医学影像技术前景范文

时间:2023-12-14 14:54:14

引言:寻求写作上的突破?我们特意为您精选了4篇医学影像技术前景范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

医学影像技术前景

篇1

情境教学是数学教学中主要的教学形式,对培养高中生思维能力、学习兴趣以及应用能力有着积极意义。

一、增强高中生的思维能力

一般来讲,学生在高中时期正处在思维能力快速提升的阶段。但由于高中数学知识较为抽象,高中生需要一个缓慢的过程来理解这些知识点。因此,教师开展情境教学时,应了解高中生之间的差异,发掘每位高中生的闪光点,以此增强高中生的思维能力。例如,在讲解三视图这一知识点时,由于每位高中生的空间想象力存在一定差距。对于一些想象力较差的高中生,教师可拿出一个多面体实物,引导这些高中生从正面、侧面以及上面等多个角度对多面体实物进行观察,并让这些高中生根据自己所看到的情形画出该多面体的三视图。此时,教师可查看这些高中生所画的三视图,并引导这些高中生找出自己出错的原因,使这些高中生能够更为透彻地理解三视图的基本内容,并不断培养这些高中生的思维能力。

二、增强高中生对数学知识的应用能力

悬念设疑是情境教学的重要手段,教师可结合知识点设置相应的问题情境,并引导高中生对所设的问题进行质疑,以便让高中生更快地掌握知识点。例如,在讲解线性规划这一知识点时,可创设问题情境“一个苹果需要4元,一根香蕉需要1元,小王一共只有180元,怎样分配苹果以及香蕉的购买数量才能购买到更多的水果”。通过这种悬念,可为高中生设置一定的障碍。同时,这类问题的难度又处在高中生能够自行解决的范围内,因此可充分调动高中生对数学问题的研究兴趣,以便促进高中生掌握更多的数学知识。

三、增强高中生对数学知识的研究兴趣

一般来讲,数学知识往往较为枯燥,高中生容易对数学学科产生厌倦心理。因此,教师可结合数学知识点设计一些趣味性强的题目。例如,在讲解正弦定理这一知识点时,可举出一些趣味性较强的问题来引导高中生进行讨论:我国潜水艇在南海巡逻时,发现正南方向有一艘不明来历的敌艇正以25海里/小时的速度向东偏北50度的方向行驶,已知鱼雷的最大速度为45海里/小时,如何发射能够准确击中敌艇?通过设计这些趣味性较强的数学题目,可极大地增强高中生对数学知识的研究兴趣。

篇2

一、前言

在医学诊断中,影像学还是一门新兴的科学,但是随着医学的发展和科学技术的不断更新,其在临床中的应用已经非常广泛。作为诊断的依据,影像学诊断为临床诊断和治疗提供了更加科学的依据,在疾病诊断中的作用不可替代。

从伦琴发现X线开始,到人们历史上的第一张X线片,从CT、MRI、介入放射学等技术的新兴,到影像学技术、影像学诊断的普及,医学影像学的发展是一个快速而逐步科学的过程。当前,医学影像学技术在诊断中的运用,已经开始了影像学新的数字影像时代,技术不断革新,在临床医学诊断和治疗领域更是不断进步。医学影像学的不断发展,是整体医学发展中的一个热点,也是未来医学发展的一个趋势。在未来,医学影像学的诊断作用将会更加普及,技术也会更加先进,对医学的贡献将会更大。

二、医学影像学的含义

在广泛意义上,医学影像学是指通过X线的成像,电脑断层扫描,核磁共振成像,超声成像,正子扫描,脑电图,脑磁图,眼球追踪,穿颅磁波刺激等现代成像技术,来检查人体无法用非手术手段检查的部位的过程。医学影像学也称医学成像,又因,之前的胶卷使用的是感光材料卤化银化学感光物来成像的,所以其又称为卤化银成像。

