、稳定、高效、舒适运营的基本设施,可满足城市轨道交通语音、数据和图像等综合业务通信的需要。信号系统是保证城市轨道交通行车安全的技术和设备,城市轨道交通信号系统通常由列车自动控制系统(简称ATC)组成。
目前城市轨道交通的无线通信系统分为专用无线通信系统和公共无线通信系统。专用无线通信系统包含无线调度通信系统、列控信息车——地无线传送系统、移动电视系统、公安无线、消防无线应急系统、导乘信息及视频监控车——地无线传输等。无线调度通信系统广泛使用的是TETRA数字集群系统。随着城市轨道交通的快速发展,越来越多的应用对无线通信系统提出了更高的要求。目前基于通信的列车控制(CBTC)系统代表着世界城市轨道交通信号控制技术的发展方向和趋势,成为我国城市轨道交通信号系统的未来主流制式。中国大陆部分城市轨道交通使用了CBTC系统,如武汉地铁1号线,上海轨道交通的8号线,北京地铁(除1号线、5号线、13号线、八通线),广州地铁(除1、2、8号线)等。其中,国内自主研发的CBTC系统陆续通过国际权威认证机构的SIL4认证。这是目前功能安全完整性的最高等级要求,也是进入欧洲及国际市场的通行证。
2. 调度指挥方面
城市轨道交通系统的调度指挥控制中心是对城市轨道交通运营实行集中管理的所在地,凡与列车运行有关的各部门、各工种都必须在调度指挥系统的统一组织指挥下进行日常运输生产活动。目前我国的调度指挥系统主要有TCC(Traffic Control Center)系统和OCC(Operating Control Center)系统两种。OCC是一线一中心的管理模式,目前除北京外的国内其他城市主要由OCC担任城市轨道交通的列车调度指挥工作。即一条轨道交通线路由一个调度指挥中心控制,线路间的调度指挥互不影响,如广州、成都、南京以及沈阳等城市轨道交通均采用这种基本的轨道交通指挥控制中心。鉴于北京市轨道交通线网密集程度高、乘客出行人数众多等因素,构建实现应对多条线路、多运营主体的调度指挥系统十分必要,故“多线一中心”的TCC控制模式应运而生。即在一条轨道交通线路由一个调度指挥中心控制的基础上,设有控制全网的指挥中心,对全网的轨道交通线路进行全局性调度指挥。
为支持路网的运营协调指挥,在国家科技支撑计划项目的支持下,北京交通大学和北京城轨路网指挥中心等单位自主联合研制了面向城轨路网运输组织与安全保障一体化决策支持系统,实现了客流预测分析、运输能力计算、网络列车运行计划编制、运营安全综合监控预警、路网突发事件应急处置等功能,并成功支持了北京城轨路网指挥中心信息中心和轨道交通指挥中心工程的顺利建设,为成网条件下城市轨道交通运输组织提供强有力的决策支持。
3. 综合监控方面
综合监控系统是以现代计算机技术,网络技术、自动化技术和信息技术为基础的大型计算机集成系统。系统集成和互联了多个地铁自动化专业子系统,在集成平台支持下对各专业进行统一监控,实现各专业系统的信息共享及系统之间的联动控制功能,为实现城市轨道交通运营安全保障及应急管理提供信息化基础。
为进一步提高列车运行的安全性和轨道列车的可用性,在国家“863”计划的支持下,广州地铁与北京交通大学等单位成功研制了国内首台套城轨列车运行状态全息化检测、在途预警与应急系统装备,突破了轨道交通列车状态全息化实时获取与在途预警的技术障碍,提出了轨道交通列车运行状态获取传感网优化、多模信号检测与评估、基于数据融合的嵌入式故障诊断、运营安全综合监控CMS-T、列车关键设备状态评估与在途预警以及应急联动处置核心技术。形成了覆盖列车走行、牵引、制动、辅逆等关键设备安全状态网络化检测的成套车载设备,以及列车运行综合监控预警、维修评估调度与应急联动地面系统平台,实现了城轨列车的智能感知、智能诊断、智能跟踪以及全寿命周期的管理,提高了城轨列车实时安全预防和主动维修能力,并在广州地铁的15列A型运营车辆上进行了规模部署。
4. 客运服务方面
客运服务方面除了传统的自动售检票系统,目前愈来愈重视乘客资讯系统PIS的建设和发展。
