时间:2023-12-18 15:28:25
引言:寻求写作上的突破?我们特意为您精选了12篇生物技术进展范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
主管单位:农业部
主办单位:中国农业科学院茶叶研究所;中国农业科学院生物技术研究所
出版周期:月刊
出版地址:浙江省杭州市
语
种:中文
开
本:大16开
国际刊号:
国内刊号:
邮发代号:
发行范围:国内外统一发行
创刊时间:2011
期刊收录:
核心期刊:
期刊荣誉:
联系方式
随着环境保护工程的广泛展开,生物技术的应用已经拓展到各个方面,从单个环境目标治理,发展为全系统的广泛应用。本文主要阐述环境保护工程中生物技术的应用及重要进展进行论述。
1 环境保护与生物技术关系概述
环境保护的涉及面很广,包括空气质量、水资源保护、土地保护、森林保护等内容。由于人类对自然资源的过度开发和不合理利用,环境问题已经日益激化,生物技术作为一项有效的科技手段,对解决环境问题有着积极地作用。在当今资源保护过程中,生物技术已经占有主要的地位,生物净化技术的应用得到广泛认可。
我们享受着经济发展给生活所带来的舒适和方便,却忽视了环境对人类发出的警告。经济发展的代价是环境的严重破坏,随着环境破坏程度越来越严重,人们开始清醒的认识到环境必须要好好治理了。国人环境治理的意识正在不断的加深,生物技术得到了很好地发展,并应用到实际治理污染中[1]。虽然生物技术取得了一定的成绩,但仍然无法高效的解决环境污染问题。因此,我们对生物技术的研究还要继续深入,有效地实现研究成果和工程技术的结合,使之成为成熟的技术并推向市场。
生物技术方向潜力巨大,有很多领域都有新发现,继续挖掘生物技术的潜能,是未来环境治理的主流方法。生物技术的发展给环境保护带来了福音,但是生物技术的应用必须是严谨的,并遵守既定的原则,否则可能会再次对环境造成污染。随着人们生活节奏的不断加快,人们对于快捷方便的生活方式越来越依赖,但是经济发展不能以牺牲环境为代价,人类应该以高效率、低耗能、投入少的方式发展经济。生物技术能够成为经济发展的基本保障,深入研究生物技术,符合我国环境发展的国情。
2 环境生物技术的特点及现状
无数种生物构成了地球的生态系统,依靠这些生物完成了生态系统内的物质循环过程。环境生物技术产生就是利用了物质循环的原理,随着科技的发展生物技术被证明是环境保护的理想手段,这一技术的独特功能在解决环境问题过程中显示出无可比拟的优越性,这充分体现出它是一个纯生态的过程,符合我国可持续发展的战略思想。生物技术对处理环境污染具有很好地作用,同时具有速度快、成本低、效率高、消耗低等优点。因为生物技术来源于自然界中的生物,所以具有无二次污染、反应条件温等显著特点。环境生物技术明显的优势以及其广阔的市场前景,受到了世界各国的高度重视。
目前环境保护对生物技术的应用主要是微生物及其衍生物,少部分生物技术利用植物控制环境污染。目前生物技术是环境保护中应用最广泛、最为重要的技术,其在很多领域发挥作用。大气污染治理、水源污染控制、清洁可再生能源的开发、有毒有害物质降解、
废物资源化、污染环境修复、环境监测和重污染企业的清洁生产等各个方面都有生物技术的身影,并发挥着极其重要的作用[1]。使用环境生物技术处理环境污染物时,最终产物大部分是无毒害且稳定的物质,大部分有机污染物都转化为二氧化碳、水和氮气等。应用生物技术处理污染大多能一步到位,避免了污染物再次转移,因此它可以安全而彻底的消除污染。大部分有机污染物适可作为其他反应的底物,这些有机污染物经过生物转化后变成酒精、沼气、氨基酸、多肽等有用物质。生物转化的技术因此常常作为有机污染物资源化的首选技术。
3 环境生物技术的应用进展
3.1 在治理大气污染和改善空气质量中的应用
雾霾是2014年出现频率非常高的词,整个冬天它都纠缠着我国大部分城市,这样大规的雾霾天气说明我们的空气质量正在急速下滑,大气污染问题已经不容忽视,它已经严重影响人们的生活和身体健康。我国对治理大气污染、空气污染非常重视,生物技术已经应用在大气污染治理上。目前主要采用的方法有生物的吸附、生物的洗涤和生物的过滤等方法[2。生物技术虽然仍需要更大程度的提升,但与传统的废气治理方法相比,生物技术转化废气效果更加明显,而且节省时间,大大提高了工作效率。生物技术对能源的净化和转化更加安全可靠,经过处理的气体不会造成二次污染,甚至可以达到二次利用的效果。
3.2 在改善水体质量,治理水源污染中的作用
生物技术应用最为广泛的领域就是在改善水体质量方面,生物处理是目前水处理技术的重要手段,世界范围内大多都采用这一方法进行污水的处理。我国在污水处理上也会遵循这一趋势,不断研究发展并提升生物处理污水的能力。目前常见的水污染治理的生物技术有活性污泥法、生物膜处理法、稳定塘法、土地处理系统法和人工湿地处理系统法等[1]。生物技术应用突出表现在微生物水处理剂、废水处理、以及生物修复等方面。
3.3 在治理土地污染中的作用
我国针对土壤严重污染的问题,出台了较多政策进行治理。目前我国通常采用物理治理的方法解决土地污染,通过大面积的植树造林,保持水土,启动土壤森林净化循环的作用,避免发生大范围的水土污染和流失。其他物理化学方法以洗脱、吸附)为主 ,不仅投资成本高,而且极易造成二次污染[1]。我国作为农业大国,农业生产对土地的依附性很大,如果不注意土地污染问题的治理,后果不堪设想。但传统方法修复周期过长,治理速度远远不及污染速度,因此必须运用生物技术对土壤污染进行治理,同时保护土壤的有机成分,挽救每况愈下的土地。
3.4 生物技术的其他应用方向
生物转化过程是以酶为反应介质进行的,因为酶是一种活性蛋白,极易受到酸、碱及高温的破坏,所以生物反应的过程必须在常温、常压的环境下进行。生物反应的条件相对比较好达到,因而其投资少、耗能低、速度快好、效果好、操作简便、设备简单。
生物转化代替化学处理可以大大降低反应过程的污染水平,更有利于实现生态化生产或无废生产,从而实现清洁生产的目的。此外,生物反应的产品及副产品大多都是可以加快生物降解,有的甚至是下一次反应的催化剂,且反应产物大多可以作为其他生物的营养源加以利用。用生物反应产物代替一些化学药物、人工合成物、化石能源等,能把产生活动带来的环境污染降到最低,真正使经济发展遵循可持续发展的原理。应用生物技术还可以处理其他方法无法处理的环境问题,比如生物修复技术净化环境,能使受污染的珍贵资源如水资源、土地资源等恢复到健康的水平。
4 结束语
随着经济的不断发展,我国环境问题日益凸显,环境问题亟待解决,现有的生物技术已经不能满足社会发展的需要,因此需要不断挖掘生物技术的潜力,环境治理和技术革新的探索之路还要继续走下去。未来生物技术的研究必须要考虑到经济发展的因素,实现经济发展与环境保护相统一,促进社会进步与环境保护的协调发展。
中图分类号:S3434文献标识码:A
为本文通讯作者几十年来,国家和地方投入大量人力、物力和财力研究改造盐碱地,经历了从单项措施(20世纪50年代以农业改良措施为主、20世纪60年代以水利措施为主)到综合措施(20世纪70年代开始农、林、牧、水全面治理工作)、从小范围试验到大面积推广的过程,在土壤盐分的成因规律和特征、不同灌溉格局下的水盐运行机理、耐盐碱植物的筛选、盐碱地恢复与重建的技术措施等诸多方面,取得了新的进展和突破,收到了较好的治理效果。
1地表覆被
地表覆被可减缓或抑制水分与大气间直接交流,对表层土壤水分蒸发起到阻隔作用,明显减少土壤水分的蒸发,抑制盐分在地表积聚,防止土壤返盐,从而达到改良目的。地表覆盖物可以利用枯草层、作物秸秆等。
11枯草法
枯草混入土壤中,增加了土壤孔隙度,不断释放营养元素,改善了土壤结构和营养状况,使水盐运动发生改变,降低了土壤盐分。枯草在分解过程中释放出大量有机酸,起到了酸碱中和作用[1,2]。在枯草层实验区和光碱斑对照区内,播种了羊草和野大麦,播种量为75kg/hm2,播种时间为6月末。7月10日测得枯草层实验区羊草出苗数为66株/m2,野大麦出苗数为69株/m2;光碱斑对照区羊草出苗数为12株/m2,野大麦出苗数为16株/m2。枯草层实验区的羊草和野大麦出苗率分别为光碱斑对照区的46倍和43倍。到了9月20日枯草层实验区的羊草存留株数为17株/m2,野大麦为20株/m2;而光碱斑对照区的羊草仅存1株/m2,野大麦为3株/m2。有枯草层的羊草和野大麦的保留率分别为光碱斑的85倍和66倍[1]。维持枯草层是草地资源可持续发展和利用的必要条件之一。
12秸秆法
在裸碱地上扦插和平埋玉米秸秆,可以使土壤理化性质各项指标有所改善,土壤表层可溶性盐分明显下降,土壤有机质含量提高,土壤pH值降低。同时,秸秆可以有效地截留一定量的耐盐碱植物的种子,尤其是虎尾草种子[3]。吴泠等(2001)在约05hm2的裸碱斑上,把直径约2cm的玉米秸秆切成25cm长的片段,进行扦插和平埋处理。扦插的行距和列距均为40cm,扦插深度为5~10cm,秸秆的施用量为350g/m2;平埋处理行距为25cm,平埋深度为1~2cm,施用量为320g/m2。实验一年后,两种处理方式都取得了良好的改良效果,其中扦插处理比平埋处理的效果更好。扦插玉米秸秆可显著提高土壤种子库,改良区土壤种子数量为402 010±177 316粒/m2,次生光碱斑土壤种子库为1 010±3 116粒/m2,被截留的种子为植被恢复提供了种源。虎尾草能在玉米秸秆周围存活,每个玉米秸秆周围可生长319±212株,产量可达68 164±38 172g/m2 [3,4]。使用秸秆法,不需要购买大量化学药品和大规模的机械和人力投入,技术相对简单、成本较低[3]。
2植被重建
21羊草
羊草广布于我国东北和内蒙古的草原区,营养价值高、适口性强,同时耐寒、耐旱、耐盐碱、耐践踏,适于调制各种干草,是抗逆性最强、适应性最广的野生优良牧草之一。目前羊草已成为我国北方盐碱化草地改良的主要优良品种之一[2]。播种后羊草形成繁茂的单优群落,主要靠根茎进行营养繁殖,播种后2~3年内应禁止任何利用,以使羊草群体获得充分繁殖生息的时间,增加羊草与其他杂类草竞争的能力。羊草根茎主要分布在土层5~10cm深处,根茎纵横交错,其上又生长较多的细根,地表又被植被覆盖,使土壤深层盐碱不能上返,表层的盐碱还会被羊草的活动所中和或下移,形成新的表土层,植物群落得以稳定。
22星星草
星星草为典型盐生植物,在平原主要生长在碱湖周围和低湿的盐碱斑上,属C3植物。以星星草为优势形成的草地,分布广、数量多,可用于割草又可用于放牧,是盐碱化草地上优良的牧草之一。由于星星草分蘖多,生长郁闭,可以积累、保持土壤的腐殖质,特别是地下的须根系,改善碱土的物理结构,土壤有机质、全氮、全磷含量增加,土壤全钠、全钙、全镁含量不同程度降低,土壤含盐碱量下降,从而达到改良碱斑的作用[5]。种植星星草三年的地块,0~10cm土层的pH值由1078降至875[6]。3年后可作适度放牧利用,并可作为割草场。
23野大麦
野大麦营养价值高,适口性好,抗逆性较强,在pH值85~95的碱性土壤中生长良好,先后在吉林、内蒙古、河北、甘肃、新疆、青海等省区都有栽培。野大麦草丛茂密,叶量大,较长的营养枝上可达86~134片叶。播种第2年后,每年可刈割两次,第1次在6月下旬为宜,第2次在8月下旬为宜。如果刈割后有条件施肥灌水,可大幅度提高产量[2]。
3基因工程
近年来,植物耐盐基因工程研究越来越受到关注,一些与植物耐盐性有关的基因相继被克隆,不同程度地提高了转基因植物的耐盐能力。应用于植物基因工程的耐盐基因主要有:渗透保护性物质合成基因、与水分胁迫相关的功能蛋白编码基因、与信号传递和基因表达相关的调控基因、与细胞排毒抗氧化能力相关的酶基因等[7-9]。
4小结
盐碱化草地恢复是一项长期的、复杂的、系统的、涉及多学科的综合治理工程,也是一个循序渐进、逐步显效的过程,经过多年攻关,该领域研究已取得很大进展。物理、化学、水利等措施易受条件限制,成本高,难度大。相比之下,生物措施成本低、见效快、易推广,能从根本上解决草地盐碱化问题,是盐碱化草地恢复技术的发展方向[10]。在理论和方法创新的支持下,将会不断出现盐碱地恢复的新材料、新方法和新技术,实现草地生态系统的可持续发展。
参考文献
[1]郭继勋.枯草层在碱化草原治理中的生态作用[J].东北师大学报(自然科学版),1992(02):95-98.