三、影像学的发展现状

目前,随着影像的发展,在临床检查中,X线的透视检查已经逐步减少或被取代,X线摄影检查,被推广开来,其中的DR检查运用的最为广泛。传统的X线造影检查也被多排螺旋CT和磁共振成像取代。这是一个逐渐发展的过程,首先是X线的脊髓照影技术被MRI技术取代,其次是X线在消化道造影、经静脉肾盂造影等,被多排的螺旋CT、MRI结合光学内镜成像技术所替代,另外,DSA的诊断价值逐渐开发出来,取代了CT血管成像和MR的血管成像技术。目前,CT已经成为了临床急诊和确诊的重要依据,MRI也因其无创性、无辐射性、成像参数多、承载信息量大等特性,成为了临床重大疾病的诊断技术。超声及其设备也因其价格低、无创伤等在临床上被广泛运用在了影响学筛选检查中。此外,DS A E t成为了介入治疗的工具。从影响学的发展来看,将来,分子成像将是医学影像学的重要发展方向和研究热点之一。

四、影像学的诊断作用

影像学诊断已经被广泛运用在了临床上的各个方面,一般来说,影像学的诊断作用为:检出病灶、病变点定位、肿瘤良恶性鉴别、术前分期评估、介入诊断及治疗、随访观察等,涉及骨科检查与诊断、胸腔检查与诊断、消化道检查与诊断、泌尿系统检查与诊断、妇产疾病检查与诊断等。诊断技术主要包括:透视、放射线片、CT、MRI、超声、数字减影、血管造影等。随着医学的发展和影像学技术的不断更新,目前影像学诊断为人们提供了更多的价值。

(一)反应局部循环的状况

CT技术和MRI的灌注成像以及MRI的扩散成像等,均可以反应出人体结构的血流量、血容量、循环时间,甚至可以细微到水分子在细胞内的扩散运动等,通过这些技术的运用,在临床上可以给人们提供更多、更详细、更细微的诊断信息,临床主要用于脑、心肌等一些实质性脏器的诊断。

(二)显示脑白质纤维束的走形级改变情况

影响学技术中的MR张良成像技术在诊断时可以显示出脑白质的纤维束走形情况和改变情况,MR张良成像技术其实属于扩散成像技术的延伸,更加有利于人们准确的诊断疾病。

(三)脑皮质功能定位

MR功能性成像技术可以实现脑皮质功能定位。随着影像学的发展,此项技术已经从简单的脑区功能识别发展到了神经学、生理学等领域。可用于喉癌术后与发音功能相关的脑区变化观察,有利于发音功能的恢复。可用于某些疾病康复患者脑皮层反应的观察与训练等。

(四)心脏功能成像

通过CT、MRI成像技术在心肌检查中的运用可以显示出某支冠状动脉闭塞后相应心肌供血情况和活性,及观察治疗后的康复情况,指导心肌梗塞等疾病的诊断与治疗。

(五)检查组织变化,鉴别疾病

影像学磁共振波普可以检测组织的化学成分在磁共振波普上的波形,以此来诊断疾病的类型与组织变化。如,前列腺疾病增生与癌变的诊断、脑肿瘤的诊断与术后复发性诊断等。

五、影像学的发展前景

随着科学的不断进步与影像学的不断发展,目前集诊断与治疗一体的影响学技术和设备也在不断的发展与成熟中,未来疾病的诊断将会更加快捷与准确,治疗效果也会大幅度提升。此外,通过计算机仿真技术的发展与运用,影像学诊断技术奖更加直观与明确,手术范围的确定与病灶切术范围将会更加准确与直接。

在影像学网络化发展的基础上,影像学的图像处理技术也会成为临床上的常规技术,服务器软件也将取代工作站,实现多点化同时处理,提高图像自动处理技术水平。此外,影响学图像的传输也将更加便捷、清晰、准确,甚至医生可以在家里或是度假图中处理诊断图像,完成诊断报告等。

分子成像将会是未来影像学发展的热点,针对多组织、器官特异性的对比剂将会问世,通过特定基因表达、对比增强效果将会更佳,诊断特异性也会更强,在临床上真正实现疾病的早期诊断。