自动售检票系统(AFC)采用全封闭的运行方式,以及计程、计时的收费模式。以非接触式IC卡等作为车票介质,通过高度安全、可靠、保密性能良好的自动售检票计算机网络系统,完成地铁/轻轨运营中的售票、检票、计费、收费、统计等票务运营的全过程、多任务自动化管理。目前包括轨道交通清分中心层、线路中央计算机系统层、车站计算机系统层、车站终端设备层、车票层五层架构的AFC系统是目前国内各城市的主流设计方案,在北京、广州、上海等城市轨道交通中广泛应用。
乘客资讯系统在正常情况下,可提供列车时间信息、政府公告、出行参考、媒体资讯、广告等实时多媒体信息;在火灾及阻塞、恐怖袭击等突况下,提供动态紧急疏散指示,充分提高地铁或轻轨运营总体服务水平和质量。目前,各城市轨道交通所采用的乘客资讯系统在信息传播及安全保障方面有突破性的改进:可以通过广播、CCTV、互联网、手机、短信等多种手段为乘客提供全程乘车指引及咨询服务;可在列车上进行实时的信息传递及电视直播,列车行驶在隧道中地铁控制中心也能为乘客实时输送信息;在延误或突发事件中,乘客可以通过液晶显示屏了解实时信息并据此做出反应。
2014年五大发展趋势
1. 数字轨道交通
数字轨道交通是对轨道交通信息化的发展。数字轨道交通建设目标一方面是实现轨道交通各业务系统的数字化和信息化,规范轨道交通基础信息和动态业务信息共享交换方式,另一方面是建立轨道交通地理信息平台为核心的轨道交通化服务与共享体系,最终实现轨道交通各系统间的系统充分共享,全面提高轨道交通资源综合利用效率和展示服务水平。
2. 系统整合、资源共享和系统架构的集中化
目前轨道交通信息系统众多,存在资源重复、信息无法共享,各城市信息系统建设不规范。下一步修订完善城市轨道交通信息化总体规划,进行顶层设计,核心是要整合信息系统,构建面向专业的大系统;规范基础信息及编码,建设信息共享平台;建立逐步趋于集中的信息系统架构,建设双活大数据中心,实现灾难备份。
3. 主动安全保障
随着城市轨道交通的快速发展,传统的被动式安全保障已无法支撑轨道交通的安全运营和可持续发展,实施主动安全保障的先进技术和系统已成为轨道交通健康发展的前提和必要条件。长期的安全运营经验和深痛的事故教训,使行业内形成了共识,提出了运营控制系统的自主可控、基础设施安全隐患识别、移动装备安全保障提升三大核心问题。三大核心问题急需解决。三大问题的逐步解决,既可满足我国轨道交通高速度、高密度、高安全快速发展之急需,又可在工程实践总体世界领先的基础上,实现安全保障技术的世界领先。
4. 运力资源全生命周期管理
每股收益连续上扬,净资产连续增加,公积金和未分配利润也是如此,表面上看稍显不足的就是现金流量的变化,但工程公司垫资施工是行业惯例。
那么是不是有其他原因呢?经《英才》记者调查,银江股份在去年完成对北京亚太安讯科技股份有限公司的并购,后者是从事轨道交通业务的公司,其通过多年轨道交通行业积累,形成以市场开拓、技术创新为核心的行业竞争力,在北京轨道交通领域具有很高的市场份额。
从这一点来看银江股份的转型似乎是要转向轨道交通领域,另一方面,房地产行业的变化对公司的经营或许产生了一些影响。
三类投资方向
对于这次收购,银江股份董秘金振江对《英才》记者说:“收购轨道交通仅仅是交通领域战略投资的第一步。通过收购北京亚太安讯科技股份有限公司,银江股份可以全面进入轨道交通业务,实现‘智慧大交通’战略规划。”
从金振江的介绍看,并购轨道交通领域的公司并不意味着银江股份将要转型到轨道交通领域这个细分行业,这一做法是对自身大交通工程系统的一种补充。
对于这样的设想,《英才》记者继续追问了关于银江投资方向的问题,金振江并不避讳,他表示,银江股份的主要投资方向是产业上下游,特别是和银江股份有互补的公司,他对投资的方向还开列了一些具体条件:其一,在市场领域与银江股份有互补的企业,这样可以快速拓展银江的业务;其二,在技术领域与银江股份有互补的企业,这样可以快速拓展银江的涉足领域;其三,所投企业有自身的核心竞争力(智慧城市领域),即使没有互补,公司也会考虑投资孵化这样有潜力的公司。
除丰富业务板块之外,房地产行业出现的波动是否也是银江想进一步把盘子做大的原因呢?
