时间:2024-01-04 15:11:54
引言:寻求写作上的突破?我们特意为您精选了12篇减少温室气体的措施范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
二、公路沥青面层养护施工温室气体排放
(一)原材料生产过程中的温室气体排放
在对沥青面层进行养护施工的时候,使用最多的材料就是沥青和石料。由沥青所产生的温室气体主要是电能和化石燃料的消耗排放的。在对公路沥青面层施工的时候石料产生的温室气体主要是由爆破排放的。这两种材料在对于公路沥青面层进行养护施工的时候都会排放相应的温室气体,使得空气中存在的温室气体含量增多,对环境造成极大的破坏。
(二)面层养护施工过程中温室气体的排放
在进行公路沥青面层养护施工的时候,我们需要将沥青和其他的材料混合、摊铺以及碾压。沥青拌和和化石燃料消耗排放是其中温室气体排放量最大的,对于环境的污染也是最大的。其余还有铲运车、摊铺机以及压路机等机械设施的温室气体排放,这些机械设备的温室气体排放大都都是在机械设备运行的过程中排放的,和汽车尾气的类型差不多。
(三)面层养护施工运输过程中温室气体的排放
公路沥青面层养护施工需要将养护的材料从一个地方运送到另外一个地方,而将这些材料运输的交通工具就会在运输的途中产生温室气体的排放。
(一)“四新技术”的使用
在公路沥青面层养护施工的过程之中,温室气体主要是通过生产材料、施工技术、建造工艺和机械设备产生的,如果可以从这些方面入手,必定可以极大地减少温室气体的排放。“四新技术”主要指的就是生产材料的创新,养护施工技术的创新,养护施工工艺的创新和养护施工机械设备的创新。施工材料的创新可以多使用节能减排材料,使得在材料生产的过程中排放比较少的温室气体;养护施工技术的创新主要指对原有施工技术的提高,将一些排放温室气体多的施工技术换成排放温室气体少的技术;施工机械设备的创新是指在进行施工的过程中使用最新最先进,排放温室气体最少的机械设备。“四新技术”的应用可以减少温室气体的排放,减少对于环境的损害,能够真正实现低碳经济下的公路沥青面层养护施工。
(二)重视精细化作业
在进行实际的施工过程中,工作人员一定要认真负责的工作,争取在一次工作中就可以完成任务,做到精细化作业。这样就可以避免生产不合格导致的返工现象,减少生产成本,也可以减少温室气体的排放。
(三)对于材料进行回收再利用
公路沥青面层养护施工的过程中,必定会产生大量的材料剩余,将这些剩余下来的材料回收利用,不仅可以使得整个工程的用量减小,也使得资源得到了很好的保护。
(四)加强养护技术,重视人才的培养
选择材料的时候,应该选择一些耐用的,使用寿命长的材料,这样可以降低成本。对于一些刚刚生产发明出来的材料给予足够的重视,看看材料是否成本低并且效果好,如果是这样应该大力发展和使用这种材料。对于人才的培养也是十分重要的,在一些高校中多开展一些和这门知识有关的学科,让更多的学生可以学习到关于公路沥青面层养护方面的知识,从而增多关于公路沥青面层养护方面的专业人才。
基金项目:Climate, Food and Farming Research Network (CLIFF)资助;中国农业大学研究生科研创新专项(编号:KYCX2011036)。
摘要
农田是CO2,CH4和N2O三种温室气体的重要排放源, 在全球范围内农业生产活动贡献了约14%的人为温室气体排放量,以及58%的人为非CO2排放,不合理的农田管理措施强化了农田温室气体排放源特征,弱化了农田固碳作用。土壤碳库作为地球生态系统中最活跃的碳库之一,同时也是温室气体的重要源/汇。研究表明通过采取合理的农田管理措施,既可起到增加土壤碳库、减少温室气体排放的目的,又能提高土壤质量。农田土壤碳库除受温度、降水和植被类型的影响外,还在很大程度上受施肥量、肥料类型、秸秆还田量、耕作措施和灌溉等农田管理措施的影响。本文通过总结保护性耕作/免耕,秸秆还田,氮肥管理,水分管理,农学及土地利用变化等农田管理措施,探寻增强农田土壤固碳作用,减少农田温室气体排放的合理途径。农田碳库的稳定/增加,对于保证全球粮食安全与缓解气候变化趋势具有双重的积极意义。在我国许多有关土壤固碳与温室气体排放的研究尚不系统或仅限于短期研究,这也为正确评价各种固碳措施对温室气体排放的影响增加了不确定性。