未来影像学的作用将不单单局限于诊断与治疗,甚至会广泛涉及到疾病的预防与保健、人体健康管理等领域。科学在发展,影像学技术也在不断更新,随着分子技术、基因工程等更加细微与高端技术的发展,影像学技术的发展空间将会更加广阔,应用范围也会更加广泛,其前景是我们无法预料的。

参考文献:

[1]唐农轩.矫形外科应用影像诊断学基础[M].西安:世界图书出版公司,1997

[2]林曰增,张雪林 分子影像学研究进展 临床放射学杂志 2003年第22卷第1期

[3]李果珍.临床体部CT诊断学[M].北京:人民卫生出版社,1992

篇3

1. 数字化手术室前景

数字化手术室,是通过将先进的信息化技术运用到手术室,使得医生能够实时获得大量与患者相关的重要信息,从而便于操作,提高效率。其研究热点之一是构建数字化手术室信息平台,目的是将与手术相关的信息安全、有效、清晰地传输给手术参与者和手术观摩者。

1.1需要的核心技术

数字化手术室的技术核心是信息技术,它是医学生物工程技术和现代医学科技的有机结合。 数字化手术室实现了信息无障碍收集、传输与共享,将实时数据检测和远程医学影像技术传输相结合,相对于传统的手术室,数字化手术室使原来的“信息孤岛”变成了无所不有的信息中心,患者相关信息在此得到最佳融合。使手术更为精准手术,观摩和远程教学更加便捷,为科研以及循证医学提供了宝贵资源…..

1.2 当传统手术室遇到了数字化手术室

在传统手术室中实施手术,术中对设备参数的调整、控制一定通过各个设备的控制面板逐一调整才能得以实现;手术医生在术中对设备调整的指令一定要有巡回护士配合才能得以实现;连台手术对设备的调整、复位一定需通过台车移动位置才能得以实现;设备台车的使用、手术观摩人员的增加在术中占据了无菌区有限的使用空间;所有在传统手术室中的不便利,在一体化手术室解决方案均可以实现优化手术操作过程和控制方式。随着微创外科手术的飞速发展,传统手术间的设备配置已经不能满足手术工作的需要,对手术科学的发展产生滞后作用。

1.3数字化手术室建设发展的环境

根据调查显示,数字化手术室能使手术效率平均提高5%~10%,医生做出最佳决定的几率亦显著提高,进而提高了医院的经济和社会效益。从2003年起,武汉、上海、广州、北京等地少数大医院先后进行了现代化手术室的数字化改造,但方案都基于视频会议和设备控制技术。虽然这些改进能够提供全新的手术观摩教学环境以及人性化的设备控制系统,但缺少至关重要的影像及手术导航支持,并不能从本质上帮助术中医生做出更优选择。要建成真正意义上的数字化手术室,仍须从基本信息要素抓起,如医院信息系统(HIS)的整合以及医学影像管理信息系统(PACS)的建设等。

2.数字化手术室建设

手术室建设随着国家经济能力的强盛而发展,现代化程度越来越高,从手术室的硬件建设到设备的数字化配置,从整体手术间系统层流到设备的现代化都为现代化手术室的设备控制功能提升和集成创造了有利条件,对手术室的整体水平的提高提供了空间。

2.1 强大的信息化建设

随着医院数字化的逐步发展,医院拥有多个信息系统,主要包括医生工作站系统、护理信息系统、检验信息系统(LIS)、放射信息系统(PACS)、手术麻醉信息系统、重症监护信息系统、图像存档和通讯系统等。

目前这些系统各自相对独立运行,缺乏统一的数据标准,每个产品有各自的应用目标和专门的信息格式。如何在医院复杂、分散、异构的信息系统之间,进行安全的交换和共享,是医院信息集成的重点研究内容。