[2]郑慧莹,李建东.松嫩平原盐生植物与盐碱化草地的恢复[M].北京:科学出版社,1999:72-114.
[3]吴泠,何念鹏,周道玮.玉米秸秆改良松嫩盐碱地的初步研究[J].中国草地,2001,23(06):34-38.
[4]何念鹏,吴泠,姜世成,等.扦插玉米秸秆改良松嫩平原次生光碱斑的研究[J].应用生态学报,2004a,15(06):969-972.
[5]范亚文,孙国荣,阎秀峰,等.种植星星草对盐碱草地土壤养分状况的改良作用[J].植物研究,2001,21(04):600-604.
[6]李景信,马义,付喜林.种植星星草改良碱斑地的研究[J].中国草原,1985(02):53-55.
[7]崔润丽,刁现民.植物耐盐相关基因克隆与转化研究进展[J].中国生物工程杂志,2005,25(08):25-30.
1.1基因工程在农业领域的应用
基因工程即利用分子生物学和微生物学技术,设计好不同来源的基因顺序,在体外成功构建杂交DNA分子后导入受体细胞,使受体细胞表现出人们需要的表现型,产生出人们需要的物质。在农业领域应用基因工程技术,获得的农作物优质、高产、抗性强,还可获得畜、禽新品种及具有特殊作用的动、植物。例如,经过7年的努力攻关,2011年胜利突破了大面积示范(即6.67hm2示范)平均产量为13500kg/hm2的超级杂交稻第3期目标,达到了13899kg/hm2[1];运用转基因技术将相应的基因导入油菜中有望培育出转基因抗病油菜新品种[2];运用基因工程技术可将抗除草剂基因导入农作物中,使农作物能够不受除草剂的影响,目前已生产出多种抗除草剂作物品种,应用广泛[3]。
1.2细胞工程在农业领域的应用
细胞工程是指在体外培养细胞,以改变细胞某些生物学特性为目的将不同作物或动物进行细胞杂交,使植物或动物个体繁殖速度加快,以获得优良品种或新品种及某些具有特殊作用的物质的一门技术[4]。细胞工程技术在植物快速繁殖、植物新品种选育等方面发挥着重要作用。目前植物体细胞杂交应用较多,如可以将马铃薯细胞和番茄细胞进行杂交,可获得上结番茄下结马铃薯的“番茄马铃薯”;将豆科植物与向日葵进行细胞杂交,可培育出具有高营养价值的“向日豆”[5]。
1.3发酵工程在农业领域的应用
发酵工程即利用微生物具有的特殊作用生产出对人类生产有用的产品,或直接将微生物应用到工业生产过程的一门新的技术。发酵工程主要可应用在农业领域的2个方面,一是生产传统的发酵产品,如果酒、茯砖茶、食醋等;二是生产一些食品添加剂。如茯砖茶的制作过程中就运用到了发酵工程技术,通过调控渥堆时间、使用接种剂、发酵剂等方法可以改进茯砖茶的加工工艺,进而可生产出“金花”饱满、品质优良的茯砖茶。
1.4酶工程在农业领域的应用
酶工程,简单来说就是利用酶的生物催化功能,借助工程手段将相应的原料转化成有用物质。酶工程可应用在农业领域中的制酒、制酱等方面。例如,随着我国粮食的不断增产,一些地区出现了粗粮过剩的问题,需要解决粗粮的淀粉利用。解决办法之一是生产葡萄糖,但由于葡萄糖甜度不大,难以在市场上应用。最有效的办法还是运用酶工程技术的手段,将葡萄糖转变为甜度大的果糖,果糖不仅比葡萄糖甜度大,其比蔗糖的甜度还高50%以上。
2微生物肥料在农业领域的应用
2.1微生物肥料的特点
微生物肥料是含有活的微生物的特殊的肥料,在农业生产中应用该种肥料可获得特定的肥料效应[6]。生物肥料的定义分为2个方面,从狭义上讲,生物肥料就是指微生物肥料,是由具有特殊作用的大量有益微生物发酵产生的,活性高。施入该种肥料能够产生活性物质,能够增加作物的固氮作用,改善土壤的理化性质,使作物的生长环境变得更好,使作物生长更优、产量更高。从广义上讲,生物肥料泛指各种具有特定肥效的生物制剂,包括特定的活的生物体、生物体的代谢物或基质的转化物等,此种生物体不限定,既可以是微生物,也可以是动、植物组织和细胞[7-8]。
2.2生物肥料的应用优势
【关键词】 生物技术;中药现代化;应用;综述
Abstract:Biotechnology has entered all fields of TCD research and development, exerting great function in research and production of highquality natural medicinal raw materials and sustainable utilization of Chinese herbs resource.
Key words:biotechnology; TCD modernization; application; review
中医药学是我国在自然科学领域最有特色的学科之一,中药现代化就是将传统中医药的优势和特色与现代科学技术相结合,把中药推向国际化。生物技术作为一种综合了生命科学与多种现代科学理论与研究手段的高技术,在21世纪将对生命科学的各个领域产生十分深远的影响。
1 生物技术在高质量中药天然药物原料的研究生产及中药材资源可持续利用中的应用
生产具有国际竞争力的现代中药,其前提是有高质量的中药原料。现代中药必须严格保证所用的药材原料无污染,农药残留和重金属含量在十分安全的范围内,药效物质基础的含量稳定、可靠并有严格的质量标准。我国中药资源达1.2万余种,这些中药材中部分涉及到珍稀濒危物种,因此对珍稀濒危中药材的挽救、保护与合理利用迫在眉睫。迁移珍稀濒危动、植物至饲养地和植物园是保存物种的重要方法,建立相应的基因库用于保存动植物的基因,考察物种的变异具有重要意义。
就中药材栽培而言,GAP的实施已成为业内共识。基因技术在这方面正在逐渐发挥重要作用,如中药材优良品种选育、道地性药材遗传特征分析、抗性基因的转基因药用植物等。
应用RAPD技术对南北苍术间的差异进行了分析,认为苍术的道地性是在遗传和生态两因素长期复杂作用下形成的遗传和化学成分有稳定差异的居群[1];李萍等将5srRNA基因间区序列的变异用于对金银花药材道地性的分析[2]。有报道用转基因植物可生产外源基因编码的产物(如a栝蒌素、干扰素等),随着表达效率的提高和受体植物范围的不断扩大,将有可能在传统中药材中加入有用的新遗传特性,增加植物的抗病能力等,这将为中药材的绿色栽培奠定良好的基础[3]。
2 细胞工程技术为中药人工资源的开发提供了有效途径
作为中药和天然药物发挥药效活性的物质基础,天然活性成分往往含量很低,而天然野生资源随着药物的开发利用储存量不断下降,其原料来源能否满足批量化生产的需求,是所有天然创新药物开发所面临的重大难题,也是高水平中药能否广泛应用并走向世界的瓶颈。因此,针对特定有效成分或组分生产的中药人工资源开发生产技术引起了研究者的极大关注。为合理利用其资源,可利用生物技术的方法和手段进行一些珍稀濒危品种的快速繁殖,研究其在自然或人工控制条件下个体更新的速率及规律等,如石斛试管苗的快速繁殖。
发酵工程利用生物细胞在人工条件下的快速增殖与次生代谢产物的产生,为人工资源的生产提供了技术平台。目前,以冬虫夏草菌发酵生产的菌丝体及产物已形成产业化规模,并有相应的下游产品畅销。
以微生物、植物、动物细胞为反应器,进行天然活性物质的生产和加工,也已引起研究者的极大兴趣,以此推动的天然产物的生物转化和生物合成研究与开发,在国内中药研究和开发中的作用正为更多的研究和生产部门所重视。许建峰[4]等利用高山红景天培养细胞生物转化外源酪醇生产红景天苷。紫杉醇作为一种作用机理独特的天然抗癌药物,自发现以来受到了人们的广泛重视,但其在植物红豆杉中的含量极低,而红豆杉生长缓慢,资源匮乏,因此严重限制了紫杉醇的进一步开发应用。为此,近年来各国科学家在寻找及扩大紫杉醇的药源途径上进行了大量的工作。甘烦远等对紫杉醇的研究进行了综述,通过两篇综述所反映出的研究内容可以看出为解决紫杉醇的资源问题。全世界的科学家分别从筛选高产红豆杉栽培品种、微生物生物合成、化学合成、生物合成途径探索、生物合成关键酶的发现及其基因表达等多途径进行资源研究,而这些研究中生物合成与生物转化技术起着极为重要的作用。
3 酶工程是中药活性成分生产追求的最佳技术手段之一
就疗效确切的单一天然活性成分而言,能够通过工业化生产获得天然结构复杂的单一产物是人们追求的目标,但天然化合物结构复杂,常有多个不对称碳原子,合成难度较大或合成条件苛刻;而酶工程为这类成分的获得提供了新的途径。如金东史等利用酶转化方法将人参中的主要皂苷成分转化成含量只有十万分之几的人参皂苷Rh2,并达到了月产30kg的生产规模[5]。
转贴于
4 生物技术为提高中药品质评价水平提供了新的实验方法
中药材是中药研究开发的基础,基础的质量标准无法控制,以后的研究和开发均属无本之木,其质量标准的制定也就失去了意义。中药材的质量控制主要应包括两个方面的内容,一是品种的控制,主要是解决真伪的问题。其二中药材的有效物质是次生代谢产物,其积累主要与其合成关键酶的表达及表达量等有关。因此建立合理中药材的生产和质量评价体系将对中药现代化尤为重要。
基因分子标记技术在中药品质评价中的应用,使中药材鉴定的方法从传统的形态表征分析推进到对生物遗传物质的分析。在中药的分子鉴别研究中目前主要有以下一些方面:(1)基于PCR方法的DNA分子标记技术,如RAPD、AFLP等;(2)基于分子杂交的DNA分子标记技术,如RFLP;(3)基于DNA序列分析的分子标记技术,如DNA直接测序法、PCRRFLP法[6]。利用这些基因鉴别方法对了解和分析药用动(植)物的遗传特性、基因与药材产地、化合物积累的相关性等均具有重要意义。
5 生物技术为中药和天然药物新药研究与开发提供了新的工具和途径
中药新药的研发是中药现代化和国际化的关键,要研制符合国际标准规范的现代中药,应用现代先进的科学技术势在必行。