“地方政府会通过调整预算及项目优先级的方式,解决涉及民生类的项目投资问题。房地产或者说土地市场的萎缩确实会对地方政府的收入造成影响,虽然公司应收账款增加,但是实际上政府的工程款一般都不会形成坏账,可能只是回收周期长一些。当然,现在公司选择城市时也会优先选择有财政能力保障的地区。”金振江对《英才》记者详细解释说。
虽然金振江表达了公司资金状况良好的情况,但现金流的负值情况还是会令比较多的投资者担心,比如公司刚刚通过的非公开发行,其中部分资金就是用于补充流动性,对于这个行业顽疾,银江股份是否想到了好的解决办法呢?
金振江认为短期内这一现象还会持续。
“政府的预付款不能够覆盖整个工程,这就要求企业必须垫资施工,另外对于这个行业来说,现金流和工程其实有一个平衡,如果现金大量囤积也许反而说明公司的工程量在一个比较低的水平,也许预示着未来业绩的不佳。现金流与营收及工程量均衡才是比较好的状态。”行业研究员仲永分析说。
做数据运营商
从上文的收购可以看出银江股份正在走出单一盈利点的圈层,正在走向大而全的新方向。对此银江股份董事长吴越对《英才》记者表示称,公司正在升级业务结构,开启智慧城市总包模式。
在这一模式下,银江先后签下了“智慧章丘”(2.6亿元)、“智慧莱西”(5亿元)等智慧城市总包项目。
何为总包模式?原来银江股份采用的是单点模式,即以单点项目为单位,进行工程承包,之后也是针对单一的一个项目进行结算。目前这种形式在发生变化,很多地区整体规划得到加强,总体承包成为可能。
联系到前面几年银江股份逐步进入智慧交通、智慧医疗领域,现在又有了轨道交通板块,整个都是在为总包做准备。
“上市之后有品牌效应,银江参与发起了智慧城市产业联盟,通过联盟合作可以了解许多企业的真实实力,对于在某些方面做的好的企业,银江股份可以对其参股或控股,进行横向扩张实现收购,这样的收购省钱,而且并购的针对性强。”吴越对《英才》记者补充说。
但这并不是银江股份最终的目的,吴越想的更远。
“以后银江股份要成长为一家运营公司:比如公司做一个城市系统的工程总包,那么银江股份就会成为这个城市的智慧城市运营商,数据也会产生大量机会。未来公司将建立云数据中心、数据分析发掘平台和面向移动客户与固定客户的增值服务。”吴越表示。
历史上的城市分割布局导致的交通拥堵及早期修筑道路遗留的问题,是北京交通拥堵无法逃避的根源。在当时国内经济相对不发达、人口和车辆都相对较少的情况下,问题并不突出。可是由于城市不同功能区的叠加,近些年拥堵已经成为了一种常态。北京早期交通线路的设计很大程度上并没有考虑到日后北京的高速发展,同时也因为多种原因存在许多不合理的路线。如:西客站周边的道路,公共交通工具很多,拥堵是家常便饭。北京不少立交桥同样存在诸多问题:建国后北京的立交桥在短时间内建成很多,在当时条件下被认为是一种技术进步。但是仓促的时间导致设计上的诸多纰漏,最后造成不少立交桥上不去、下不来、司机见了晕头转向等情况,使得拥堵更为频繁易发。
而当政府对城市交通缺乏有效管理的情况下,新建的道路设施会引发新的道路需求,而交通需求总是超过道路供给。也就是说,不管政府投入多大的人力财力,结果必然导致交通拥堵,“当斯定律”描述的情形对于分析今天北京的交通拥堵问题仍然有效[1]。城市建设应该规避交通设施可能发生的风险问题,同时重新规划不合理线路设计。随着宏观经济的发展和城乡差距的逐步减小,北京市中心的常住人口在一定时期之后会有所下降。在这种情况下,根据交通承载力,可逐步对不合理的路线等进行重新改建。