数字化手术室是各种医疗数据集中的平台。在手术过程中,医生需要适时了解患者以前所下医嘱、术前影像学、生化临床检验等相关信息,动态观察患者术中生命指针变化,充分利用专家知识库指导手术流程,并能有效应对手术过程中突发事件。这就要求将现有的医院信息系统集成到数字化手术室平台上,做到HIS系统与医学影像系统(PACS/RIS)及检验信息系统(LIS)各个系统间无缝连接。

2.2先进的医疗设备支持

吊臂和手术灯 可以提供电动的设备吊臂,和平面液晶监视器吊臂,用以提高效率,改善数字化手术室的人体工程学特性。手术灯能提供明亮的自然光,而内置于灯头的手术摄像机,能够为开放手术和内窥镜手术提供清晰手术影像。

网络建设 通过信息交换中心站,将手术室、医生办公室和其他各个部门,连接到全部网络站点以及世界各地。

影像设备 能够对静止图像、动态视频,进行数字化记录和编辑,并刻录到CD、DVD或者到医院网络,以完善手术记录。还可以对信息进行记录、编辑,并直接保存到患者的病历中。

影像导引 导航系统是一种基于定位技术的现代影像导引手术系统。智能化的操作手柄,和无线控制软件,使得术者能够在手术区通过指尖按钮操作,从而提供了方便的系统控制。

中控系统 对手术影像、患者的生命体征、数控X射线摄影、诊断、远程医疗以及患者病历,进行管理;将声控系统与微创手术设备,进行整合,并对其周围设备进行控制管理。无线触摸屏,使得能够在手术区、护士站以及手术室的任何区域,对全部手术设备进行控制,并操纵设备的功能。

视音频控制 将办公室、外科中心以及手术室,连接到了一起,并能够把来自各科室的综合资料,完全转换成数字影像。

医用监视器 为满足手术室中微创手术需要,专门配备了平面液晶监视器。高分辨率(数字和模拟)平面液晶监视器,可以适应未来的发展。

3. 数字化手术室应用

数字化手术室,整合了医学各种设备,改善了手术室的人体工程学条件。能够整合影像导引手术(Image Guided Surgery)平台,能够对仪器的运行情况进行记录,并同信息通讯平台相连,以便查看各种形式的影像。能够控制远程医疗、病案记录、手术床和手术室灯光,用于整个手术期间提高效率。能够对患者的生命体征、血液动力学、血管造影和超声心动图等各项数据的准确监控,使得患者术中的安全性,得到了大幅度提高。

3.1 PACS手术室(医学影像通讯手术室)应用

PACS数字化手术室采用现代医学影像档案和通讯系统,使CT、MRI、DSA、ECT、PET/CT、Ultrasound所获得图像资料迅速方便地送到手术现场,供手术选用。并集成手术现场内专用手术图像设备,取得手术部位的实时图像,直接指导手术的进程。PACS系统应当是数字化手术室中的一个工作站。现代数字医学成像设备,都具有DICOM3.0的标准接口,它规定了数字医学影像和相关信息的格式及其信息交换方法的标准,可以从接口采集图像数据,与医学图像档案和通讯系统PACS对接方便,这样就能和医院信息系统HIS融为一体。CT、MRI、DSA、ECT、PET/CT、Ultrasound等临床医学检查设备所获得图像资料迅速送到手术现场,为提高手术效果创造有利条件。手术现场所获得的实时手术资料和图像,也可以通过PACS输向外部,从而为远程会诊、远程手术奠定了基础。

3.2 微创手术室应用

微创外科手术几乎涉及传统外科手术的所有领域,是将先进医学摄像系统、完善的手术器械、熟练的外科手术操作技巧相结合的前沿技术。微创手术室是数字化的新型手术室,其与开放式的手术方式不同,手术室的设计也不同于集中型的手术室,它分散、方便、灵活。但室内照明系统、净化系统、设备布局方式、手术环境的调节和控制方式、手术图像采集和传输方式,都必须满足微创手术的需要,窥镜设备也应是现代数字化的图像设备。由于微创手术的出现,被集中型手术室所取代的分散型手术室正以高新技术的形式回到现代医院。