5.1 生物芯片为中药新药分子水平的机理研究提供依据:中药鉴定基因芯片,可以对中药材的产地、质量进行鉴定;可以搞清楚中药作用的分子机理,筛选出中药有效成分。
5.2 生物转化及生物组合化学为以天然活性成分为先导化合物发现新药提供了新的思路与方法:生物转化技术可以弥补化学合成的不足,1997年Khmelnitsky利用盐活化生物催化剂脂酶,成功地在有机相中进行了紫杉醇系列衍生物的生物合成。由此可见,生物转化技术在以天然活性成分为基础的创新药物研究与开发中具有重要的意义。
5.3 生物技术为天然微量活性成分的生产提供了新的技术平台:中药中微量高效成分的研制开发一直是困扰医药产业界的核心问题,利用定向生物转化技术可将天然药物中的高含量成分转化成微量高活性成分,因此大大提高微量成分的含量,使其达到产业化的要求。如研究发现多种微生物能定向地将含量较高的喜树碱转化为10羟基喜树碱。丁家宜等利用人参毛状根成功地实现了对羟基苯醌生物合成天然熊果苷。
5.4 物技术实现天然结构复杂活性化合物的结构修饰:天然活性成分的研发中还有一个难以解决的问题,即天然活性成分常常体内外药效学活性差异较大,其中一个重要因素是其在体内吸收不好,导致生物利用度太低。利用生物技术实现天然结构复杂活性化合物的结构修饰,对提高这类成分的生物利用度,进而实现产业开发具有重要意义。
综上所述,生物技术已经深入中药研究和开发的各个领域,虽然大多数研究尚处于起步阶段,但其影响正在不断扩大,所显示出的潜在社会价值和经济效益也日益得到重视,生物技术将深入到中药新药研制的各个环节。正确利用现代生物技术合理地解决中医药现代科学研究和产业开发中的重要问题,必将有力地推动我国的中医药现代化和国际化进程,为加入WTO后的中国民族产业的国际竞争注入活力。
【参考文献】
[1]郭兰萍,黄璐琦,王敏等.南北苍术的RAPD分析及其划分的初步探讨[J].中国中药杂志,2001,32(9),32(9):834837.
[2]李萍,蔡朝辉,邢俊波.srRNA基因间区序列第变异用于对金银花药材道地性研究初探[J].中草药,2001,32(9):834837.
[3]Kuehne,A.R.,Sugii,N.Transformation of dendrobium orchidusing particle bombardment of protocorms[J].Plant Cell Reports,1992,11(8):484488.
中图分类号:U664文献标识码: A
前言
随着中国经济的快速发展,城市规模不断扩大,水资源供需矛盾日趋激化。而我国现有的城市污水处理厂主要是针对碳源污染物的去除,对导致水体富营养化的主要营养盐氮、磷的去除率很低,导致水体富营养化现象加剧。因此研究和开发高效、经济的生物脱氮除磷工艺已成为当前研究的热点。本文系统的概述了生物脱氮除磷的机理,分析了生物脱氮除磷技术的现状,探讨了生物脱氮除磷技术的发展趋势。
1 脱氮工艺
生物膜脱氮工艺大多数处于小试、中试及半生产性实验阶段,生物转盘、生物滤池、生物流化床等生物膜法反应器均可以设计成具有脱氮功能的反应器。目前,已开发了浮动床生物膜反应器脱氮系统、浸没式生物膜反应器脱氮系统、三级生物滤池脱氮系统。这些生物膜脱氮系统相对于活性污泥脱氮系统具有更好的稳定性、污泥浓度高、产泥量少,但能耗大。
生物膜脱氮技术要应用到城市污水工程,还有许多问题有待解决。因此,对生物膜脱氮机理的深入研究和开发新型经济、高效生物膜反应器将是今后污水生物膜脱氮技术研究的主要方向。
1.1 生物脱氮新工艺
最近的研究表明,生物脱氮过程出现了超出传统脱氮理论的现象,研究者对此展开了研究,提出了一些新的脱氮工艺,如SHARON工艺、ANAMMOX工艺[2]、De-ammonifieation工艺、OLAND工艺.
SHARON(Single reactor for High activity Ammonia Removal Over Nitrite)工艺是荷兰Delft技术大学开发的脱氮新工艺,其基本原理是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,达到脱氮目的。该工艺具有以下特点:硝化与反硝化在同一反应器中完成,简化工艺流程;节省反硝化过程需要外加的碳源,以甲醇为例,NO2-反硝化比NO3-反硝化节省40%的碳源;减少25% 左右的供气量,节省动力消耗。
ANAMMOX (ANaerobic AMMonium OXidation)工艺是荷兰Delft技术大学Kluyver生物技术实验室于1990年开发的脱氮新工艺,其原理是在厌氧的条件下,以YCh-、YCh-为电子受体,将氨氧化还原为N2。Deammonification工艺由Hippen等人开发适合处理高浓度含氮废水的新工艺,该工艺脱氮过程不需要按照化学计量式消耗电子供体,其机理目前还不清楚。OLAND (Oxygen Limited Autotrophic NitrificationDenitrification)工艺是比利时Gent微生物生态实验室开发的脱氮新工艺,其原理是通过控制溶解氧,使硝化过程控制在NO2-阶段,通过NO2-氧化NH4+形成N2,达到脱氮目的。杨红等人以消化污泥脱水液为基质,采用悬浮填料床反应器进行OLAND工艺脱氮研究,达到70%的脱氮率。
2 生物除磷技术
污水生物除磷技术源于20世纪60年代Srinath等人在生产运行过程中观察到超量吸磷现象[3],通过基础性研究、生产性实验研究以及工程运行实践,生物除磷技术在理论和实践上都取得了重大突破, 目前,用于工程实践的生物除磷技术有A2/O工艺、氧化沟工艺、SBR工艺、Phostrip工艺、改良Bardenpho工艺、改良的UCT工艺等。
A2/O工艺通过设置厌氧/缺氧/好氧环境,实现聚磷菌厌氧环境中有效释磷、好氧环境中聚磷。对倒置A2/O工艺[4]进行环境倒置效应实验研究,认为缺氧/厌氧/好氧的布置形式除磷效果更好,其原因在于:降低了厌氧区硝酸盐负荷,有利于聚磷菌有效释磷;聚磷菌厌氧释磷后,直接进入好氧环境,有利于充分利用厌氧条件下形成的吸磷动力。氧化沟工艺是通过曝气系统在反应器实现空间上厌氧/缺氧/好氧环境,为除磷创造条件。SBR工艺是通过曝气控制系统在反应器内实现时间上厌氧/缺氧/好氧环境,为聚磷菌有效释磷和聚磷过程创造条件,并通过排放富磷污泥实现除磷目的。Phostrip工艺通过在污泥回流系统中设置厌氧区进行生物除磷,并且与化学除磷法进行组合,可以达到很好的除磷效果(TP≤1 mg/L)。改良Bardenpho工艺通过进水与回流污泥在厌氧池混合接触,促进厌氧发酵和有效释磷,再进入后续构筑物聚磷,通过排泥达到除磷目的。改良的UCT工艺是基于回流污泥中硝酸盐进入厌氧区不利于聚磷菌有效释磷的事实,将回流污泥直接回流到缺氧区,提高除磷效果。
2.1 同时生物脱氮除磷技术
自从Bardnard首先发现了硝化/反硝化过程中除磷现象[5],已开发出许多具有同时脱氮除磷功生物处理技术,如A2/O 工艺、氧化沟工艺、SBR工艺、Phostrip工艺、改良Bardenpho工艺、改良的UCT工艺等。
这些工艺均来源于传统的污水处理技术,又超越了传统污水处理技术,一方面满足传统污水处理工艺去除有机物、悬浮物的要求;另一方面满足除磷脱氮要求。通过控制系统的污泥龄、流态及回流方式、充氧、配套设备与检测仪表等,实现厌氧、缺氧、好氧三种环境空间或时间上交替变化,达到高效脱氮除磷的目的。
2.2 双污泥脱氮除磷工艺
PASF工艺的流程如图1所示:
该工艺分前后两段,前段采用活性污泥法,主要由厌氧池、缺氧池、短泥龄好氧池、沉淀池等构筑物组成;后段为生物膜法,主要采用曝气生物滤池。污水依次流经活性污泥段和生物膜段。系统回流包括污水回流和污泥回流,污水回流是将部分生物滤池出水回流至缺氧池,以保证脱氮效果;污泥回流则是将沉淀池污泥部分回流到厌氧池,其余富含磷的剩余污泥被排掉。
图1 PASF工艺流程图
结语
污水生物脱氮除磷的目的是将氮、磷从废水中去除,防止引起受纳水体的富营养化,以工程手段从源头控制水体富营养化。从我国目前的实际情况出发,无论是单独的生物脱氮技术、生物除磷技术,还是同时生物脱氮除磷技术,探索简便、节能、高效、技术成熟的生物脱氮除磷技术是目前当务之急,为今后从源头解决水体富营养化问题,提供必要而有效的技术保障。
① PASF工艺解决了聚磷菌、硝化菌泥龄不同的矛盾,具有稳定的处理效果和较高的处理效率,并可减少反应器体积,降低了工程投资。硝化菌呈生物膜固着生长,给生长速率缓慢的硝化菌创造了一个稳定的生活环境,使硝化菌始终处于好氧环境中(传统的活性污泥系统则做不到这一点),增加了系统中的硝化菌量,提高了硝化率,同时也可防止不利条件下的硝化细菌流失,并减少了水力停留时间和反应器体积;而除磷菌悬浮生长在活性污泥系统中,泥龄可根据除磷的需要而选择相对较短值,两者的分开解决了传统硝化菌与除磷菌泥龄之间的矛盾,更利于系统的稳定运行。由于细菌各自处于较好的环境中,故也可减少整个系统的水力停留时间。
② PASF工艺对进水水质具有较强的适应性。传统工艺的回流污泥中存在硝酸盐,会影响厌氧段磷的释放,因此在传统工艺中当系统硝化效果较好时,除磷效果往往较差,这一现象在低BOD/TN和低BOD/TP的情况下尤为明显。PASF采用双污泥系统,使硝化和除磷分开,并可根据进水水质来调节硝化滤池出水回流量(使缺氧段不存在硝酸盐的积累),解决了厌氧段反硝化与除磷菌释磷的矛盾,确保了除磷效果。
参考文献:
[1]卢峰,杨殿海.反硝化除磷工艺的研究开发进展[J].中国给水排水.2003,19(9):32-34.