二、北京交通基础设施建设现状与问题
(一)从人口规模看北京交通现状
随着人口和社会经济的发展,北京市的交通出行量逐年增加。2011年北京市常住人口由2005年的1538万人增加到2018.6万人。人口的绝对数量从两个点导致了或者加重了城市交通拥堵问题:一是公共交通工具和线路相对有限,很大程度上无法满足不断增长的人口的出行需求。二是私家车保有量极高。2011年,北京全市机动车拥有量为498.3万辆,其中私人拥有量为389.7万辆,分别为2005年的1.9倍和2.5倍。人多车多,加之交通线路在一定程度上的不合理,堵车几乎成为北京的“风景线”。
(二)从公共交通发展看北京交通现状
随着北京社会经济不断发展,交通压力日趋紧张。北京于2006年、2009年先后出台了《关于优先发展公共交通的意见》和《绿色交通行动计划(2009-2015)》,通过加大轨道交通建设力度、全面更新公交车辆、优化公交线网、实施低票价、设立专用道等一系列措施,大力推进“公交城市”建设[2]。2011年北京市居民出行中公共交通的承担率突破40%,但与其他国际化大都市60%-80%的公交承担率相比仍显较低。2011年末,全市轨道交通运营线路为15条,运营线路长372公里,比2005年增加258公里;全市公路里程达到21319公里,比2005年增加6623公里,以年均6.4%的速度增长;全市城市快速路达到263公里,干线公路里程达3462公里,分别比2005年末增长14.3%和15.6%,二级及以上公路里程占干线公路总里程的比例从63.5%提高到88.6%;全市公共电汽车运营线路为740条,比2005年增加118条,运营线路长19338公里,运营车辆达2.2万辆,比2005年增加0.3万辆。整体来看,北京公共交通在一定程度上缓解了交通压力,但并不能完全解决交通拥堵问题。以北京地铁为例,存在有的站点之间间距过大而又缺少其他公共交通补给等问题。
(三)从道路面积看北京交通现状
2011年底,北京市公路道路总里程达到了28446公里,城市道路总面积达9164万平方米,城市交通基础设施承载能力得到提升。道路供给总量逐年增加,供给结构也有小幅度调整。但从实际运行结果看,道路交通拥堵现象仍客观存在,城市道路设施仍显脆弱。除道路、车辆及行人之外,北京交通还应考虑行政管理和优化配套公共设施。建议设置更多的公共自行车租赁点,鼓励市民绿色出行。可遗憾的是,机动车经常占据自行车道,有的路段甚至没有自行车道,或者自行车道和机动车道之间没有任何隔离等,这都增加了绿色交通的危险系数。因此,与城市道路交通相配套的诸多公共设施和服务都需进一步完善。
(四)从机动车拥有量看北京交通状况
据《北京市统计年鉴2012》统计结果显示,北京市的机动车拥有量增长明显,各类汽车的年增长率都很高。如2011年,北京市的机动车拥有量高达498.3万辆,为2010年的103.6%。
三、北京建设智慧交通的理论与实践
(一)智慧交通的形成机理
建立智能交通系统是智慧城市的主要应用功能之一。智能交通系统是指通过道路收费系统、多功能智能交通卡系统、数字化交通智能信息管理系统等多种模式的数据整合,提供基于交通预测的智能交通灯控制、交通疏导、出行提示、应急事件处理管理平台,帮助进行城市路网优化分析,为城市规划决策提供支持[3]。智能交通管理系统的建立实施在一定程度上缓解交通压力的同时,也存在一系列亟待解决的技术难题,例如海量数据存储与处理问题,多信号非接触传输问题、通讯规约问题等。