3.3 MRI手术室应用

磁共振介入手术室,简称MRI手术室。手术室图像引导的概念,已成为医学成像领域的热点问题,它使医学成像从以诊断为目的向注重治疗过程转移。图像引导技术的出现,可以提高手术治疗的安全性,并能节省医疗费用。这种新型的介入外科治疗方式,在原有的传统手术室内是不可能完成的,需要对器具和设备进行必要的改造,建立数字化的手术环境。

在手术室安装开放磁共振成像设备,采用磁共振介入的原理,向手术医生提供手术过程中动态的、变化的实时信息。实践证明动态的MRI成功引导,是颅脑神经外科手术大有发展前景的科学方法。目前,磁共振介入手术室正处在探索、完善、推广的阶段。

3.4 数字化手术室的推广

数字化手术室的建立,提高了手术的效率和安全性。虽然其背后的技术含量很高,可是对用户来说,只是非常简单、人性化的操作,不会增加医生手术的难度。一般手术间面积在35到70m2,层高不低于3m就具备安装条件。

篇4

1影像学技术在口腔种植的应用

医学影像新技术层出不穷,从开始的X线、B超、CT、MRI、PET,再到后来的医学图像三维重建可视化,其中,X线和锥形束计算机断层技术(conebeamcomputertomography,CBCT)在口腔临床应用广泛。X线片空间分辨率高于CT、价格便宜、放射剂量少、使用安全,但是其仅能显示局部解剖结构的二维平面图像,且常出现变形和失真。CBCT与X线片相比,可从三维角度显示颌骨解剖结构,弥补了二维平片的缺陷,但有金属伪影等失真现象。目前在口腔种植术前,均建议拍摄CBCT以评估患者牙槽骨骨量和质量,极大提高了口腔种植成功率和准确率。Michele等[3]对离体下颌骨分别进行CT和CBCT扫描发现,相对于CT扫描,CBCT放射剂量较小且成本较低,可以获得临床可接受的颌骨重建精度以及骨质密度评估精度,但其影像学重建精度低于CT扫描。Lílian等[4]研究了100例患者的CBCT后发现,CBCT可以精确重建包括下颌下腺窝深度、骨质深度与厚度、皮质骨厚度、下颌神经管等下颌骨解剖标志,对临床医生进行牙种植术有重要指导意义。Maryam等[5]通过研究157例患者的曲面断层片与CBCT发现,与平面的曲面断层相比,CBCT不仅能全面观察上颌磨牙根尖与上颌窦底的毗邻关系,对于上颌磨牙根尖周炎引起的上颌窦病变的诊断也明显高于曲面断层片。

2可视化技术在口腔种植的应用进展

种植义齿因固位支持效果理想、美观舒适、对邻牙无伤害等优点,逐渐成为牙列缺损和缺失患者口腔修复的首选方法[6]。然而,种植体植入的角度和位置常受手术视野、骨内神经、颌骨生理或病理性吸收等条件限制,因此可能出现诸多手术和修复并发症[7]。所以科学精确的术前规划十分重要,目前应用于口腔种植的三维可视化技术主要为:3D打印种植导板技术、虚拟现实技术以及基于VisualizationToolkit(VTK)软件平台的医学图像三维可视化系统。

2.13D打印种植导板技术

2.1.1种植导板的定义

3D打印技术是以计算机辅助设计(computeraideddesign,CAD)、计算机辅助制造(computeraidedmanufacturing,CAM)技术、激光技术、计算机数控技术以及新材料技术为基础发展起来的一种基于计算机三维数字成像技术和多层次连续打印技术制造实体模型的方法[8]。种植导板由导管与定位板组成,其中导管的位置和角度记录了术前设计的种植置、角度、深度信息,导管可将这些信息转移到手术中,使种植体植入到准确位置。导板通过与骨、牙齿或牙槽嵴表面贴合起定位作用,根据种植导板支持组织不同可分为黏膜支持式、骨支持式、牙支持式和混合支持式[9-11]。

