时间:2023-12-27 10:28:41
引言:寻求写作上的突破?我们特意为您精选了4篇计算机视觉技术原理范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
中图分类号:TP391.41
受到CIMS的推动和影响,诸多企业的发展趋势逐步趋向于个性化以及自动化,这种大的发展趋势间接的对我国的计算机辅助技术提出了更高的要求,计算机相关技术的发展面临着更加严峻的挑战。就现阶段分析来看,计算机辅助检测技术在现代诸多企业中得到了广泛的应用。随着柔性制造系统的不断进步与发展,驱动图像处理软件、现场总线技术的日趋成熟,检测系统的灵敏性、智能化特点愈发受到人们的关注,在这种大的发展趋势之下,计算机视觉检测技术得到了较快的发展。基于计算机视觉系统现已经广泛应用于现场监控、工况监视等诸多环境之中。
1 关于对视觉技术的相关研究
1.1 基于计算机的视觉检测技术的原理分析和探究
图像技术主要指的就是通过各种途径所实现的对图像的获取以及进一步的深入加工和处理技术。根据视觉检测技术的抽象程度以及对图像处理方式的不同,可以大致将图像的处理和加工技术划分为三个最主要的层次,这三个层次分别是图像的加工处理、图像的分析以及对于图像的理解。将这三个层次进行进一步的结合,便是图像工程。计算机视觉检测技术是一门新兴的计算机检测技术,该技术建立在对计算机视觉研究的基础之上,吸收和借鉴相关的研究成果,借助于传感器来实施三维测量,进而有效获得被测物体的空间具置信息,故而可以很好的满足当代制造业的发展需求。区别于一般的图像处理系统,计算机视觉检测技术所获取的相关数据信息更为精准和迅速,其环境适应性更强。
基于计算机的视觉检测技术注重计算理论的辅导作用,以应用为目标进行视觉技术分析。自上世纪七十年代以来,我国关于对计算机视觉检测技术的研究又取得了显著的进步,并且逐步迈入更为实质性的研究阶段,在该阶段中,逐步开始从通过从多个角度(诸如光学角度、生理学角度以及投影射影角度等等)对其成像问题加以分析。以Marr为代表的专家更是建立了一些一般性的视觉性处理模型来辅助该技术的研究。
1.2 视觉检测技术中传感器的作用
在计算机的控制下配有相关的视觉检测系统,在该视觉检测系统中,主要有三个主要方面的主要作用:第一,对于视觉传感器模型的分析以及确定;第二,进行图像数据分散与整理的相关工作;第三,CAD模型的建立。传感器的主要作用就是对测量棒材的多个截面进行分析,将所收集得到的数据经由图像采集卡采集后,传到相关的图像处理系统中,进而进一步辅助准确的模型的建立。
2 基于计算机的视觉检测技术的应用研究分析
2.1 基于计算机的视觉检测技术的发展状况研究
在研究的初步阶段,相关技术人员借助于数字化的图像处理技术,主要就是为了进一步提高所获得的数字照片的清晰度和质量要求,进而更为精准、科学、规范的对照片所提供的信息加以辨别,为航空卫星图片的读取、识别和分类做准备。在这一系列的视觉工作中,其中最为主要和常见的工作主要是包括分类、识别判读以及三维结构的构建。
基于计算机的视觉检测技术借助于对计算机视觉技术,将所获得的被观察物品的相关信息加以信号转换,并传递给图像处理系统,图像处理系统通过甄别和判断不同照片像素的分布和亮度等讯息,将其进一步转换成为数字化信号,接下来由计算机的图像系统抽出符合目标特征的信号加以运算,对下一步的设备动作加以决定和执行。