北京智能交通的发展主要体现在:高速公路电子收费系统、信息系统、一卡通系统、危险品运输监控系统、奥运交通指挥中心、出租汽车调度及浮动车信息采集系统等。以“一个中心、三个平台、应用系统”为框架,涵盖171个子系统的智能交通管理体系,包括指挥调度、交通控制、交通监测、交通信息服务等[4]。近年来建成的北京市交通运行协调指挥中心(TOCC)是全市交通综合运输协调、交通安全应急指挥、数据共享和信息中枢。建成了轨道交通指挥中心一期工程,实现了全部既有轨道交通线路智能化运营调度。拓展道路交通违法监测系统应用范围,首次在公交车辆安装110套移动监测设备,实时监控占用公交车道的违法行为[5]。
随着新技术的出现,在TOCC、智能交通系统的基础上提出了“智慧交通”的理念。充分发挥物联网技术,通过移动计算、智能识别、数据融合、云计算等技术,形成智慧交通系统。智慧交通系统,是指将电子、信息、通讯、控制、车辆以及机械等技术应用于交通领域并能迅速、灵活、正确地理解和提出解决方案,以改善交通状况,使交通发挥最大效能的系统。从智能交通系统到构建智慧交通体系,需要加快推进综合交通服务和管理系统、交通诱导系统、智能出行服务系统、交通应急指挥系统、数字公路综合信息服务系统、出租车与公交车智能服务管理系统、电子收费系统、港口信息管理系统等智慧交通应用系统建设,从而进一步提高城市交通的科学管理和组织水平[6](图1)。智慧轨道交通行业的发展建立在数字化和控制管理的智能化基础上,“更透彻的感知、更广泛的互联互通和更深入的智能化处理能力”是智慧轨道交通的基本特征,它以智能信息处理技术、全联网技术和传感技术为支撑,构建和展示“高效、便捷、安全、可视、可预测、环保和智慧”的、高科技和现代化的综合性轨道交通系统[7]。同时发展智慧型的快速公交系统和轨道交通,可以降低碳排放强度[8],符合绿色经济、生态经济、低碳经济的发展趋势。
(二)北京智慧交通的实践状况
智慧交通在世界上已经有了一些成功实践例子。如,新加坡采用的“智能交通预测系统”,由计算机化交通信号系统、电子扫描系统、城市快速路监控系统、接合式电子眼以及道路计价系统组成,在预先设定的时间段内预测交通流量,帮助交通控制人员预判、管理交通流,防止交通堵塞。瑞典斯德哥尔摩启用新智能收费系统,使交通量减少22%,排放物减少12%-40%。
北京智慧交通管理系统由交通流自动采集、分析、处理及信息系统、交通信号控制系统、交通指挥调度综合集成系统、交通管理数字化执法信息管理系统、交通事故分析处理与交通安全控制系统、对外交通信息服务系统、交通管理综合业务信息管理及辅助决策系统、交通管理宽带网络及通信系统八个子系统组成[9]。北京市已经开始试点“智能停车位引导”建设,在道路两侧建设引导停车的路牌。另外,为实现“公交优先”原则,北京出台了增加公交车辆和线路、设立公交专用线、完善公交基础设施等一系列专门政策措施。其中公交智能化调度系统的基本目标是解决公交车辆运行中无序、失控与低效的状态,解决与首都公交可担负城市旅客出行的主导地位不相适应的矛盾。把通信控制、卫星定位、计算机网络与运营组织科学地结合,运用系统工程的理论方法进行综合集成,实现集运营指挥调度、综合业务通信、乘客信息服务等为一体的智能化公交管理系统[10]。