[2] St M,et a1 ,Ammonium removal from concentrated waster streams with the anaerobic ammonium oxidation (ANAMMOX) process in different configurations [J].Wat.Res.,1997,31(8):1955-1962.
中图分类号:Q81 文章编号:1009-2374(2016)14-0073-02 DOI:10.13535/ki.11-4406/n.2016.14.037
合成生物技术产业的不断更新发展为人类社会所存在的一些较为难以突破的问题寻求到解决的方案,并且起到实质性的作用。合成生物技术产业简而言之就是利用合成生物技术的产业化发展,合成生物技术的发展基础就是基因、细胞这些微小单位,在此基础上进行相应的研究,主要研究方向就是生物产业的设计化、工程化,将基因与计算机编程、网络等相结合,进行各种传感性研究以及细胞编程的定向进化等,其对于社会的进一步发展有较为重要的导向作用。但其发展中的问题层出不穷,对于社会伦理、社会环境而言都是巨大的挑战。我国对于合成生物技术产业发展制定了一套合理科学的战略方针,针对其出现的问题提出了相应的政策进行限制。
1 合成生物学技术
合成生物学技术主要包括生物能源、农业及医药等方面,合成生物学技术的发展可以促进我国生产技术的快速发展。现阶段合成生物学技术在发展过程中存在很多问题,对其快速发展产生了极大的影响。目前,合成生物学技术在发展过程中产生了一套适合其发展的模式,本文主要对以下三个方面进行分析:
1.1 发展合成生物学技术发展的原因
合成生物学技术需要快速发展的原因是为了有效地满足人们的精神及物质需求,就是在社会经济快速发展的现阶段有效地增强人们的寿命及身体健康和对精神的需求有所提高;采用或者引用新技术有效的改善现阶段环境的严重污染。在这样的背景下,合成生物学技术就必须快速发展,成为我国现阶段发展的重要领域,加上人们对动植物及人类本身的研究不断深入,合成生物学技术在研究过程中也在不断提升,使其研究范围也在不断扩大。在研究过程中可以发展各种生物的作用及意义,并且可以有效地发现其生理及生长原理,使合成生物学技术在我国发展过程中发挥着至关重要的作用。
1.2 合成生物学技术产业发展战略的前提
在我国现阶段,合成生物学技术发展的主要目标就是解决其在发展过程中存在的许多问题,其中存在问题的主要原因就是因为合成生物学技术严重影响了现阶段自然进化的绝对性,对生物进化产生了人为的影响。物种出现变异或者其发展方向出现偏差的主要原因就是因为人工生物体及生物实验等的出现,合成生物学技术的出现严重地违背了生命的进化法则及生物的自然生长规律,对目前环境的自然化发展产生了严重的影响。因为人们对自然生长规律进行了过度的改造,就会严重破坏生态平衡,所以必须对自然生长规律的研究方向及研究范围设置一定的方案,并且进行一定的限制,提出适应现阶段社会发展的战略目标。
1.3 我国合成生物学技术发展战略
现阶段,合成生物学技术发展的战略目标制定的基础就是自然繁衍规律、自然生长法则及我国环境的发展详情等情况,对产生制定发展目标的主要原因就是促进该产业的快速发展,使该产业在发展过程中存在的问题得到有效的解决,并具有促进该产业快速发展的作用。我国在发展该产业的过程中应该遵循的主要原则就是尊重自然、尊重科学、尊重资源的有效利用及人类发展规律等原则,在这些原则的制约下可以制定有效的发展战略目标,可以有效地促进我国现阶段能源、农业及工业的快速发展,有效地减少环境的污染,促进合成生物学技术的快速发展。
2 生物功能元件
2.1 生物功能元件的设计、合成和功能表征
众所周知,生命的形态呈现多样性,其可以合成现有的有机化合物为新的生命系统。目前,所谓的遗传信息具有编辑性的特点,为创造新的生命系统提供可靠的保证,合成生物学的基础就是生物功能元件,是一种最小的生物元件,并且具有特定的功能,是氨基酸与核苷酸序列进行不同组合,形成一种复杂的系统。在理论上,任何有机化合物和新种的合成可以通过生物功能组件的设计和组合来实现。另外,使用新核酸及非天然氨基酸的开发,对遗传密码子表进行不断扩张,可以有效地扩大新品种的合成及化合物的使用范围。伴随着现阶段DNA合成技术的商业化及不断发展,基因原件的保真性及质量的不断提高,同时其成本也在不断降低,为合成大量的基因原件提供便利,而且通过使用高通量筛选技术可以有效地加强人员对基因原件的选择。
2.2 生物功能元件的标准化
目前,伴随着合成生物学的快速发展,人们需要对生物学的功能原件进行规划。1996年,Rebatchouk等通过克隆的方式有效地建立了基因元件库,但是当时这项工程并没有引起行业人员的注意。2003年,Kight在麻省理工学院提出了“生物砖”概念。现阶段,许多科研院也在开始使用规范的基因元件库进行生物系统和生物装置的监理。所谓的生物砖就是对生物功能组件的标准化进行不断尝试,简单而言就是单个的积木通过不同的方式进行排列组合,可以组成许多不同结构的形态,通常情况下,生物砖的基础元件主要包括调节序和编码序列,如核糖体结合位点、终止子及启动子。2003年,通过麻省理工学院建立了标准生物元件库,现阶段应该收集了3400多件基因元件有效的应用与组装生物系统和生物装置。这些标准化元件一般都来自于每年参加国际遗传工程机器设计竞赛、科学家个人和学术研究机构等团队。每个单独的元件都有自己的编码,其中还有建造者、使用者、序列及功能等资料,这些资料都是公开的,可以免费使用。
2.3 生物功能元件的组装
合成生物学技术的主要特点就是对基础元件进行重新的排列组合,得到不同的系统及相关的装置,但是因为人们发展研究的限制及生命系统的复杂性,合成生物学技术不能像建筑工程及其他学科的项目一样,对具有特定功能的元件进行排列组合,就可以得到应有的效果及功能,同时需要对各个元件、装置及设备之间进行不断优化及调试;同时最为主要的影响因素还有底盘、装置及元件,而在这个过程中,使用系统生物学分析方法和高通量的测试方法对其进行优化和试配。通过使用计算机辅助动态仿真技术,对构建的模型进行不断的预测,并对其进行优化,这样可以有效地降低模型的测试工作量,有效地加快模型的构建进度,对构建模型的过程中所产生的数据进行重新组合、预测其功能,可以有效地构建出接近自然生物系统的模型,最终得到最佳的施工方案。
3 DNA合成与组装技术
3.1 DNA合成
DNA化学合成的主要成分就是基因合成和寡核苷酸合成。寡核苷酸合成通常情况下是使用固相亚磷酸胺三酯法,原料为核苷酸单体,经过脱保护、偶联、封闭与氧化四个循环反应的过程进而得到的。这种方法通过一定的优化措施,以1/200的错误率最多可以有效地合成200~300nt的寡核苷酸序列。在20世纪90年代初期,促使实现寡核苷酸的高通量合成的主要因素就是芯片技术。但是因为“边缘效应”及“脱嘌呤”现象的出现,对合成序列的正确性产生了一定的影响。由于CustomArray开发的通过半导体电化学酸合成与Agilent开发的通过喷墨打印技术的芯片合成后,有效地改善了出错率,与柱式的合成相当。但是这种方式的单次合成数量是柱式合成数量的100~10000倍,所以可以有效地降低DNA的合成成本。
3.2 不同尺度的DNA组装方法
为了对合成基因序列的可靠性进行控制,通常情况下DNA的合成长度不能超过5kb,而更大尺度的DNA分子可以通过最新的DNA组装方法实现。除了传统的克隆分类的方法,现阶段已经出现了体外DNA组装、聚合、连接或同源重组原理等多种体内的新方法。这些方法被大量使用,促使DNA组装不管是效率还是尺度都得到了快速的
发展。
2008年,Venter研究组有效地完成了580kb生殖道支原体的人工建立,并在2010年实现了人造生命的重头合成方式,有效地促进了现阶段合成生物学的快速发展。在这一发展过程中,除了依靠低成本及高通量的基因合成方法外,主要使用酵母体内拼接及Gibson组装的方法进行开发,通过这种方法,有效地实现多个片段的一次性无痕拼接,其现阶段组装尺度最大为580kb。
综上所述,现阶段,合成生物学技术出现及快速发展与人类认知及自然科学方法息息相关。自然科学方法主要是从细胞、个体、分子到群体等多个方面指导人们对自然的认识,有效地揭示规律、生命及机制,随着人们对自然认知的不断深入,人类的认知不能满足自然的传统描述,所以合成生物学就会逐渐出现。同时,合成生物学是工程实践的前提,是理解和分析自然生命系统的关键,对生物系统、装置的特征进行分析,从而出现简单的生物装置及元件的设计、组成标准化的规律及原则,然后指导人工生命生命系统的设计和施工。另外,属性合成生物学的设计和建设的“自下而上”的正向工程理念和“标准化”“复杂的系统脱钩”和“抽象”的理念,这与传统的生命科学研究存在一定的差异,而且合成生物学家的指导,导致设计和建造的城市标志性建筑的路标。同时组件、系统和寿命设计与施工可以系统地深入和了解生命的本质规律,从而可以有效地指导应用性及工程化的设计及建造,这是合成生物学的一个重要理论。
参考文献
中图分类号:TQ342+.1 文献标志码:A
Latest Technology Developments of Bio-based Polyamide and Its Fiber
Abstract: In recent years, the constantly growing public awareness and interests in bio-based plastics around world has improved the development of several kinds of bio-polymer including polyamide. This article reviewed the development status-quo of global polyamide industry, and gave a detailed introduction on the latest R&D developments of bio-based PA6, Pa66 and long-chain polyamides as well as their down-stream products.