就现阶段而言,我国的计算机视觉检测技术系统在诸多领域均有所应用,最为典型的领域诸如医学的辅助诊断、机器人的感应系统、智能化的人机接口等均是建立在该技术的基础之上。借助于计算机视觉技术这一手段,可以有效提高对产品检测的效率,提高精准度,这种新型的视觉检测技术相比较于传统的人眼在流水线上的跟进,其具有显著的优越性,其获取测量结构迅速、检测结果可以直接被观察、可以进行自动识别以及定位准确和实时性的特点,这就很好的避免了由于人的一些主观性因素所导致的误差出现。
二十世纪以来,基于生物特性的计算机视觉检测技术得到了空前的发展,具体表现在人脸识别、生硬识别、指纹识别以及虹膜的识别中,形式日趋灵活和复杂多变。借助于计算机的视觉检测技术,可以有效对用户的身份进行鉴定和识别、判定用户的特殊信息等。除此之外,还可以将基于计算机的视觉识别技术逐步推广到其他领域,如海关的安全检查以及出口、入口的安全控制等领域。
2.2 基于计算机的视觉检测技术的相关应用分析
2.2.1 数码相机中所采用的图像采集技术
视觉检测技术的一个显著特点就是有效提高了生产的柔性和自动化程度,本世纪以来,数码相机凭借其高分辨率,快速成像、显像,功能丰富多变以及性价比较高的特定风靡全球,逐步取代了传统的照相机,传统的照相机主要采用的是CCD 摄像头,其主要的核心及时采集卡,显然这种采集系统已经逐步落后于时展的脚步,现已逐步被淘汰。
2.2.2 微文字识别系统的相关研发和设计
随着科学技术的不断进步与发展,大规模集成电路得到了较快的进步,基于计算机的视觉检测系统的成本得到了极大的降低,基于计算机视觉检测技术的微文字识别系统的研发也被提到了日程中来。微文字识别系统的处理芯片大多是借助于数字信号处理芯片来实现图像的识别,进而借助先进的语音合成技术将朗读变为可能。此外,为了便于使用,该系统的体积被尽可能的缩小,并且可根据美观度和实用性等设计为各种形状。
2.2.3 特殊用纸水印在线检测系统
基于计算机的视觉检测技术可以在某一特定领域代替人的主观判断,诸如水印质量的自动检测方面。区别于普通的工作人员,计算机可以实现长时间工作,对于误差范围的控制可以通过设置等实现,而且在计算机执行任务期间,所受到的客观和主观因素相对较少,这就极大程度上避免了由于人的因素所导致的失误性操作,进而有效提高了工作效率以及检测的精准度。这一优点,在水印质量标准的认定中具有十分重要的意义和作用,通过研发一定的程序和软件,可以制定出一套操作性强、权威性较高的水印清晰度量化标准。
3 基于计算机的视觉检测技术的发展展望
综合分析来看,计算机视觉检测技术现已有大约四十年的历史,作为一种新兴的检测技术,该技术的显著优越性不言而喻,该检测技术以其高精度、反应灵敏迅速、智能化、自动化等特点被广泛应用于诸多领域和行业之中,并取得了显著的成,可以说,该技术具有十分广阔的发展前景。但是,不可否认,基于计算机的视觉检测技术并不是十分的成熟,在其设计和研发过程中仍然存在着诸多不足,而且视觉检测技术是一项设计到心理、生理等多方面知识的复杂性技术,涉及领域众多,更强大功能的实现需要人类知识的不断拓展和延伸,因此,必须意识到该检测技术发展道路上的困难和挑战。
4 结束语
随着科学技术的不断进步与发展,经济的发展对于新技术的研发提出了更高的挑战,再者由于广大人民群众生活质量的不断提高,对于生活水平也有了进一步的认识和了解。基于计算机的视觉检测技术的研发和进步,无疑更好推动了高速发展的经济,不断满足了人民群众日益提高生活需求。由此来看,深入对视觉检测技术的研究和探究无疑具有十分重要的作用,笔者衷心希望,以上关于对我国基于计算机的视觉检测技术的相关探究能够被相关负责人合理的吸收和采纳,进而更好的推动科学技术的创新和进步,推动经济的不断进步与发展。
参考文献:
[1]李旭港.计算机视觉及其发展与应用[J].中国科技纵横,2010(06):42.