据调查,北京市顺义区的公交智能指挥调度中心项目总投资386万元,由指挥平台、车载定位系统、车辆和场站监控系统、通信系统组成,目前已在顺义区内的48条线路469辆公交车、4处公交枢纽、16个公交车站安装了指挥监控终端。调度中心通过公交车上安装卫星定位系统(GPS)、在重点站台安装监控系统等措施,实现对运营车辆的实时监控以及车内图像采集。公交智能指挥调度中心能够根据监控各种数据采集结果,判断车辆运行情况,及时发出指令,调度全区公交运行。通过卫星定位和视频监控,指挥中心随时掌握车辆的运行速度、所在位置、是否晚点等信息。此外,系统设置了报警功能,对车辆甩站、超速、严重堵车、首末班车不准时等进行提示。指挥中心人员根据各种情况,通过系统向安装在公交车上的GPS显示器发送短信进行提示,也可通过指挥中心的话筒向司机发出语音提示。每辆车的司机座位旁都安装有一个紧急按钮,一旦出现紧急情况,司机可通过按钮向指挥中心报警。智能指挥调度中心运行以来,顺义区境内公交正点率提高近10个百分点,公交服务投诉类纠纷显著减少,市民乘公交出行的意愿明显增强,境内公交刷卡率由86.36%提升到89.47%。
参考文献
[1][3]张永民.智慧城市总体方案[J].中国信息界,2011,(3):12-21.
[2]庞世辉.北京绿色出行与发展城市新型交通系统的构想[A].北京市交通委,北京交通发展研究中心主编《探寻北京交通—世界城市交通科学发展之路[C].2012,1.
[4]缪明月、高爱霞、戴帅.建设世界城市目标下智能交通管理理念诠释及发展展望[A].段霞主编.2012城市国际化论坛——世界城市:规律、趋势与战略选择论文集[C].2012.
[5]刘小明、王兆荣、陈燕凌,等.提高精细化管理水平 推进交通事业科学发展[A].张耘主编.北京蓝皮书:北京公共服务发展报告(2011-2012)[C].北京:社会科学文献出版社,2012.
[6]佚名.“十大应用体系”:让城市充满“智慧”[J].宁波经济,2010:30-31.
[7]曾华燊、朱怀芳.论智慧轨道交通及其系统架构[J].计算机应用,2012,32,(5):1191-1195.
无线通信是现代城市轨道交通的标志,车地无线通信技术在现代城市轨道交通发展中扮演着重要的角色。现阶段,我国的城市轨道交通运营线路网络逐渐复杂,给无线通信系统的应用提出了更高的要求。车地无线通信系统主要使用TETRA、LET、WLAN等无线网络技术,对于提高轨道交通运营的效率和质量具有良好的优势。在技术的实际应用中,主要以无线通信需求为依据,以保证较高的可实施性、高速移动性和较大的带宽传输能力为基本要求,以合理选择应用方案为前提,促进我国城市轨道交通的不断发展。
一、城市轨道交通车地无线通信系统的需求分析
(一)乘客信息多媒体信息现阶段,我国城市轨道交通具有一定的信息宣传的作用,宣传的对象为车厢内部的乘客,宣传的内容主要有安全知识、各种类型的新闻和一些非票务信息,而类宣传也被称作乘客信息多媒体信息,乘客信息多媒体信息的实施主要依靠地铁乘客信息系统实现,在目前多采用DVBT、RairView、WiMAX等技术实施。
(二)列车控制信息CBTC是当前轨道信号系统中常用的一种系统,主要依靠CBTC和ATC这两个系统的移动闭塞来实现车地之间的列车控制信息传送。其中,WLAN技术主要用于车地无线通信系统,并由通信系统和轨道信号单独建立无线通道,从而实现列车控制信息的传送。