Key words: bio-based polyamide; polyamide fiber; renewable resources; bio-technology
1 全球聚酰胺材料的发展概况
根据统计,聚酰胺(PA)材料的38%用作纤维,46%注塑成型,14%挤压成型,其余深加工制品大约占2%左右。PA纤维(主要包括PA6和PA66)是仅次于聚酯纤维的第二大合成纤维品种。在过去的10年中,全球PA纤维生产呈持续下滑趋势,2010 ― 2012年间西欧地区的PA市场下降了6%,美国下降了9%,2012年全球PA纤维产量维持在400.81万t。
与此同时,中国PA纤维的产能不断拓展。据统计,2005― 2010年期间的年增长率一直保持在17.69%,这在一定程度上缓冲了全球PA及其纤维制品的下跌形势,2012年国内PA纤维产量达到181.46万t,其中长丝纱173.0万t,短纤维8.44万t,设备的运转率视品种不同在70% ~ 83%之间。
全球性经济减速影响下的PA纤维产量的变化,主要对PA长丝纱和短纤维的市场供给产生了较大影响,同时产业用纱的生产亦受到明显波及。期间己内酰胺及其树脂的价格不断上涨,2011年我国进口的己二酸己二胺盐价格上涨了24.22%,己内酰胺价格上扬了31.70%。
PA地毯纱产量下跌明显,年下滑速率达9%,作为地毯重要市场的美国其产量下降了16%,相继关闭了Shaw等多家地毯纱工厂。地毯市场的变化亦与聚酯BCF量化及其替代PA地毯绒头纱的趋势日益明显有关。期间美国的聚酯BCF份额由2002年的1.1%升至目前的30%;欧洲地毯生产亦出现了相似的状况,其出口中东地区的地毯纱受阻,市场持续萧条,需求萎缩,地毯纱产量的下降幅度也超过了10%。同时全球PA短纤维产量下跌了约1/4,作为PA短纤维生产的主要国家之一美国也出现了大幅减产。
2.1 生物基PA66
生物基己二酸(ADA)的制备,可选用葡萄糖为原料,在酶菌的环境下经发酵转化,进而在压力条件下加氢制得。生物基己二酸与己二胺可按常规聚合工艺制得PA66,生物己二酸制造工艺如图 1 所示。
美国Rennovia公司采用空气氧化工艺,即葡萄糖原料在催化条件下氧化得到葡萄糖二酸(glucoric acid),用其做中间体经催化加氢得到己二酸。该公司选用非粮食木质素为原料,第一个商业化的生物基ADA装置产能13.5万t/a,拟于2018年完成生产性运转。Rennovia公司声称可以生产100%的生物基PA材料,也具有将生物基ADA转化为己二腈(AND)技术和生物基己二胺(HMD)的技术,用以生产100%生物基PA66聚合体。
Verdezyne公司合成生物基ADA的研究亦从实验室进入批量生产试验阶段,并在美国加州建设了商业化试验装置。该项技术采用糖类、植物油为原料,通过变性酶工艺对葡萄糖施以发酵处理以制得ADA。该生物基己二酸的商业化装置预计2014 ― 2015年完成。加工成本较传统石油基ADA要低20% ~ 30%(基于原油价格40欧元/桶)。Verdezyne公司生物基己二酸技术的原料选择为非粮食生物质,即使用大豆、椰子油或棕榈油生产中的副产品作原料 。
2.2 生物基PA6
美国Michigen大学研究人员利用葡萄糖发酵技术制得赖氨酸,进而成功合成了生物基己内酰胺,纯度高于99.9%。图 2 为生物基己内酰胺的制备工艺。
YXY技术是利用可再生植物原料经催化脱水、氧化制取2,5-呋喃二羧酸(FDCA),进而催化聚合可得到100%生物基2,5-呋喃二甲酸乙二醇酯,其中的FDCA亦可用于制备生物基PA。Solvay公司使用YXY技术生产出了PA工程塑料,Rhodia公司利用FDCA制得了PA及其纤维,日本帝人公司拟以FDCA为原料开发环境友好型芳香族聚酰胺纤维。
YXY技术的核心是FDCA的合成,其商业化试验中使用的第一代原料是糖类或玉米淀粉,目前在原料的可利用性方面取得了巨大进步,已开始采用非粮食生物质资源。
Avantium公司在规模为 5 t/a和40 t/a的试验设备的基础上,于2012年又建成了1 000 t/a的FDCA试验装置,预计工业化后FDCA工厂的产能在 1 万 ~ 10万t/a之间。
荷兰Utrech大学基于YXY技术的生命周期(LCA)分析认为,和传统石油基产品相比,其CO2排放可降低50% ~70%,且生产链具有原料可再生和产品可回收再利用的优点。目前YXY技术的200 ~ 450 t/a的半生产性设备已在运转中,预计2015年 3 万 ~ 5 万t/a的生产线可投入运营。
2.3 新型生物基PA4及其纤维
PA4是γ-氨基丁酸的线性聚合体(GABA),具有同其他PA材料相似的一系列优越性能,包括非常高的熔点和良好的生物可降解性能。生物基PA4的原料取之于可再生生物质。通常生物质经糖化处理得到葡萄糖,后经过酶处理工艺得到谷氨酸,二氨基戊二酸再经脱羧基反应得到GABA,用作PA4的单体,通常可在室温条件下完成聚合反应。表 2 为生物基PA4同其他聚合物的基本技术特征比较情况。
据测试,生物基PA4纤维的吸湿特性与棉花相近,且纤维的染色性能良好。目前,日本国家工业科学技术研究所(AIST)已在生物基PA4的研究上取得了进展;20世纪70年代中期,我国吉林纺织研究设计院在PA4纺丝成形工艺方面也进行了较为系统的探索性试验,取得了不错的实验室成果。
2.4 生物基长链PA
据统计,目前生物基PA610的市场需求量在2.5万t/a左右,源于天然植物油原料的PA11(Rilsan)已有50年的制造历史,与传统PA6相比其环境友好特征更明显,CO2排放量更低。据了解,Arkema公司的PA12系列(Rilsamid)的聚合生产能力已达到6 000 t/a规模,该公司已在我国江苏常熟合作建设了PA11生产工厂。苏州翰普公司利用可再生原料,开发了生物基长链PA系列,包括PA610、PA1010、PA11等的工程塑料,其生物组分在40% ~ 100%之间。
2007年DuPont(杜邦)公司开发的商品名为“Zytel?”的长链生物基PA即PA1010和PA610使用的癸二酸来源于可再生资源,其中PA1010的100%、PA610的70%组分使用非粮食生物质原料。DSM公司开发的生物基高性能工程塑料“EcoPaxx”即长链PA410聚合物的70%原料取材于蓖麻籽油。
EMS公司开发了商品名为“Grilamid”的生物基PA系列,包括PA1010(生物基组分99%)、PA610(62%)等。该公司开发的生物基长链PA系列聚合物的生命周期分析结果如表 3 所示。
2.4.1 生物基PA11
Arkema公司开发的生物基PA11选用蓖麻籽原料,制得了11-氨基十一酸,经 3 段聚合得到聚11-氨基十一酸。与环氧树脂类产品相比,生物基PA11对环境的危害性可减轻一半,CO2排放量下降40%,其热塑性树脂亦可回收再利用。利用生物基PA11纤维及其树脂可以制得100%的生物基复合材料,密度1.16 ~ 1.22 g/cm3,热分解温度230 ℃。PA11纤维的体积添加量横向(UD)为30% ~ 35%,纵向(MD)为30%,目前已在飞机和运输车辆的部件上使用。
2.4.2 生物基PA610
Rhodia公司开发的生物基PA610,使用了60%的可再生资源,年产量为2.5万t,已大量用作生产单丝或牙刷鬃丝。德国Evonik公司开发了Vestamid生物基PA系列产品,主要包括PA610(HS)、PA610(DS)和PA610(DD)产品。部分产品的技术特征如表 4 所示。
2.4.3 生物基PA56
Ajinomoto公司利用天然植物油制备的氨基酸/赖氨酸,通过赖氨酸脱碳及酶工艺加工得到1,5-戊二胺(1,5-PD),用以合成生物基聚酰胺PA56。我国上海凯赛生物产业公司生物基PA56的研究与开发亦取得了进展,据悉商业化的装置正在实施中。2.4.4 生物基PA69
生产PA69使用的二元酸单体可以通过油酸经化学合成的方法得到。十八烯酸-9(油酸)属单一不饱和脂肪酸,具有十八碳。油酸可以资源丰富的动物或植物油脂为原料,利用动物油脂合成生物基壬二酸的加工工艺如图 3 所示。
油酸在高锰酸钾条件下可氧化制得壬二酸。目前油酸氧化而产生的分子链断裂是在络酸条件下实现的,亦可采用臭氧分解的方法制得壬二酸。生物基壬二酸与二元胺合成PA69的阶式聚合反应与传统PA66有许多相似之处,仅在聚合物黏度和熔融温度上存有差异。目前PA69聚合体已成功用于非织造布网材的加工。
3 生物基PA的成本结构及发展
依据欧洲生物塑料协会的统计数字,2010年欧洲生物基聚合物的产能约72.45万t/a,生物基PA为3.5万t/a,占生物基聚合物产能的5%。预计2015年欧洲生物聚合物材料的产量将达到170.97万t,届时生物基PA的状况与市场份额将如表 5 所示。
3.1 生物基PA的原料资源
在生物基PA的研究开发中,常用的可再生原料资源包括蓖麻油、油酸与亚油酸以及葡萄糖等。如BASF(巴斯夫)公司开发的生物基PA610使用了60%的来源于蓖麻油的癸二酸;杜邦公司开发的生物基长链PA即Zytel-RS系列中,PA1010和PA610两类材料中的生物基癸二酸含量分别为100%和60%,产品具有优良的热性能。
作为重要的可再生原料,蓖麻籽是一种生长迅速的作物,其季度茎高增长速度可达 2 m,并可在贫瘠的土地上栽植,不存在与粮食作物争地的矛盾,每公顷蓖麻的产量可达到10 t左右。据统计,目前全球蓖麻产量约120万t/a,但相关蓖麻籽油的产量仅为植物油产量的1%。此外,其他可用的可再生资源还包括棕树油、椰油、油菜籽等。
Arizona公司利用制浆造纸工业的副产品妥尔油(tall oil)提取不饱和脂肪酸,通过二聚反应形成了脂肪酸二聚体,再经聚合得到了生物基PA。
评估生物基PA产品,其相对于传统石油基PA的加工成本是关键点之一。依据DSM公司的可行性研究报告,随着时间的推移,微生物与低价高得率糖发酵技术的进步和量化,生物基己内酰胺的单体价格可降低至75欧元/kg,较之于21世纪初期的成本下降了50%。而当装置规模达10万t/a以上时,则无需像传统石油基PA生产那样再为“三废”治理支付费用。
当今市场中,生物基PA的价格主要为:PA11在9.82 ~11.30欧元/kg之间,PA610在4.32 ~ 4.73欧元/kg之间,比石油基PA6/PA66的平均价格(2.1 ~ 2.4欧元/kg)要高。而如从基本原料考量,生物质原料价格较具优势,如葡萄糖原料价格在300美元/t,石油基环己烷则高达1 250美元/t(2012年市场水平)。