(2)课程定位方面:现有课程体系中未能体现最新研究成果,而掌握世界最新工程应用成果是卓越工程师的基本要求之一。
(3)教学形式方面:传统计算机视觉课程侧重基本原理,尽管范例教学被引入到课堂教学中,在一定程度上帮助学生理解,但卓越工程师培养目标是培养学生解决实际工程问题的能力。针对卓越工程师培养目标,以及目前计算机视觉课程中存在的问题,本文提出工程应用导向型的课程内容、面向最新成果的课程定位、理论实例化与工程实践化的教学形式,以培养具有扎实理论基础及工程实践能力的卓越工程师。
1工程应用导向型的课程内容传统计算机视觉课程围绕Marr理论框架展开教学,其中部分原理仅在理想状态或若干假设下成立,不能直接运用到工程实践中。近年来已具备工程应用基础的原理及方法,在传统课程内容中较少出现,如已在工业测量、视频监控、游戏娱乐等领域中应用的主动式三维数据获取方法等。我们对工程应用价值高的课程内容,增加课时,充分讲解其原理及算法,并进行工程实例分析;对工程应用价值较低内容,压缩课时,以介绍方法原理为主。例如,在教授3D信息获取部分时,课时主要投入到工程应用价值较大的内容,如立体视觉、运动恢复结构、基于结构光的3D信息获取等;而对于基于阴影的景物恢复等缺乏应用基础的内容主要介绍其基本原理,并引导学生进行其工程应用的可行性分析,培养学生缜密的思维习惯,训练学生辩证的分析能力。
2面向最新成果的课程定位计算机视觉近十年来发展迅速,新方法和新理论层出不穷,在现有课程体系中未能得以体现。跟进世界最新成果是卓越工程师的基本要求之一,因此计算机视觉课程定位应当面向国际最新成果。为实现这一目标,我们主要从以下两方面入手。
(1)选用涵盖最新成果的教材。我们在教学中加入国际最新科研成果及应用范例,在教材选取上采用2010年RichardSzeliski教授所著《Computervision:algorithmsandapplications》作为参考教材。该书是RichardSzeliski教授在多年MIT执教经验及微软多年计算机视觉领域工作经验基础上所著,涵盖计算机视觉领域的主要科研成果及应用范例,参考文献最新引用至2010年。这是目前最新的计算机视觉著作之一,条理清晰,深入浅出,特点在于对计算机视觉的基本原理介绍非常详尽,算法应用紧跟国际前沿。
(2)强化学生调研及自学能力。“授之以鱼”,不如“授之以渔”。在教授学生的同时,更重要的是培养学生调研、跟踪、学习并分析国际最新科研及工程应用成果的能力。为强化学生的知识结构,培养学生跟踪国际前沿的能力,我们在教学中加入10%的课外学时,指导每位学生完成最近三年本领域的国际最新文献调研及工程应用新技术调研,并撰写相关调研论文。同时,设置2学时课内学时,让每位学生介绍调研成果,并进行课堂讨论。在调研基础上,选择相关算法进行了实验证明,进一步强化学习成果。实践证明,由于学生能够根据自己的兴趣,选择本领域感兴趣的课题进行深入调研,极大地调动了学生的积极性,强化了学生调研、跟踪、学习并分析国际最新科研及工程应用成果的能力。
随着计算机技术的快速发展,计算机设备逐渐被应用到社会生活的各个方面,尤其是在当前计算机视觉技术和图像处理技术快速发展的时期,各个科技领域中的计算机视觉技术已经逐渐成熟。计算机视觉技术主要是利用计算机智能化来替代人眼,即对于客观存在的三维立体化世界的理解和识别,整个实现过程均是以计算机技术作为基础。随着计算机视觉技术的不断发展,现今其已逐渐成为了一门神经生理学、计算机工程、信号学、物理学、应用数学等综合性学科。计算机视觉技术系统其在高性能计算机基础之上来实现对大量数据的获取,并且通过智能算法来对获取数据进行处理,从而完成对数据集成。