(三)无线集群调度信息城市交通轨道的正常运行离不开调度员、驾驶员和值班员之间的无线调度语音通话,无线调度语音通话的使用以维护人员和司机最为重要,是保证列车行驶安全的重要保证。当前我国主要采用800MHz的数字群系统为主的地铁无线集群调度系统,该系统同时具备了数据传输功能和调度语音通信功能。
二、城市轨道交通车地无线通信系统的应用要求
(一)较高的可实施性较高的可实施性指的是城市轨道交通车地无线通信系统能够很好地适应隧道、高架等特殊场所。车地无线通信系统的应用需要分为三个阶段。第一阶段即应用初期,该阶段需要具备司机乘客室画像信息、火灾自动报警系统信息以及乘客信息、多媒体信息等基本通信需求。第二阶段即近期阶段,该阶段主要以车载广播、无线集群调度、CBTC列车控制等功能的应用为主。第三阶段也就是远期阶段,这一时期需要城市轨道交通承载各种无线通信功能。
(二)高速移动性近年来,我国城市轨道列车运行的速度不断创新高,这也就要求其无线通信系统具有高速移动性,能满足不断发展的城市轨道运行需求。对高速移动性的具体要求为:在满足不同时速的轨道运行无线通信需求的基础上,保证传输的稳定性并具有剩余发展空间。其次,该技术的应用还要保证一定的先进性,具有更为明显的系统标准化,确保不会在短期内淘汰,并满足产业链的发展需求,符合国家的相关规范。
(三)较大的带宽传输能力交通车地无线通信的应用需要保证各种类型的视频和语音业务满足无线通信的服务需求。该需求主要依靠较大的带宽传输能力,使轨道交通系统的带宽需求与各类型业务相适应。另外,在具体的应用过程中要划分不同的业务等级,做到主次分明,使信息传输具有一定的选择性。总之,车地无线通信系统在城市轨道交通中的应用以无线通信需求为依据,在应用中将信息划分为服务、语音、数据、控制等,现阶段该系统的应用除了满足可实施性、高速移动性和宽带传输能力之外,还要不断寻求更多的应用需求,为后期的发展留有一定的空间,满足不断发展的城市轨道交通的运营需要。
(四)较高的安全性城市轨道交通无线通信网络的安全性是保障乘客个人信息、财产安全的必要条件。车地无线通信系统往往会用到WLAN技术,该技术有着较强的开放性,同时也带来了一定的安全隐患,即使我国当前对开放的无线网络安全性采取了一系列的措施,但黑客入侵、伪装攻击等非法盗窃信息的事件时有发生。对无线网络系统的安全性防护一直是轨道交通运行中的重点需求,相关部门应将车地无线通信系统的安全性充分重视起来,全面打击危害网络安全的违法行为,修复当前网络系统中的漏洞,让不法分子无可乘之机,切实保证轨道交通乘客的信息安全。
三、车地无线通信系统现状
(一)网络性不能满足实际需求我国城市轨道交通运行的过程中,主要通过TETRA、LTE、WLAN这三种无线网络技术实现车地无线通信系统的运行,这些无线网络技术分别承载着无线语音集群系统、TC-MS、Wi-Fi、PIS、CCTV等业务,发挥着提高运营、提升服务效率、维护轨道交通运营安全的作用。但在实际应用中存在着一定的网络性能差的问题,难以满足正常的服务、语音、数据等信息的无线通信。主要表现在以下几个方面:首先,WLAN无线技术的抗干扰性差,当前一般采用5.8GHz或2.4GHz的公共频段,很容易被外界的民用无线通信网络干扰。同时,列车运行速度的增加会对WLAN无线技术传输速度、时延等指标造成影响,尤其是在时速120km/h以上的快线轨道交通中劣势更为明显。其次,TETRA无线网络存在较强的局限性,传输的速率只有700Kbps,属于2G网络,仅支持对一些文本信息和语音数据的传输。最后,LTE-M无线技术不能同时支持多项业务,受到有限频率资源的影响,存在一定的局限性。