关键词 农田生态系统;温室气体;秸秆还田;保护性耕作;氮素管理;固碳
中图分类号 S181 文献标识码 A
文章编号 1002-2104(2012)01-0043-06 doi:10.3969/j.issn.1002-2104.2012.01.008
人类农业生产活动产生了大量的CO2, CH4和N2O等温室气体,全球范围内农业生产活动贡献了约14%的人为温室气体排放量,以及58%的人为非CO2排放(其中N2O占84%,CH4占47%)[1]。在许多亚洲、拉丁美洲和非洲的发展中国家,农业更成为温室气体的最大排放源,同时由于人口快速增长带来了粮食需求的大量增加,使得未来20年中农田温室气体的排放量也会有所增加[2]。大气中温室气体浓度的升高可能引起的全球气候变化已受到各国的广泛重视。
农业生态系统中温室气体的产生是一个十分复杂的过程,土壤中的有机质在不同的气候、植被及管理措施条件下,可分解为无机C和N。无机C在好氧条件下多以CO2的形式释放进入大气,在厌氧条件下则可生成CH4。铵态氮可在硝化细菌的作用下变成硝态氮,而硝态氮在反硝化细菌的作用下可转化成多种状态的氮氧化合物,N2O可在硝化/反硝化过程中产生。在气候、植被及农田管理措施等各因子的微小变化,都会改变CO2,CH4和N2O的产生及排放。
而通过增加农田生态系统中的碳库储量被视为一种非常有效的温室气体减排措施。农田土壤碳库除受温度、降水和植被类型的影响外,还在很大程度上受施肥量、肥料类型、秸秆还田量、耕作措施和灌溉等农田管理措施的影响。通过增施有机肥、采用免耕/保护性耕作、增加秸秆还田量等措施,可以减少农田土壤CO2净排放量,同时起到稳定/增加土壤有机碳含量作用。农田碳库的稳定/增加,对于保证全球粮食安全与缓解气候变化趋势具有双重的积极意义[3]。中国农田管理措施对土壤固碳的研究主要集中在土壤碳的固定、累积与周转及其对气候变化的反馈机制,正确评估农田土壤碳固定在温室气体减排中的作用,加强农田碳汇研究具有重要意义。
1 农田固碳
土壤是陆地生态系统的重要组成成分,它与大气以及陆地生物群落共同组成系统中碳的主要贮存库和交换库。土壤碳分为土壤有机碳(soil organic carbon, SOC)和土壤无机碳(soil inorganic carbon, SIC)。SIC相对稳定,而SOC则时刻保持与大气的交换和平衡,因此对SOC的研究是土壤碳研究的主要方面。据估计,全球约有1.4×1012-1.5×1012t的碳是以有机质形式储存于土壤中,土壤贡献给大气的CO2量是化石燃料燃烧贡献量的10倍[4],因此SOC的微小变化都将会对全球气候变化产生重要影响。同时,土壤碳库与地上部植物之间有密切关系,SOC的固定、累积与分解过程影响着全球碳循环,外界环境的变化也强烈的影响着地上部植物的生长与土壤微生物对土壤累积碳的分解。
Lal认为SOC的增加可以起到改善土壤质量,增加土壤生产力,减少土壤流失风险,降低富营养化和水体污染危害的作用,且全球耕地总固碳潜力为0.75-1.0 Pg•a-1, IPCC 第四次评估报告剔除全球农业固碳1 600-4 300 Mt a-1(以CO2计),其中90%来自土壤固碳[5]。农田生态系统是受人类干扰最重的陆地生态系统,与自然土壤相比,农田土壤在全球碳库中最为活跃,其土壤碳水平直接受人类活动的影响和调控空间大,农田土壤碳含量管理及对温室气体影响机制正日益受到学术界的广泛关注。农田管理措施是影响SOC固定、转化及释放的主要因素,同时还受土地利用方式、气候变化等多因素的共同影响,因此对农田碳库的评价及调整措施需全面考虑多种因素的交互作用。
2 农田固碳措施对温室气体排放的影响
近年来,农田土壤固碳的研究已经成为全球变化研究的一大热点。大量研究表明,SOC储量受诸多因素的影响,如采用保护性/免耕措施、推广秸秆还田、平衡施用氮肥、采用轮作制度和土地利用方式等,上述管理措施的差异导致农田土壤有机碳库的显著差别,并影响农田温室气体排放水平。