一、视频中运动物体检测原理
对于视频中的运动物体检测主要分为两中方法,其一为宏观检测法;其二为微观检测法。宏观检测法是对获得的整幅图像进行检测,而微观检测法则是对所需要的区域进行图像检测。视觉技术在检测运动物体的时候,首先对图像进行采集,并对采集的信息数据进行预处理,将图像进行分割,然后分别提取运动物体的影象,从而实现参数的更新。图像采集过程中采用背景差分法,实现对背景图像的提取,其通过一定算法采用人为手段获取没有背景的图像。另外在进行运动物体检测的时候还可以采用帧间差分法,其主要是实时获取帧图,然后实现一帧一帧图像比值的比较,从而获取具有差值的图像。运动物体进行检测的时候需连续获取帧图,将这些帧图组合起来,其实就是物体的运动轨迹,然后同分割技术就能勾勒出物体的轮廓。随着计算机视觉技术的不断深入研究,发现此两种方法单独使用仍然存在的一些缺点,于是研究人员将二种检测方法进行融合,形成一种综合检测方法。综合检测法将两者检测方法的优势进行了融合,并将其灵活的应用到了生产和生活之中,取得了十分不错的效用。
二、基于Opencv的计算机视觉技术探究
(一)基于Opencv的运动物体检测
运动物体在进行检测的时候,基于Opencv的检测原理主要为:根据物体某项特定信息,例如,颜色、轮廓、性状等,在复杂背景中利用这些特定的信息将物体分离出来。整个图像的分离过程首先是进行视频流捕捉,然后是进行视频的格式转换,再将图像进行预处理,从而提取前景物体,减少环境因素对图像处理的误差,最后根据物体特征提取,并完成对运动物体的跟踪。从图像中提取所需的目标物体,其实质就是对整个屋里轮廓进行检测和分割,根据每个图像的帧差异来进行提取。
(二)基于Opencv图像预处理
视觉技术应用于复杂的环境之中,由于存在着光照的变化,其场景中所出现的环境因素对视频采集设备性能影响很大。环境因素会使得获取的图像信息的质量降低,并且在图像中无法避免的存在着噪点,这对于运动物体的检测和图像采集会造成很大的影响。当获取视频帧图像之后需对其数据进行预处理,通常有平滑度滤波处理、图像填充、图像背景更新等。
1.平滑度滤波处理
由于在进行视频图像采集的时候存在着噪点,那么我们就需要对其进行噪点处理,以求减小噪声。滤波平滑度滤波处理,其具有线性和非线性两种方式,其中线性方式进行处理器运算简单、运算速度快,但是在进行处理之后的图像都会呈现不清晰的情况。而非线性方式尽心给处理之后,虽然能够很好的减小噪点,确保信号的局部特点,但是其运算的速度会较慢。
2.图像填充
对于帧图像进行处理,通常采用检测边缘填充法或者是腐蚀膨胀法来完成,其中填充法是指当检测出目标物体之后,利用边缘检测方法来对物体进行辨识,然后利用形态学的漫水填充法进行填充。图像的腐蚀膨胀则主要是由于摄像机的性能等问题造成的。
3.实时背景更新
在进行图像差分之前,需要对背景图样进行确定,并且需要对其进行初始化处理。以方便以后在进行检测时候能够对实时背景图进行差分计算,只有这样,才能够获得极佳的前景效果。在进行图像差分时,首先需要根据指定法来确定第一帧背景的图像,并将其指定为第一张背景图片,然后在检测过程中根据算法对背景实施更新。整个图像在进行更新时,其主要的流程为:判断并读取图像是否为第一帧;将Opencv处理的图像转化为单通道灰度值;将实时采集的图像进行高斯平滑度处理,去除噪点;最后使用形态学滤波处理噪点。