3.2 生物基PA纤维的开发与应用
Rhodia公司研究中心与Fulgar公司合作,将商品名为“Emana”的生物基PA66纤维供给欧洲纺织品市场。据介绍,由该纤维制得的服装面料可通过织物与人皮肤间的作用,明显改善人体血液微循环和细胞组织代谢的状况。来自2013年Dornbirn-MFC(多恩比恩人造纤维大会)的信息显示,未来 7 ~ 8 年全球生物基PA66纤维的产量有望达到102万t/a。另外Radici公司生产的生物基PA6短纤维也已在针刺非织造布产品上使用。
美国Invista(英威达)公司开发的环境友好型PA地毯纱采用三组分混合技术(Trublend),即将PA66和回收再利用的PA66,以及5%的生物基PA11混合制得地毯绒头纱,已批量投放市场。该产品的生命周期分析显示,其CO2排放量减少了21%。
日本尤尼契卡公司使用Arkema公司的生物基PA11成功制得了纺织用纤维,纤维难燃性好,符合FAR25853的要求,LOI指数达35,燃烧时无烟、无有毒气体释放,主要用于高端服装面料和运动服装;Greenfil公司使用Arkema公司的生物基PA11纺制的长丝袜,耐用性比常规尼龙袜要高 5 ~ 10倍,但售价要高 2 ~ 3 倍。
昆士兰大学(澳)使用蓖麻籽为原料制得PA11纤维,用作增强复合材料的增强相,其短切纤维长度为 3 ~ 7 mm,单纤直径在10 ~ 35 μm之间。工业用丝束纤维长度在150 ~500 mm之间,单纤直径为15 ~ 25 μm,伸长率低于30%。
依据法国纺织与服装研究所(IFTH)的研究试验结果,PA11纤维及其织物有许多特点,包括较高的耐磨性、良好的耐氯性能、非常低的霉菌繁殖速率和速干性等。IFTH将PA11长丝织物与PA6、PLA、棉和再生纤维素纤维(Modal)产品进行对比,结果显示,前者的霉菌繁殖速率几乎近于零(依据ISO20743),且洗涤干燥速度明显优于传统细旦PA66织物。
日本帝人公司利用YXY技术开发的生物基芳香族聚酰胺产品,赋予了芳香族聚酰胺纤维更高的附加值,目前该项目的实验室研究阶段已经完成。该公司在开发生物基对位芳香族聚酰胺Twaron的过程中,利用非粮生物质原料制备了生物基Twaron单体,用以替代石油基单体。该芳香族聚酰胺产业链的环境友好分析显示,可降低14%的碳足迹。预计到2016年生物基Twaron的生产工艺过程的碳排放将减少8%,单体制备成本可降低4%。
日本东丽公司利用1,5-戊二胺原料制得的PA56纤维在手感、强力和耐热性方面与石油基PA纤维相似,而吸湿性则与棉纤维接近;德国巴斯夫公司开发的生物基PA610单丝目前已用于纸机长网、工业用鬃丝产品。
此外,我国的北京服装学院最近也成功开发了一项生物基PA纤维的制备方法;中国台北纺织研究所在生物基PA纤维的研究中,使用64%的PA610组分制得了PA中空纤维,纤维的中空度为20.2%,密度为0.86 g/cm3,纤维的断裂强力为5.5 g/D,伸长率为28%,该纤维适宜用于织制轻薄织物如风衣等。
3.3 关于生物基PA技术进步的思考
随着生物技术的不断进步以及生物聚合物材料在常规和高性能产品领域的日益拓展,业界普遍认为,生物基聚合材料替代常规石油基聚合物比以往任何时候都更加接近于人们的期望。换言之,持续发展的生物技术与生物基聚合物将会不断进入更多新的应用领域,依赖石油资源的传统制造业将面临生物技术的挑战,生物加工工艺将会更多地替代某些制造业的化学合成过程。
和其他生物基聚合物一样,生物基PA的生产技术也面临着诸多不确定性,比如生物质原料管理、生物聚合物的性能和产品成本等,此外生物基单体及其聚合生产装置的经济性和规模亦是重要的制约因素。具体来说,面临的挑战包括生物质原料资源与供给;生物基聚合物的技术途径,是否可达到现有石油基聚合物加工工艺的生产效率;新型微生物与酶制剂;生物聚合物及其制品的回收利用技术途径等。
目前,生物基聚合物占世界塑料市场的份额不足1%,但生物技术吸引了全球诸如杜邦、巴斯夫、Evonik、DSM等国际著名企业的浓厚兴趣,它们争相投入了巨大的人力和财力,并取得了长足的进步。目前在数十种已商业化使用的PA材料中,取之于可再生资源的生物基PA系列产品,包括PA6、PA66、PA69、PA11、PA610、PA1010及其制品的研究与开发均已相继展开。美国Rennovia公司基于全球葡萄糖类原料的供给现状以及通过化学催化技术制备生物基己二胺及己二酸技术的商业化现实判断,2022年全球生物基PA66纤维产量将突破100万t大关。
生物发酵技术和我们的日常生活紧密相关,生活中随处可见发酵技术,如味精、啤酒、洗涤剂等。随着生物技术的快速发展,为人类利用与改造生命活动提供了更多的新手段,为解决资源与安全、粮食安全、能源安全等问题提供了新的选择。近年来,生化工业进入蓬勃发展时期,这使得药物生产、污水处理、酶制剂等行业也取得了较快发展,进而又对发酵工业的发展产生影响,如生化工程在线检测、监督检测、自动化控制等问题,是当前发酵工程必须面临的问题。以下主要对生物发酵过程的相关事项进行分析。
1 生物发酵工程概述
生物发酵工程的概念较多,现代意义上关于生物发酵工程的理解为:在合适的pH酸碱度值、阳光照射度、培养基等条件上,利用微生物的一些特点,并借助一些现代工程技术对微生物进行生产,从而培育出一些能够满足人类进行生产活动的物质,或是将微生物用于现代工业生产的一种技术体系[1]。
现阶段,微生物发酵工程面临的一大问题是自动化控制问题。为了顺利解决该难题,首先应对微生物的不同特点有充足的了解。在科学技术快速发展的背景下,人们了解微生物的方式已经发生了改变,已经由原来的借助微生物形态进行表面认识,转变为对复杂生物学与细胞调节等方面。然而,微生物细胞较复杂,这使得生物发酵工程也变成了一类重复性差、高度非线性、慢性变、复杂的生化过程。因此,在研究过程中,不可仅从表面对生物发酵过程进行分析,而根据检测得到的过程参数对生化发酵过程进行详细分析。一般来说,检测的过程参数主要包括物理参数、生物参数与化学参数这几类。
2 发酵过程在线检测的重要指标
生物发酵过程的在线检测,往往涉及一些重要指标,常见的主要包括以下这几个重要指标:温度,可用于判断微生物维持生长时间,多采用PT100方法测试;空气流量,用于排泄废气或供氧,采用涡街流量计测试;罐压,用于增加DO或维持正压,使用数显压力表测试;pH,用于范颖细胞的代谢途径,使用pH电极测试;体积,用于反映操作的稳定性,使用差压变送器测试;溶氧,用于反映供氧情况,使用溶氧电极测试[2]。
在对发酵过程进行在线检测时,一般是用专门的传感器放到发酵系统中,然后传递出发酵的相关信息,为开展发酵控制工作提供有用的依据。因为微生物培养过程属于一个纯培养的过程,要求有很好的无菌环境,故要求传感器应满足以下几种情况:(1)如果是插入罐内的传感器,应具备经受高压蒸汽灭菌的能力;(2)具有稳定的性能,受气泡的影响较小;(3)结构不可有灭菌不透的死角,以免被细菌污染;(4)在测量参数方面,应具有较高的敏感性,且可转换为电信号。
3 生物发酵过程的在线检测与控制技术进展分析
微生物发酵过程属于一种生化反应过程,主要是为了促进最终产物利用率的提升,确保微生物生长环境的舒适度。在舒适、适宜的环境中,有利于微生物进行有效的生长代谢,并能实现对微生物发酵过程的在线检测与控制,从而提升微生物发酵产品的利用率,发挥其最大作用[3]。具体来说,主要包括以下几个方面。
(1)电机搅拌热、冷却水温度、微生物发酵热等因素,均可能影响发酵的温度。此外,发酵罐体积大小,也会在一定程度上影响发酵温度的控制。如果发酵罐的体积较大,往往会采用冷却水或发酵温度为主回路的串级控制方式;如果是体积较小的发酵罐,多采用冷却水流量、发酵温度为主的简单回路控制方式。
(2)在微生物发酵过程中,生物发酵也会受溶解氧浓度的控制情况影响。然而,现阶段国内对该方面的研究较少,仅限于了解到哪些因素会对溶解氧浓度产生影响。目前,影响溶解氧浓度的因素主要有:供给的空气量、发酵罐本身的压力、搅拌桨的转速及形状。
(3)在微生物发酵过程,pH酸碱度值也是影响在线检测与控制的一个重要因素[4]。若pH酸碱度值过高或过低,微生物的生成及代谢过程都会发生变化,故必须保证酸碱度值得合适。若发酵液的酸碱度为强酸性,可通过加氧水的方法弱化其酸性;若发酵液浓度为强碱性,可通过加糖的方式弱化其碱性,调节发酵液的酸碱度,直至合适。
(4)消泡控制也是影响生物发酵工程的一个重要因素。发酵前,微生物的生长往往较旺盛,而此时若加满液料,并将搅拌桨马达最大速度启动,空气通入量也加到最大,很容易导致发酵液上浮的现象,最终发生逃液现象。若发生该类情况,一般会采用双位式控制方法进行处理,可取得较好的效果。
(5)在生物发酵过程中,补料控制也是影响发酵的一个重要因素。在发酵的进行状态中,微生物生成代谢也会在半连续式发酵过程的变化情况下发生相应的改变。所以,在这过程中,应该连续不断地为生物补充营养成分,保证微生物能够按优生物轨迹生长,才能促进微生物代谢产物产量的提升。
4 发酵过程中对参数进行在线检测的意义
在生物发酵过程进行检测与控制,最终目的是用最少的原料,获得最大化的所需产物。在生物的发酵过程中,在线检测与控制技术的水平如何,不但会对菌种的最大生产能力产生直接影响,还会对下游处理难易程度也产生影响,是一项承上启下的技术。
不同于物理、化学反应,生物过程反应速度相对较慢,反应物质、产物浓度等的转化率也不高。若要解决上述问题,工业微生物学通常是从两个方面入手:(1)正确选育或改良菌种,提高发酵菌种的优良性;(2)对培养条件进行合理控制,为生产出更好的目标产物创造条件。从某种程度上看,通过控制与优化发酵过程,能够将生物过程较好地控制在一种优化的操作环境或条件下,被认为是促进生产力提升的有效措施或捷径之一,具有非常重要的意义。因此,在发酵过程中,相关人员必须重视对发酵过程的线检测与控制,力将发酵环境或操作条件控制在一个较理想的状态下,为进一步提升生产水平提供强大的技术支持。
5 结束语
总而言之,生物发酵工程是一个复杂、技术要求高的反应过程,与我们日常生活息息相关。在生物发酵过程中,会受多种因素影响,进而影响到产品的质量及使用率,无法发挥产品的最大作用。因此,对在生物发酵过程中,采用在线检测与控制技术进一步提升微生物的代谢产物产量具有积极的意义。
参考文献
[1]邓昕.浅谈发酵过程参数的在线监测及自动控制[J].江西化工,2014(3):186-187.