(二)多网并存多网并存指的是当前我国城市轨道交通车地无线通信系统普遍采用三张及多张WLAN无线网络,分别承载Wi-Fi、PIS、CBTC等业务,也有部分路线对CCTV、PIS、TCMS等业务由LTE-M无线技术所承载,造成了多网并存的现状。无线车地网络系统多网并存的现状对我国轨道交通的运行带来了一定的不利影响,具有维护成本高、运营管理难以落实等缺点,对新业务的开展和后期业务的整合造成了一定的阻碍。
四、运营业务的需求变革
针对当前车地无线通信系统的现状来看,车地无线网络承载着PIS系统、视频监控系统、无线集群调度系统、车辆信息检测等业务。不同的业务对网络传输有着不同的性能要求。其中,PIS视频直播以及视频监控对网络传输的干扰性和时延要求较低,但需要大带宽。无线集群、CBTC等系统要求无线网络不干扰,极低时延,也对带宽的需求低。随着现代科学技术的高速发展,全自动驾驶、智能化运营、智慧车站、智慧列车等各种新业务不断出现,而这些新的业务也对车地无线通信系统的性能提出了更高的要求。在地铁智能维护、高速运营的环境下,性能各异的车地无线网络将面临发展的瓶颈,无线网络技术的变革是应对未来城市轨道交通新增业务需求的必要基础。在智慧运营的环境下,城市轨道交通将面临更多的新需求,实现地铁列车的全自动驾驶必然需要更智能和高清的视频监控系统;智能维护和管理对车载设备状态信息的实时回传分析提出了更高的要求;人民生活水平的提升对轨道交通运行的服务质量有了更高的需求,提高地铁服务质量,增强乘客乘车的舒适度则需要适时、高清的PIS视频直播。综上所述,这些新需求的实现必然对车地无线通信系统提出了更严格的要求,在考虑接口拓展能力、建设、维护成本等因素的同时,不断建设能够承载多项业务、稳定、高速、广覆盖、大带宽的综合性无线通信网络。
五、车地无线通信技术应用的系统方案
(一)总体方案以四架结构为设置形式,以TDLTE为系统设备,四架结构分别为车辆级、区间级、车站级和中心级别,分别担任TAU设备、RRU设备、BBU设备和核心网设备,采用合路的方式进行区间覆盖,使民用通信区间泄漏电缆与区间覆盖相结合,提高隧道区间内部TDLTE车地无线信号的覆盖率。
(二)车载与车辆段方案分别将三套TAU设备安装与车顶所处位置以及两端司机室内,使TAU设备与车载视频、车载乘客信息、车辆控制总线等相连接,将视频画面和车辆的检测信息上传至控制终端。其次,对所有列车设置RRU、BBU和反馈系统。
(三)车站与隧道方案车辆的TAU信息可以通过BBU接受,由专用信息传输系统和BBU乘客信息系统将接收到的信息传送至控制中心。以此为原理,在车站设置一套BBU,将数据交接机与乘客信息系统相连接,对载体利用光纤连接,使区间RRU与车站乘客信息系统相连接,将合路器置于隧道内,整合各电信运营商和TDLTE车地无线信号,通过民用泄露电缆进行信息反馈,实现无线信号的传输,对整个区间内实现全面覆盖。
(四)控制中心方案在控制中线中设置TDLTE核心网,将数据交换机与车站的乘客信息相连接,利用专门的通信传输系统连接每个车站的BBS,并对控制中心PIS和控制中线AS进行互联接口,以TDLTE车地无线通信系统将列车的检车信息和车辆内部的FAS信息传输至中线核心网,对中线核心网上的信息利用PIS转发至控制中心FAS和车辆维修中心。