(三)提取前景运动物体图像
检测运动物体的时候,只有在检测流程中确保精确度,才能够获取满意的前景跟踪效果。此过程中主要分为两个步骤,第一步为二值化图像之后进行分割;第二步,图像分析前处理,进行充分填充,确保前景图的完整性。其中,前景图的提取主要分为下面几个步骤:首先对前景图像和背景图像进行差分,然后对差分的图像进行二值化,再对背景中的前景图像边缘进行检测,根据轮廓进行填充图像。由于摄像头存在于不同的场景和环境之中,不论是室外或者是室内随着场景的变化都会对图像的采集产生影响。那么在前景图中提取目标就需要在检测系统中采用有效手段来完成背景实时更新。
阀值二值化分割法可以对检测的物体进行前景和背景差图分割,从而使目标物体能够分离出图像,且阀值分割先要确定每个像素的点是否处于灰度范围值之内。将图像中的像素灰度与确定的阀值进行比较,其结果解释所有像素点分为2类,一类像素的灰度小于阀值,另外一类就是大于阀值。阀值二值化分割时,确定分割的阀值T,然后分割图像。选取合适的阀值进行分割,可以有效的减少光照因素影响,常用的动态阀值主要有直方图来法与最大类方差法这另种分割方法。
三、计算机视觉三维技术
计算机视觉技术的核心为分割问题、运动分析、3D立体场景重构等,立体视觉主要是从多幅图像的参照中获取目标物体的三维几何信息。计算机视觉所模拟出的3D立体画面只需要摄像机从不同的角度同一时间针进行图像捕获,将2D信息进行3D重构,进而将计算机程序重建于真实的三维场景之中,以恢复物体的真实空间信息。
(一)视觉系统
视觉系统捕获图像的过程,实则可以看成为对大量信息进行处理过程,整个系统处理可以分为三个层次,其一,理论层次;其二,描述层次;其三,实现层次。在摄像机视觉系统之中,输入的是2D图像,但是输出为3D信息,而这就可以实现对图像的位置、距离等信息的如实描述。视觉系统分为三个进阶层次,第一阶段为基础框架;第二阶段为2.5D表达;第三阶段为三维阶段。在第二阶段中实现的2.5D表达,其原理是将不完整的3D图像信息进行表达,即以一个点为坐标,从此点看去某一些物体的部分被遮挡。第三阶段的三维阶段,则是人眼观察之后可以从不同的角度来观察物体的整体框架,从而实现了将2.5D图像信息的叠加重合运算,进一步处理之后得到了3D图像。
(二)双目视觉
人们从不同角度观看同一时间内的同一物体的时候,可以利用算法测量物体间的距离。此法被称为双目立体感觉,其依据的原理是视觉差原理,利用两台摄像机或者一台摄像机,对两幅不同的图像进行不同角度观察,并且对其观察的数据进行对比分析。实现双目立体视觉与平面视觉图像获取,其主要的步骤为:
(1)图像获取
从两台不同的摄像机,捕获帧图像,由于环境因素会造成图像差异困难。为了更好的跟踪目标、检测,当捕获图像之后,需要对图像进行预处理。
(2)摄像标定方式
获得真实坐标系中的场景点中的与平面成像点占比见的对应关系,借用三维立体空间中的三维坐标,标定之后确定摄像机的位置以及属性参数,并建立起成像的模型。
(3)特征提取方式
所谓的特征提取方式主要是为了提升检测、跟踪目标的准确性,需要对目标物体进行特征提取,从而实现对图像分割提取。
(4)深度计算
深度信息主要是根据几何光学原理,从三维世界进行客观分析,因为距离会产生不同的位置,会使得成像位置与两眼视网膜上有所不同。简单来说,客观景物的深度可以反映出双目的视觉差,而利用视觉差的信息结合三角原理进行计算,可呈现出深度的图像信息。