2.1 保护性耕作/免耕措施
保护性耕作作为改善生态环境尤其是防治土壤风蚀的新型耕作方式,在多个国家已经有广泛的研究和应用。中国开展的保护性耕作研究证明了其在北方地区的适用性[6],并且已进行了保护性耕作对温室效应影响的相关研究。统计表明2004年全球范围内免耕耕作的面积约为95 Mha, 占全球耕地面积的7%[7], 并且这一面积有逐年增加的趋势。
常规耕作措施会对土壤物理性状产生干扰,破坏团聚体对有机质的物理保护,影响土壤温度、透气性,增加土壤有效表面积并使土壤不断处于干湿、冻融交替状态,使得土壤团聚体更易被破坏,加速团聚体有机物的分解[8]。免耕/保护性耕作可以避免以上干扰,减少SOC的分解损失[9]。而频繁的耕作特别是采用犁耕会导致SOC的大量损失,CO2释放量增加,而免耕则能有效的控制SOC的损失,增加SOC的储量,降低CO2的释放量[10]。West和 Post研究发现从传统耕作转变为免耕可以固定0.57±0.14 Mg C ha-1yr-1[11]。但对于保护性耕作/免耕是否有利于减少温室气体效应尚不明确,这是由于一方面免耕对减少CO2排放是有利的,表现为免耕可以减少燃油消耗所引起的直接排放;另一方面,秸秆还田以后秸秆碳不会全部固定在土壤中,有一部分碳以气体的形式从农田释放入大气[12]。
免耕会导致表层土壤容重的增加,产生厌氧环境,减少SOC氧化分解的同时增加N2O排放[13];采用免耕后更高的土壤水分含量和土壤孔隙含水量(Water filled pore space, WFPS)能够刺激反硝化作用,增加N2O排放[14];同时免耕导致的N在表层土壤的累积也可能是造成N2O排放增加的原因之一,在欧洲推广免耕措施以后,土壤固碳环境效益将被增排的N2O抵消50%以上[15]。但也有新西兰的研究表明,常规耕作与免耕在N2O排放上无显著性差异[16],还有研究认为凿式犁耕作的农田N2O排放比免耕高,原因可能是免耕时间太短,对土壤物理、生物性状还未产生影响。耕作会破坏土壤原有结构,减少土壤对CH4的氧化程度[17]。也有研究表明,翻耕初期会增加土壤对CH4的排放,但经过一段时间(6-8 h)后,CH4排放通量有所降低[18]。
总之,在增加土壤碳固定方面,保护性耕作和免耕的碳增汇潜力大于常规耕作;在净碳释放量方面,常规耕作更多起到CO2源的作用,而保护性耕作和免耕则起到CO2汇的作用;在碳减排方面,免耕和保护性耕作的减排潜力均大于常规耕作;由于N2O和CH4的排放受多种因素的综合影响,因此耕作措施对这两种温室气体排放的影响还有待进一步研究。
2.2 秸秆管理措施
作物秸秆作为土壤有机质的底物,且作物秸秆返还量与SOC含量呈线性关系,因此作物秸秆是决定SOC含量的关键因子之一。秸秆还田有利于土壤碳汇的增加,同时避免秸秆焚烧过程中产生温室气体。因此,秸秆还田是一项重要而又可行的农田碳汇管理措施。秸秆还田以后,一部分残留于土壤中成为土壤有机质的来源,另一部分将会以CO2气体的形式散逸到大气中,因此,随着秸秆还田量的增加CO2排放也会增加。有研究表明,秸秆经过多年分解后只有3%碳真正残留在土壤中,其他97%都在分解过程中转化为CO2散逸到大气中[19]。秸秆还田会增加土壤有机质含量,而有机质是产生CH4的重要底物,因此秸秆还田会增加CH4的排放。综合考量,秸秆还田措施会引起CH4排放的增加,但直接减少了对CO2的排放,同时秸秆还田相对提高了土壤有机质含量,有利于土壤碳的增加,对作物增产具有积极作用。