2.1.2种植导板的特点

随着口腔种植学的飞速发展以及患者要求的提高,数字化种植技术成为当前口腔种植学研究的热点。以CAD/CAM技术制作的快速成型种植导板,可根据数字化重建患者颌骨解剖信息,为不同患者制定全面、科学、精确的种植术前规划。利用CBCT对患者口腔进行数字化影像扫描定位后,将数据导入相应软件,实现影像信息向数字化信息的转化,系统全方位的将患者牙齿、牙周组织、牙神经、牙槽骨等逼真地呈现在医生和患者面前[12-15]。医生根据颌骨的三维解剖结构和咬合关系设计种植体的最佳植入方案,包括种植体的位置、角度、数目、深度,将设计方案数据输入到医学专用快速成形机直接制作导板[11,16]。

2.1.3种植导板的研究进展

种植导板精确性的评价是通过把种植后的三维影像与术前模拟种植的三维影像进行配准,测量实际种植体的位置与模拟种植体的位置偏差值(颈部、底端、角度)来进行的。风险评估显示,种植体头部的偏差极限值对于种植体成功与否尤为重要,当水平偏差达1.86mm或垂直偏差达2.7mm可能会对种植体周围解剖结构造成损害[17]。目前国内外对种植导板精确性评价的研究较多,结果各有不同。Vermeulen等[18]在体外模型上分别研究了徒手种植和种植导板引导单牙缺失牙种植的精度,结果发现:导板种植在种植体颈部平均偏差为0.42mm,底端平均偏差为0.57mm,平均角度偏差为2.19°,均远高于徒手种植精度。Alzoubi等[19]通过对比种植导板引导下即刻种植与延期种植的精度发现,二者在颈部偏差和角度偏差无统计学差异,平均偏差分别是0.85mm和0.88mm,3.49°和4.29°,在种植体底端,即刻种植精度高于延期种植精度,平均偏差分别是1.10mm和1.59mm。Yolanda等[20]通过统计1602篇关于种植导板精度研究的文献,Meta分析显示:与牙支持式导板相比,骨支持式导板角度偏移较大,颈部偏差和顶端偏差二者无明显统计学差异。回顾性研究发现:黏膜支持式导板在颈部偏差、底端偏差和角度偏差均大于骨支持式导板,与牙支持式导板相比二者无明显统计学差异。国内种植导板研究起步相对较晚,但目前发展迅速。梁烨等[21]研究结果显示种植体颈部偏差(0.805±0.567)mm,底端偏差(0.957±0.518)mm,角度偏差3.124°±1.582°。徐良伟等[22]研究显示:牙支持式导板颈部平均偏差为1.56mm,底端平均偏差1.78mm,深度平均偏差1.1mm,角度平均偏差2.96°;黏膜支撑导板颈部平均偏差1.71mm,底端平均偏差1.9mm,深度平均深度偏差1.09mm,角度平均偏差3.19°。由于实验条件和方法不同,国内外的研究对导板精确度的评价有所不同,原因分析如下:①导板固位方法不同:Yolanda等[20]研究发现牙支持式种植导板在种植体颈部、底端、角度的精确性都大于骨支持式;②实验条件不同:体内研究中,导板的精度与患者、唾液、血液等息息相关,而在体外研究中,每个研究者模拟的环境有所差异;③术前、术后配准方法不同:目前多数种植体精确性评价多借助于第三方软件,如比利时的Mimics软件、SimPlant软件等,研究者对不同配准软件的选择以及研究者本身测量的误差,是造成不同研究者数据差异的主要原因。