(三)摄像机模型
摄像机在标定过程中确定了其建立的基础为摄像机的模型,摄像机模型在标定过程中关系到三个不同坐标系的转换,分别为2D图像平面坐标系、摄像机自身坐标系以及真实的世界坐标系。摄像机在摄像的时候起本质是2D图像坐标转换,首先要定义摄像机的自身坐标系,将坐标系的原点设置为光心,X、Y、Z成立三维坐标系。其次则是建立平面的图像坐标系,用以透视模型表示,其原点也在广心的位置,称之为主点。实际应用中,物理的距离光心的位置d≠f焦距,而且会远远大于焦距,为了解决如此问题就提出了平面概念。在光轴z上设置一个虚拟的图像平面,然后在此位置于平面关于光心对称。接着,在设置的虚拟2D坐标系中,光轴和原点重合,并且摄像机与垂直平面的垂直方向相同,真实图像上的点影射到摄像机坐标系。
(四)3D重构算法
视频流的采集,主要是采用Kinect设备、彩色摄像头、红外发射摄像头、红外接收摄像头。使用微软提供API控制Kinect设备,在操作之前需调用NUI初始化函数,将函数的参数设置为用户信息深度图数据、彩色图数据、骨骼追踪图数据、深度图数据。上述的视频流的打开方式不同,既可以是一种打开方式,也可以是多种打开方式,尤其在进行Kinect传输数据处理的时候,需遵循三条步骤的运行管线。此三条管线分别为:第一条为处理彩色和深度数据,第二条为根据用索引添加颜色信息,并将其放入到深度图之中,第三条为骨骼追踪数据。
四、总结
随着计算技术的快速发展,视觉技术逐渐被广泛的应用于我们日常的研究之中。本文通过对视觉技术的相关问题进行分析,探究了图像处理、分割、前景提取、运动物体观测以及重构3D图等问题,为实现视觉技术更加深入研究做出了相应的贡献;为广大参与计算机视觉技术研究同仁提供一个研究的思路,为实现视觉技术的腾飞贡献薄力。
参考文献
引言
摄影测量学是一门古老的学科,若从1839年摄影术的发明算起,摄影测量学已有170多年的历史,而被普遍认为摄影测量学真正起点的是1851―1859年“交会摄影测量”的提出。在这漫长的发展过程中,摄影测量学经历了模拟法、解析法和数字化三个阶段。模拟摄影测量和解析摄影测量分别是以立体摄影测量的发明和计算机的发明为标志,因此很大程度上,计算机的发展决定了摄影测量学的发展。在解析摄影测量中,计算机用于大规模的空中三角测量、区域网平差、数字测图,还用于计算共线方程,在解析测图仪中起着控制相片盘的实时运动,交会空间点位的作用。而出现在数字摄影测量阶段的数字摄影测量工作站(digital photogrammetry workstation,DPW)就是一台计算机+各种功能的摄影测量软件。如果说从模拟摄影测量到解析摄影测量的发展是一次技术的进步,那么从解析摄影测量到数字摄影测量的发展则是一场技术的革命。数字摄影测量与模拟、解析摄影测量的最大区别在于:它处理的是数字影像而不再是模拟相片,更为重要的是它开始并将不断深入地利用计算机替代作业员的眼睛。[1-2]毫无疑问,摄影测量进入数字摄影测量时代已经与计算机视觉紧密联系在一起了[2]。
计算机视觉是一个相对年轻而又发展迅速的领域。其目标是使计算机具有通过二维图像认知三维环境信息的能力,这种能力将不仅使机器能感知三维环境中物体的几何信息,包括它的形状、位置、姿态、运动等,而且能对它们进行描述、存储、识别与理解[3]。数字摄影测量具有类似的目标,也面临着相同的基本问题。数字摄影测量学涉及多个学科,如图像处理、模式识别以及计算机图形学等。由于它与计算机视觉的联系十分紧密,有些专家将其看做是计算机视觉的分支。