秸秆还田措施对农业生态系统C、N循环的影响可表现为:一方面由于供N量的增加,可促进反硝化和N2O排放量的增加;另一方面表现为高C/N的秸秆进入农田后会进行N的生物固定,降低反硝化N损失;同时在秸秆分解过程中还可能产生化感物质,抑制反硝化[20]。我国采用秸秆还田农田土壤固碳现状为2389Tg•a-1,而通过提高秸秆还田量土壤可达的固碳潜力为4223Tg•a-1[3],与国外研究结果相比较,Vleeshouwers等研究认为,如果欧洲所有农田均采用秸秆还田措施,欧洲农田土壤的总固碳能力可达34Tg•a-1[21]。La1预测采用秸秆还田措施后全球农田土壤的总固碳能力可达200Tg•a-1[22]。随着农业的发展及长期以来氮肥的过量投入,氮肥损失也是日益严重,可通过秸秆还田措施与氮肥的配合施用降低氮肥的反硝化作用及N2O的排放。但秸秆还田后秸秆与土壤的相互作用异常复杂,因此需要进一步开展秸秆施入土壤后与土壤的相互作用机理及田间实验研究。
2.3 氮肥管理措施
在农田生态系统中,土壤中的无机氮是提高作物生产力的重要因素,氮肥投入能够影响SOC含量,进而对农田碳循环和温室气体排放产生重要影响。长期施用有机肥能显著提高土壤活性有机碳的含量,有机肥配施无机肥可提高作物产量,而使用化学肥料能增加SOC的稳定性[23]。农业中氮肥的投入为微生物生长提供了丰富的氮源,增强了微生物活性,从而影响温室气体的排放。但也有研究在长期增施氮肥条件下能够降低土壤微生物的活性,从而减少CO2的排放[24]。有研究表明,CO2排放与土壤不同层次的SOC及全N含量呈正相关性,说明在环境因子相对稳定的情况下,土壤SOC和全N含量直接或间接地决定CO2排放通量的变化[25]。对农业源温室气体源与汇的研究表明,减少氨肥、增施有机肥能够减少旱田CH4排放,而施用缓/控释氮肥和尿素复合肥能显著减少农田土壤NO2的排放[26]。但也有研究表明,无机氮肥施用可减少土壤CH4的排放量,而有机肥施用对原有机质含量低的土壤而言可大幅增加CH4的排放量[27]。长期定位施肥实验的结果表明,氮肥对土壤CH4氧化主要来源于铵态氮而不是硝态氮,因为氨对CH4氧化有竞争性抑制作用。此外,长期施用氮肥还改变了土壤微生物的区系及其活性,降低CH4的氧化速率,导致CH4净排放增加[28]。全球2005年生产的100 Mt N中仅有17%被作物吸收,而剩余部分则损失到环境中[29]。单位面积条件下,有机农田较常规农田有更少的N2O释放量,单位作物产量条件下,两种农田模式下N2O的释放量无显著性差异[23]。尿素硝化抑制剂的使用可以起到增加小麦产量,与尿素处理相比对全球增温势的影响降低8.9-19.5%,同时还可能起到减少N2O排放的目的[30]。合理的氮素管理措施有助于增加作物产量、作物生物量,同时配合秸秆还田等措施将会起到增加碳汇、减少CO2排放的作用。同时必须注意到施肥对农田碳汇的效应研究应建立在大量长期定位试验的基础上,对不同气候区采用不同的氮肥管理措施才能起到增加农田固碳目的。
2.4 水分管理措施
土壤水分状况是农田土壤温室气体排放或吸收的重要影响因素之一。目前全球18%的耕地属水浇地,通过扩大水浇地面积,采取高效灌溉方法等措施可增加作物产量和秸秆还田量,从而起到增加土壤固碳目的[31]。水分传输过程中机械对燃料的消耗会带来CO2的释放,高的土壤含水量也会增加N2O的释放,从而抵消土壤固碳效益[32]。湿润地区的农田灌溉可以促进土壤碳固定,通过改善土壤通气性可以起到抑制N2O排放的目的[33]。土壤剖面的干湿交替过程已被证实可提高CO2释放的变幅,同时可增加土壤硝化作用和N2O的释放[34]。采用地下滴灌等农田管理措施,可影响土壤水分运移、碳氮循环及土壤CO2和N2O的释放速率,且与沟灌方式相比不能显著增加温室气体的排放[35]。
稻田土壤在耕作条件下是CH4释放的重要源头,但通过采取有效的稻田管理措施可以
减少水稻生长季的CH4释放。如在水稻生长季,通过实施一次或多次的排水烤田措施可有
效减少CH4释放,但这一措施所带来的环境效益可能会由于N2O释放的增加而部分抵消,
同时此措施也容易受到水分供应的限制,且CH4和N2O的全球增温势不同,烤田作为CH4
减排措施是否合理仍然有待于进一步的定量实验来验证。在非水稻生长季,通过水分管理尤
其是保持土壤干燥、避免淹田等措施可减少CH4释放。