1膜分离技术的发展现状以及其在分离技术中的地位
1.1膜分离技术的简介
膜分离技术是指借助膜的选择渗透作用,在外界能量或化学位差的推动作用下对混合物中溶质和溶剂进行分离,分级, 提纯和富集。根据膜材质和孔径大小的不同,我们可以将膜分离技术分为一般微滤(MF),超滤(UF),反渗透(RO),纳滤(NF)等等。
膜分离技术自从20 世纪60年代被用于工业生产以来,经历了膜材质从大孔径到小孔径,推动力从重力场到多种电化学作用共同作用的发展模式。自从上世纪90年到之后TFC膜(低压聚酰胺复合膜)的成功研制之后,膜分离技术在现代化工和生物工程的各个方面都得到了广泛的应用。
1.2膜分离技术的独特优势
而在这些现代分离技术中,膜分离技术的基本原理是利用高分子薄膜的选择透过性为分离的基本原理,以压力差,电势差,电渗差等为动力,以达到物质在薄膜间的传质而达到分离的目的。因此在经历了:微孔过滤,渗析,电渗析,反渗透,超滤,气体分离,渗透气化等发展过程后[1],现代膜分离技术具有反应条件要求低(常温下即可发生);是一个物理过程,不发生化学变化所以损耗较小;膜分离过程中多以压力差为动力(渗透压也包括在内);膜的性质稳定的情况下膜分离系统可以有极大的分离范围;膜分离过程的研究比较透彻,分离的流程控制比较容易控制从而得到更高纯度的分离产物[2]。这些优点都使得它在实际运用中都具有很高的价值,而被广泛使用在工业和科研中。
1.3膜分离技术与生命科学的结合
近些年来生物领域飞速发展,一系列系统理论的建立使得生物科学向更精细更严谨的方向发展,人们对于生物制品需求扩大的同时对其的安全性可靠性的要求也越来越高。尤其是分子生物学的建立使得生命科学的范畴更加靠近生命的本质。而随着分子生物学的发展,它对与物质的分离与鉴定的要求也越来越高,传统的分离手段已经无法满足,但膜分离技术等为代表的现代分离技术(其特点前文已述)却很好的迎合了他的需求,因此被广泛的运用于科研与实际生产过程中。
2现代膜分离技术的基本过程与原理详细
2.1膜分离技术的基本原理以及其分类
以压力差为推动力的液体膜分离过程通常可根据分离对象的大小和膜的不同分为微滤(MF)、超滤(UF)、纳滤(NF)和反渗透(RO)。根据待分离样品的性质以及分离所选用薄膜的性质尤其是薄膜的孔径的大小还有分离纯度,分离时间,分离速率等方面的要求可以有针对性的选取合适的分离方法,以达到分离预期结果[3]。
2.2膜分离技术的不同操作模式
膜分离技术原理简单,因此它的工艺流程也便于标准化。由于待分离物质中我们想要的目的产物的分子量各有不同,我们的目标产物最终出现的位置也不同:小分子物质一般会通过薄膜最终在滤过液中富集。而大分子物质会在膜的另一侧由于无法滤过被截留在浓缩液中。为了使膜分离过程中的损耗尽可能的小,时间尽可能的短,我们会在料液中添加渗滤溶剂,它可以和小分子组分互相作用和小分子物质一同穿过薄膜从而加速小分子物质过膜速率,使大分子与小分子物质的分离加速,从而解决了高浓度的溶液过膜速率过慢的问题。收集浓缩液得到其中被截留的大分子称为浓缩。与此不同,利用渗滤溶剂进行的膜分离过程称为渗滤。
在实际工作中二者往往搭配使用,操作过程由预浓缩、恒容渗滤和后浓缩三个阶段组成:利用浓缩模式使料液的浓度上升,在过膜速率出现了明显下降的时候转化为渗滤模式,从而达到克服高浓度料液透过速率低,减少浓差极化与膜污染的目的,加快分离速率以免影响物质活性的目的。有时为使纯度达到要求还可以采用多级分离的方法从而使物质分离的更加彻底。
在选择具体的膜分离方式时,我们要考虑的因素有:与上下操作间的衔接,对于膜使用寿命的影响,分离效果的好坏等等。
2.3膜分离的计算模型以及效果衡量
膜分离的传质原理有两个主流理论:双模理论和溶质穿透理论。
双模理论认为,气液界面间存在的气膜和液膜集中了主要的传质阻力,溶质分子在这两个膜层内梯度扩散,按照Fick第一定律进行计算。
其中,J为扩散速率,D为扩散系数,dC/dX为浓度梯度。
溶质穿透理论认为,气液两相在接触前都是均一的,接触后开始互相扩散。靠近界面处溶质浓度大。在一定时间后,液体达到均一饱和状态,此时两相处于动态平衡状态。可以按照Fick第二定率计算。
其中C为浓度,t为时间,D为传质系数,x为离界面的间距。其中D与浓度无关,否则要修正为:
衡量膜的好坏时主要看膜的分离性能与透过性能,主要是指截留率,分离系数,浓差极化,压密,膜污染速率等系数。但是在工艺上来说膜分离效果的衡量主要包括两个主要参数:分离时间与分离效果(主要用小分子去除效果来衡量)。
2.3.1分离效果,以小分子去除效果为例:
公式右端是大分子物质浓度除以小分子物质浓度,可以用来表示小分子物质的去除效果。
公式左端表示的过程是料液稀释后,再浓缩至原体积,重复n次。S1与S2分别表示经过膜前后溶液中小分子物质的浓度。
3膜分离技术在生物科技领域使用的具体实例
3.1膜分离技术在小分子有机物分离过程中的应用
常常使用膜分离技术进行分离的小分子物质包括:多肽,氨基酸,抗生素,乳酸,低聚糖等。此处以氨基酸为例进行分析。
氨基酸的膜分离:由于氨基酸本身是两性物质,有自己的等电点,因此我们在分离氨基酸时往往还会调节料液的PH值,而且大多采用纳滤膜以利用纳滤膜的带电性质以达到最大分离截留效果[4]。对氨基酸分离用纳滤膜分为高分子复合膜和无机陶瓷膜,其分离性能与氨基酸混合体系和操作条件有。关有人用ZrO2膜表面接枝交联PEI的有机-无机复合纳滤膜(膜的等电点为1018),进行了9种氨基酸(其中酸性2种,碱性3种,中性4种)混合物的膜分离实验。在pH=2时,带正电的碱性氨基酸被膜截留(透过率小于25%),而中性和酸性氨基酸的膜透过率大于85%;在pH=12时,带负电的酸性氨基酸被膜截留(透过率小于30%),而中性和碱性氨基酸的膜透过率大于80%,由此可以看出通过改变膜电性与料液的PH值可以分离大多数的氨基酸[5]。
3. 2膜分离技术在蛋白质分离中的应用
蛋白质是一类以复杂的混合物形式存在的生物大分子,传统的蛋白质分离方法主要有萃取法、沉淀法等,这些工艺往往操作繁杂、耗时长、蛋白质易变质,且产品的回收率低、二次污染严重。膜分离技术则可以很好地克服传统蛋白质分离技术的缺点,有效改善产品质量,还可以大大提高蛋白质的回收率,实现蛋白质的分离和纯化。一般蛋白质的膜分离会用两张膜:一个膜孔较小,能使需要的蛋白质全部截住,而让小的蛋白质透出,然后再将截留在第一张膜内的蛋白质转移到孔径较大的膜内,截住较大的蛋白质使所需的蛋白质流过微孔透出,这样使蛋白质得到了提纯,如果还有杂蛋白还可以再接着进行类似流程。比如说美国农业部利用膜技术分离精制了霍霍巴榨油后残渣中的蛋白质、纤维素等成分,分离后各组分分别作为动物饲料及调节剂;还有Muller等采用 ZrO2/Al2O3无机超滤膜从酸性酪蛋白乳清中分离α-乳清蛋白,显著提高了α-乳清蛋白的纯度和产量[6]。
3. 3膜分离技术与膜生物反应器
膜生物反应器是一种近些年来膜技术与生物技术结合研究应用于生产的热门方向,主要是将微生物与膜结合控制料液在膜中的流动利用微生物的各类生化作用来起到去除料液中某些杂质而且可以得到并分离产物的目的。现阶段主要运用于污水高效处理,已经有部分进入工厂使用。这里选择性介绍无泡曝气膜生物反应器与萃取膜生物反应器[7]。
3.3.1无泡曝气膜生物反应器。
生物反应器在作用中由于大量污泥(就是大量具有强分解作用的微生物的载体)的存在其过大的需氧量一直是限制其应用的主要原因。而无泡膜生物反应器能很好地解决这一问题。它一般采用的是中空纤维膜,膜的一端封住,空气或O2在膜的内腔里流动,在浓差作用下向膜外侧的活性污泥传递。气体进入污水中不产生气泡,而且氧的传递效率高达100%,可以满足各种微生物生化反应的需氧要求。
3.3.2萃取膜生物反应器。
当废水中含有对微生物有毒害作用的成分(很高浓度的盐、很大的酸碱度或者是生物难降解的有毒有机物等)时,直接用生化法是不适宜的。
而萃取膜生物反应器能很好处理这些废水。萃取膜生物反应器中,污泥与废水并不直接接触,废水在膜腔内流动,而活性污泥则在膜外流动。活性污泥中的微生物一般是针对废水培养出来的专性细菌。采用的膜一般是疏水性的硅橡胶膜,且有选择透过性,能允许挥发性有机物透过而水及无机成分则无法透过。首先污染物在膜中溶解扩散,再以气态形式离开膜进入膜另侧的混合液中,在混合液中由专性菌分解成CO2、H2O等无机小分子[8]。
3.4膜分离技术在医药有效成分提取中的应用
3.5膜分离技术在酿酒中的应用
白酒酿造过程中,如果使用传统固态发酵方法,不可避免的会产生甲醇,油性脂肪酸,醇油等杂质,它们会影响产品口感,外观,其中甲醇对人体有极大危害。因此这些物质的分离会对白酒品质产生极大影响。
有人研究发现,超滤和微滤是有效的分离此类杂质的手段。在低酒精度下进行膜分离,可以有效的延长产品的保质期,改善口感,却对其其他理化指标并不产生太大的不良影响(总酸总酯会有所下降)。对于清香型白酒,一般稀释到28到30度之间过非对称的活性炭吸附膜,之后再于低温下保存(18摄氏度),可以有效避免失光,浑浊等现象,同时降低苦味辛辣味,和蒸馏产生的蒸煮味。
除此之外,在啤酒的发酵过程中由于采用了代谢控制发酵的方法,往往会有较高的残糖,而使用反渗透过滤之后,也将将有效降低残糖,达到改良口感的效果。
3.6其他
膜分离技术还广泛的运用于其他产业:高品质饮用水的过滤,发酵废液的再利用。
4总结
膜分离技术从产生到现在已获得巨大的成功,但仍属于一门发展中的年轻综合性学科。理论和应用上都有大量的问题有待解决。比如说:膜寿命过短,易污染;料液粘度大,往往流动性较差;料液固体含量高,膜通量衰减快;膜类型不足,工艺经验不足等等 [3]。
总的来说膜分离技术与生物技术的结合无疑是成功的而且还是潜力巨大的,可以想象在解决了这些问题后这项技术的前景将会多么诱人。
【参考文献】
[1]吕慧,温哲.膜分离技术的发展状况及工业应用[J].科技传播,2010(15):185+191.
[2]李继香.膜分离技术在生物化工领域的应用[J].上海化工,2012(3):28-30.
[3] 王华, 刘艳飞, 彭东明. 膜分离技术研究进展及应用展望[J]. 应用化工, 2013, 42(3):532-534.
[4]姚红娟,王晓琳.膜分离技术在低分子量生物产品分离纯化中的应用[J].化工进展,2003(2):43-49.
[5]岳志新,马东祝,赵丽娜,等.膜分离技术的应用及发展趋势[J].云南地理环境研究,2006(5):54-59.