2.1.4种植导板的局限

首先,应用数字化导板在术中视野较小,且只能按照预定的手术方案进行备洞,并不能根据实际临床情况及时调整钻针深度、尺寸和方向,尚存在损伤重要解剖结构的风险。其次,种植导板、钻针以及其他附件的高度叠加要求患者需要良好的开口度,尤其在后牙区,患者不适宜的开口度可能不适用于种植导板。再次,种植导板制作精密,其与黏膜、钻针间隙极小,术中的温度控制是一项很大的挑战。最后,如果术前种植规划系统科学性及准确性不足,种植导板在术中易引起诸多并发症,特别是不翻瓣种植术式下,种植导板可能产生更高的穿孔率。

2.2虚拟现实技术

2.2.1虚拟现实技术的定义

虚拟现实(virtualreality,VR)是一种多元信息融合的新型人机交互设备,参与者可以通过视觉、听觉、触觉等感知通道来感知计算机模拟的虚拟世界。参与者可以通过人机交互传感设备沉浸于该三维模拟环境中,计算机也可以对参与者的输入作出实时响应,并分别反馈到参与者的五官感知通道[23]。目前,虚拟现实技术临床应用前景良好。

2.2.2虚拟现实技术的特点

VR是具有交互性、沉浸性及构想性三种基本特征的高级人机交互设备。目前,VR技术在口腔种植学的应用主要是数字虚拟口腔、种植仿真模拟教学等方面,并实现了视觉模拟和力觉反馈模拟。VR技术在术前模拟、术中导航、植体定位等方面为医生提供了客观精确的方案。对于存在解剖缺陷患者,如颌骨骨量不足、上颌窦底过低、下颌神经管距离较小等,VR技术允许医师在生成的数字化模型上进行上颌窦提升术等精细虚拟种植手术,以确定提升高度、植骨数量以及下颌神经管解剖位置。

2.2.3虚拟现实技术的研究进展

关于口腔虚拟现实技术的应用,国内外学者做了诸多研究和探索。Elby等[24]通过对目前医疗市场上投入使用虚拟现实设备的综述,强调了虚拟现实技术在现代口腔医学教育的重要作用,其不仅可以完美模拟真实口腔环境,也可以模拟真实口腔操作手感。Corrêa等[25]研究开发出下牙槽神经阻滞麻醉虚拟现实设备,通过对训练者进针角度、深度、力度等多方面考核,认为该虚拟现实设备完全可以作为高效的学习方法投入使用。国内学者[26-28]对口腔数字化模型的建立也做了诸多研究和探索,最终建立了可精确显示牙体、牙槽骨及牙周组织的三维立体模型,实现了三维方向的全方位观察。

2.2.4虚拟现实技术的局限

尽管VR技术在医学应用前景较好,但是目前VR技术仍主要应用于医学前期训练、医学教学等方面,其与口腔临床的实际结合仍然需要继续探索和研究。

2.3基于VTK平台三维可视化系统

VisualizationToolkit(VTK)软件是一种广泛应用在医学图像处理领域的开源工具包,其封装了丰富的计算机图形学、图形图像处理、可视化方面的算法,能够以类库的形式给开发工作以直接支持[29]。以VTK为平台,整合患者颌面部CBCT相关图像,可设计出可视化的视觉显示界面,实现患者颌面部的三维重建,可对患者进行科学全面的种植术前规划。李芳等[30]基于VTK的平台,研究了三维模型坐标转换,并采用针刺取点法,通过直接拾取三维空间点完成了人机交互定位操作。并将该系统应用于虚拟牙种植系统,成功实现了种植体的全功能定位。VTK平台的三维可视化技术,充分利用CBCT提供的图像信息,可以重建包括上颌窦、下颌神经管等重要解剖结构,医生在术前可对颌骨进行深入观察、测量和分析,以确定最佳植入部位。VTK平台的三维可视化技术优势可概括为:①手术部位全方位的可视化;②种植体植入部位定位精确化;③术前直观手术模拟;④种植导板实现种植方案精确转移;⑤种植手术微创化。基于VTK平台环境的三维可视化技术,国内外已有多篇文献报道相关研究进展,但多数仍处于临床实验阶段,尚未全面投入临床使用。

3展望

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页