许多研究表明,N2O与土壤水分之间有存在正相关关系,N2O的释放随土壤湿度的增加而增加[36],并且在超过土壤充水孔隙度(WFPS)限值后,WFPS值为60%-75%时N2O释放量达到最高[37]。Bateman和Baggs研究表明,在WFPS为70%时N2O的释放主要通过反硝化作用进行,而在WFPS值为35%-60%时的硝化作用是产生N2O的重要途径[38]。由此可见,WFPS对N2O的产生释放影响机理前人研究结果并不一致,因此有必要继续对这一过程深入研究。
2.5 农学措施
通过选择作物品种,实行作物轮作等农学措施可以起到增加粮食产量和SOC的作用。有机农业生产中常用地表覆盖,种植覆盖作物,豆科作物轮作等措施来增加SOC,但同时又会对CO2,N2O及CH4的释放产生影响,原因在于上述措施有助于增强微生物活性,进而影响温室气体产生与SOC形成/分解[39],从而增加了对温室气体排放影响的不确定性。种植豆科固氮植物可以减少外源N的投入,但其固定的N同样会起到增加N2O排放的作用。在两季作物之间通过种植生长期较短的绿被植物既可起到增加SOC,又可吸收上季作物未利用的氮,从而起到减少N2O排放的目的[40]。
在新西兰通过8年的实验结果表明,有机农场较常规农场有更高的SOC[41],在荷兰通过70年的管理得到了相一致的结论[42]。Lal通过对亚洲中部和非洲北部有机农场的研究表明,粪肥投入及豆科作物轮作等管理水平的提高,可以起到增加SOC的目的[31]。种植越冬豆科覆盖作物可使相当数量的有机碳进入土壤,减少农田土壤CO2释放的比例[39],但是这部分环境效益会由于N2O的大量释放而部分抵消。氮含量丰富的豆科覆盖作物,可增加土壤中可利用的碳、氮含量,因此由微生物活动造成的CO2和N2O释放就不会因缺少反应底物而受限[43]。种植具有较高C:N比的非固氮覆盖作物燕麦或深根作物黑麦,会因为深根系统更有利于带走土壤中的残留氮,从而减弱覆盖作物对N2O产生的影响[44]。综上,通过合理选择作物品种,实施作物轮作可以起到增加土壤碳固定,减少温室气体排放的目的。
2.6 土地利用变化措施
土地利用变化与土地管理措施均能影响土壤CO2,CH4和N2O的释放。将农田转变成典型的自然植被,是减少温室气体排放的重要措施之一[31]。这一土地覆盖类型的变化会导致土壤碳固定的增加,如将耕地转变为草地后会由于减少了对土壤的扰动及土壤有机碳的损失,使得土壤碳固定的自然增加。同时由于草地仅需较低的N投入,从而减少了N2O的排放,提高对CH4的氧化。将旱田转变为水田会导致土壤碳的快速累积,由于水田的厌氧条件使得这一转变增加了CH4的释放[45]。由于通过土地利用类型方式的转变来减少农田温室气体的排放是一项重要的措施,但是在实际操作中往往会以牺牲粮食产量为代价。因此,对发展中国家尤其是如中国这样的人口众多的发展中国家而言,只有在充分保障粮食安全等前提条件下这一措施才是可考虑的选择。
3 结语与展望
农田管理中存在显著增加土壤固碳和温室气体减排的机遇,但现实中却存在很多障碍性因素需要克服。研究表明,目前农田温室气体的实际减排水平远低于对应管理方式下的技术潜力,而两者间的差异是由于气候-非气候政策、体制、社会、教育及经济等方面执行上的限制造成。作为技术措施的保护性耕作/免耕,秸秆还田,氮肥投入,水分管理,农学措施和土地利用类型转变是影响农田温室气体排放的重要方面。常规耕作增加了燃料消耗引起温室气体的直接排放及土壤闭蓄的CO2释放,而免耕、保护性耕作稳定/增加了SOC,表现为CO2的汇;传统秸秆处理是将秸秆移出/就地焚烧处理,焚烧产生的CO2占中国温室气体总排放量的3.8%,而秸秆还田直接减少了CO2排放增加了碳汇;氮肥投入会通过对作物产量、微生物活性的作用来影响土壤固碳机制,过量施氮直接增加NO2的排放,针对特定气候区和种植模式采取适当的氮素管理措施可以起到增加土壤碳固定,减少温室气体排放的目的;旱田采用高效灌溉措施,控制合理WFPS不仅能提高作物产量,还可增加土壤碳固定、减少温室气体排放;间套作农学措施、种植豆科固氮作物以及深根作物可以起到增加SOC的目的,减少农田土壤CO2释放的比例;将农田转变为自然植被覆盖,可增加土壤碳的固定,但此措施的实施应充分考虑由于农田面积减少而造成粮食产量下降、粮食涨价等一系列问题。