数字摄影测量的发展已经借鉴了许多计算机视觉的研究成果[4]。数字摄影测量发展导致了实时摄影测量的出现,所谓实时摄影测量是指利用多台CCD数字摄影机对目标进行影像获取,并直接输入计算机系统中,在实时软件的帮助下,立刻获得和提取需要的信息,并用来控制对目标的操作[1]。在立体观测的过程中,其主要利用计算机视觉方法实现计算机代替人眼。随着数码相机技术的发展和应用,数字近景摄影测量已经成为必然趋势。近景摄影测量是利用近距离摄影取得的影像信息,研究物体大小形状和时空位置的一门新技术,它是一种基于数字信息和数字影像技术的数据获取手段。量测型的计算机视觉与数字近景摄影测量的学科交叉将会在计算机视觉中形成一个新的分支――摄影测量的计算机视觉,但是它不应仅仅局限于地学信息[2]。
1. 计算机视觉与数字摄影测量的差异
1.1 目的不同导致二者的坐标系和基本公式不同
摄影测量的基本任务是严格建立相片获取瞬间所存在的像点与对应物点之间的几何关系,最终实现利用摄影片上的影像信息测制各种比例尺地形图,建立地形数据库,为各种地理信息系统建立或更新提供基础数据。因此,它是在测绘领域内发展起来的一门学科。
而计算机视觉领域的突出特点是其多样性与不完善性。计算机视觉的主要任务是通过对采集的图片或视频进行处理以获得相应场景的三维信息,因此直到计算机的性能提高到足以处理大规模数据时它才得到正式的关注和发展,而这些发展往往起源于其他不同领域的需要。比如在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用计算机来替代人工视觉。
由于摄影测量是测绘地形图的重要手段之一,为了测绘某一地区而摄影的所有影像,必须建立统一的坐标系。而计算机视觉是研究怎样用计算机模拟人的眼睛,因此它是以眼睛(摄影机中心)与光轴构成的坐标系为准。因此,摄影测量与计算机视觉目的不同,导致它们对物体与影像之间关系的描述也不同。
1.2 二者处理流程不同
2. 可用于数字摄影测量领域的计算机视觉理论――立体视觉
2.1 立体视觉
立体视觉是计算机视觉中的一个重要分支,一直是计算机视觉研究的重点和热点之一,在20多年的发展过程中,逐渐形成了自己的方法和理论。立体视觉的基本原理是从两个(或多个)视点观察同一景物,以获取在不同视角下的感知图像,通过三角测量原理计算像像素间的位置偏差(即视差)来获取景物的三维信息,这一过程与人类视觉的立体感知过程是类似的。一个完整的立体视觉系统通常可分为图像获取、摄像机定标、特征提取、影像匹配、深度确定及内插等6个大部分[5]。其中影像匹配是立体视觉中最重要也是最困难的问题,也是计算机视觉和数字摄影测量的核心问题。
2.2 影像匹配
立体视觉的最终目的是为了恢复景物可视表面的完整信息。当空间三维场景被投影为二维图像时,同一景物在不同视点下的图像会有很大不同,而且场景中的诸多因素,如光照条件,景物几何形状和物理特性、噪声干扰和畸变以及摄像机特性等,都被综合成单一的图像中的灰度值。因此,要准确地对包含了如此之多不利因素的图像进行无歧义的匹配,显然是十分困难的。
在摄影测量中最基本的过程之一就是在两幅或者更多幅的重叠影像中识别并定位同名点,以产生立体影像。在模拟摄影测量和解析摄影测量中,同名点的识别是通过人工操作方式完成的;而在数字摄影测量中则利用计算机代替人工解决同名点识别的问题,即采用影像匹配的方法。
2.3 多目立体视觉