生物药物是指利用微生物学、化学、生物化学、生物技术、药学等科学的原理和方法制造的一类用于预防、治疗和诊断疾病的药品。
1. 过滤
过滤分为表面过滤和深层过滤,两者的作用机理不同。
表面过滤表面过滤是通过滤材表面对颗粒的捕捉来实现过滤功能,那么就需要统一的布置上下滤材的孔径。其中,滤网、薄膜等是非常有代表性的表面滤材。结合表面过滤理论我们可以得知,过滤介质在对流体中的固体颗粒杂质进行拦截时,依靠的主要是孔径的大小,这样滤材的表面就会停留以及堆积一些料液中的悬浮杂质颗粒[1,2]。
深层过滤一般来说,都是由纤维构成滤材,过滤介质空隙形成的通道往往都十分的曲折和细长,介质内部的空隙要大于被过滤的度上
杂质颗粒,这样滤材就会在纵向深度中捕捉颗粒。要知道,并不是在
介质的外表面发生过滤作用,而是在介质的全部空隙体内发生。在
热运动和流体的动力作用下,通道壁面会流一些料液中的细小杂质颗粒,静电吸附以及表面张力会截留这些杂质颗粒[3-5]。近些年来,随着膜技术的不断发展,目前很多的企业和研究机构都研究出来了高性能过滤膜,这种过滤膜具有很强的深层过滤性能。
2.深层过滤的应用
在生物制药工艺中,企业对于过滤介质的精度有着十分高的要求,那么为了提高过滤产品的精度,过滤产品供应商为了获得较小的孔径,往往采用的方式是增加滤材的密度[6-9]。但是,采用这种方式存在着一些弊端,如果过滤介质有着较高的密度,在过滤过程中,过滤介质就会有较大的压差,降低流速,这样过滤性能就会受到影响,如果介质没有很高的强度,还会出现一些其他的现象,比如滤材击穿等,这样就无法保证下游流体的质量。
基因重组和单克隆抗体是现代生物制药的两大成就,依赖它们,已获得一些用传统方法不能获得的、优良的诊断和治疗疾病的药物,比如胰岛素、生长激素、干扰素、疫苗等。从重组微生物或动物细胞培养液中提取药物比传统产品困难得多,首先在培养液中有效成分的含量很低,但杂质含量却很高。因此,深层过滤去除杂质、内毒素显得尤为重要,深层过滤能够有效去除杂质,提高有效成分含量[10]。
随着膜质量的改进和膜装置性能的改善,在生物制药中下游加工的各个阶段,将会越来越多地使用深层过滤技术。例如,单抗药物开发过程中,利用微滤进行发酵液的初步过滤,利用分离层析去除特定杂质,利用超滤去除蛋白质杂质和色素,利用反渗透进行浓缩,利用色谱进行分离纯化,最终制得成品,成品纯度达到97%以上。
下面以超滤为例,说明深层过滤在生物制药生产中应用的进展情况。
膜分离过程是根据被分离物质的大小来进行的,超滤是最常用的膜分离过程,它借助于超滤膜对溶质在分子水平上进行物理筛分。在工业规模的生产中,膜过滤装置由膜组件构成,密度可达每立方米数百到上万平方米。为了满足不同的生产能力的要求,可使用几个甚至几十个膜组件。膜组件大致有四种形式,分别为管式、中空纤维式、螺旋卷绕式和平板式,不同的形式适合制备不同的产品[11]。
超滤技术具有以下几点优越性:
(1)操作过程不需要热处理,故对热敏感物质是安全的,特别是生物药物。
(2)没有相变化,能耗低。
(3)浓缩和纯化可以同时完成。
(4)分离过程不需要加入化学试剂。
(5)设备和工艺较其他分离纯化方法简单,且生产效果高。
生物药物都是大分子药物,例如酶的分子量在20000-200000之间,因此可以使用MWC10000的膜进行浓缩和去除低分子量的杂质,收率可达到95%以上。
超滤可用于蛋白质物质的浓缩和精制,多糖类物质的精制等。
下面介绍膜色谱分离生物大分子纯化的应用实例:
(1)血浆制品的分离 使用CM250型弱阳离子交换色谱对人血浆进行分离,人血浆中的几种主要蛋白质全部得到分离,蛋白质的总回收率达90%以上。
(2)单克隆抗体的纯化 使用CM250型径向弱阳离子交换柱,成功地纯化了阿达木单克隆抗体。
(3)IGase酶的分离纯化 IGase酶具有治疗口腔疾病功能的一种酶,利用DEAE型径向膜色谱柱进行分离纯化,纯化过程的定性定量及条件优化乃至工业放大生产都非常方便、实用。
(4)人尿激肽释放酶的分离纯化 组织激肽释放酶在生理上具有维持局部血压,稳定血液畅通,参与水和电解质平衡的调节作用,现在国外正用此酶进行高血压基因疗法的研究。由于QAE离子交换色谱技术的应用,省去了盐析和高速冷冻离心步骤,大大节省了时间,证明径向离子交换色谱柱不仅具有分离纯化的功能,同时还具有浓缩的能力[12]。
高效分析膜色谱是对生物活性大分子进行快速成分分析和定量的一种可行的方法,利用这种方法采用不同配基,可在不同条件下对各种生物活性大分子进行定量分析及样品制备,具有速度快、易于定量、非特异性吸附低、柱压低、成本低以及柱体积小等优点。这种分析生物大分子的方法有着极好的应用前景。美国Millipore公司20世纪90年代初期推出了可与高效液相色谱仪器配套使用的分析型离子交换膜色谱柱,主要用于生物大分子的快速分离分析。
生物药物制备工艺中,不同分子量的物质的分离纯化往往使用不同的深层过滤技术。例如,蛋白质分子的形状各异,有细长如纤维状、有些则密实如球形,分子量则从6KD左右至几千KD不等,利用这些差别采用凝胶柱和超滤进行分离;又如,组成蛋白质的某些氨基酸残基侧链基团含有各种可解离的基团,如谷氨酸和天冬氨酸含有羧基,赖氨酸含有氨基,组氨酸含有咪唑基,精氨酸含有胍基酪氨酸含有酚基,色氨酸含有吲哚基等,这些基团数量和分布各异,使得不同的蛋白质表面的带电情况不尽相同,因此可以采用离子交换柱进行深层过滤纯化;又如,利用蛋白质是专一生物功能的物质,通过与其他生物大分子或小分子物质相互结合而发挥功能,可以使用亲和层析进行深层过滤与纯化;又如,利用蛋白质的疏水性不同,疏水相互作用色谱柱进行分离纯化[13]。
3.展望
目前看,膜分离过程可与亲和配基集合,形成了亲和膜分离过程,离心分离与膜分离过程相结合,形成了膜离心分离过程等。这类技术,具有选择性好、分离效率高、节约能耗等特点,是今后深层过滤发展方向。
参考文献
[1] 王艳丽.深层过滤技术在生物制药工艺中的应用分析.生物技术世界.94.
[2] 蔡琳琳. 深层过滤技术在生物制药工艺中的应用研究[J]. 决策与信息旬刊, 2015(20):167-167.
[3] 何庆. 深层次过滤技术在生物制药工艺中的运用探析[J]. 临床医药文献电子杂志, 2016(4).
[4] 刘兴宝. 微孔精密过滤技术在脑心舒口服液等药液过滤上的应用[J]. 生物技术世界, 2015(10):265-265.
[5] 习小山. 一种生物制药的加压过滤系统:, CN204261446U[P]. 2015.
[6] 侯立安. 纳滤膜技术净化制药用水的应用研究进展[C]// 全国医药行业膜分离技术应用研讨会. 2012.
[7] 蓝伟光, 方富林, 谢全灵. 膜分离技术在制药工业中的应用[C]// 2004全国医药行业膜技术应用研讨会. 2004.
[8] 杨栋. 生物制药中膜分离技术的主要应用[J]. 黑龙江科技信息, 2015(33).
[9] 王静宏. 在生物制药工业中柱式过滤器与圆盘式过滤器经济适用性的比较[J]. 工业技术经济, 2004, 23(4):112-112.
[10] 徐作武, 吕赛莲. 膜分离技术在制药工业中的应用[J]. 生物技术世界, 2013(10):82-82.
重金属一般指密度在4.5g/cm3以上的45种元素。常见的对土壤造成污染的重金属包括锌、铜、铬、镍、铅、镉、汞等元素,它们不仅导致土壤退化、农作物产量和品质下降,还会通过径流和淋洗作用污染地表水和地下水,并通过直接接触、食物链等途径危及人类的生命和健康。据不完全调查,目前全国受污染的耕地约0.1亿ha,占全国耕地的1/10以上;而在土壤污染中,受镉、砷、铬、铅等重金属污染的耕地面积近2000万ha,约占总耕地面积的1/5,其中工业“三废”污染耕地1000万ha,污水灌溉农田面积达330多万ha,据估算,全国每年因重金属污染而减产粮食1000多万吨,造成的直接经济损失超过200亿元。
2.土壤重金属污染的生物修复技术
2. 1 植物修复 植物修复是一种利用自然生长植物或遗传培育植物修复重金属污染土壤的技术总称,采用植物对重金属的忍耐和超量积累能力并结合共生的微生物体系来实现对重金属污染环境的修复。植物修复技术主要是包括了植物萃取技术;根际过滤技术;植物稳定技术;植物挥发技术。植物萃取是利用重金属积累植物或超积累植物将土壤中的重金属萃取出来,富集并运送到植物根部的可收割部分或植物的地上枝条部位;根际过滤是利用重金属超积累植物或耐重金属植物从污水中吸收、沉淀和富集重金属;植物稳定是利用耐重金属植物或重金属超积累植物降低重金属的活性,从而减少重金属被浸淋到地下水或通过空气载体扩散进一步污染环境的可能性;植物挥发是指利用植物把土壤中的重金属转化为气体排出土壤,然后在集中起来处理。利用植物修复技术修复土壤重金属的焦点主要集中在对超富集植物的研究,超富集植物是指能超量吸收重金属并将其运移到地上部分的植物。
2. 2 微生物修复 微生物可以降低土壤中重金属的毒性,吸附积累重金属,改变根际微环境,从而提高植物对重金属的吸收,挥发或固定效率。如硫酸还原菌、蓝细菌、动胶菌及一些藻类,它们能够产生胞外聚合物,这些胞外聚合物能与重金属离子形成络合物。微生物重金属修复的机理包括表面生物大分子吸收转运、细胞代谢、空泡吞饮、生物吸附和氧化还原反应等。利用微生物(包括细菌、藻类和酵母等)来减轻或消除重金属污染,国内外已有许多报道。相关研究表明微生物可使还原态重金属氧化,如无色杆菌、假单胞菌能使亚砷酸盐氧化为砷酸盐,从而降低砷的转移和毒性。菌根真菌能极大地提高铜在玉米根系中的浓度和吸收量,而玉米地上部分的铜浓度和吸收量变化不显著,这表明丛枝菌根有助于消减铜由玉米根系向地上部分的运输。许友泽等研究表明未灭菌土壤中土著微生物对Cr(Ⅵ)进行了修复,使溶出的Cr(Ⅵ)明显减少。通过7天的淋溶,培养基中未检测到Cr(Ⅵ)的存在,即铬污染土壤中Cr(Ⅵ)在7天内基本得到完全修复。但目前,大部分微生物修复技术还局限在科研和实验室水平,实例研究还不多,无法大面积推广,对于微修复技术还需做更深入探索。