在我国许多有关土壤固碳与温室气体排放的研究尚不系统或仅限于短期研究,因此为正确评价各种管理措施下的农田固碳作用对温室气体排放的影响增加了不确定性。本文结果认为,保护性耕作/免耕,秸秆还田,合理的水、氮、农学等管理措施均有利于增加土壤碳汇,减少农田CO2排放,但对各因素协同条件下的碳汇及温室气体排放效应尚需进一步研究。在未来农田管理中,应合理利用管理者对农田环境影响的权利,避免由于过度干扰/管理造成的灾难性后果;结合农田碳库特点,集成各种农田减少温室气体排放、减缓气候变化的保护性方案;努力发展替代性能源遏制农田管理对化石燃料的过度依赖,从而充分发掘农田所具有的增加固碳和温室气体减排的潜力。
参考文献(Reference)
[1]Prentice I C,Farquhar G D, Fasham M J R, et al. The Carbon Cycle and Atmospheric Carbon Dioxide[A]. Houghton JT. Climate Change 2001: The Scientific Basis, Intergovernmental Panel on Climate Change[C]. Cambridge: Cambridge University Press, 2001:183-237.
[2]Robert H B, Benjamin J D, et al. Mitigation Potential and Costs for Global Agricultural Greenhouse Gas Emissions [J]. Agricultural Economics, 2008, 38 (2): 109-115.
[3]韩冰, 王效科,逯非, 等. 中国农田土壤生态系统固碳现状和潜力 [J]. 生态学报, 2008,28 (2): 612-619. [Han Bing, Wang Xiaoke, Lu Fei, et al. Soil Carbon Sequestration and Its Potential by Cropland Ecosystems in China [J]. Acta Ecologica Sinica, 2008, 28(2): 612-619.]
[4]李正才, 傅懋毅, 杨校生. 经营干扰对森林土壤有机碳的影响研究概述 [J]. 浙江林学院学报, 2005, 22(4): 469-474. [Li Zhengcai, Fu Maoyi,Yang Xiaosheng. Review on Effects of Management Disturbance on Forest Soil Organic Carbon [J]. Journal of Zhejiang Forestry College, 2005, 22(4): 469-474.]
[5]Lal R. Carbon Management in Agricultural Soils [J]. Mitigation and Adaptation Strategies for Global Change, 2007, 12: 303-322.
[6]高焕文,李洪文,李问盈.保护性耕作的发展 [J].农业机械学报,2008,39(9):43-48.[Gao Huanwen, Li Hongwen, Li Wenying. Development of Conservation Tillage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(9): 43-48.]
[7]Derpsch R. The Extent of Conservation Agriculture Adoption Worldwide: Implications and Impact [M]. Nairobi, Kenya, 2005. 3-7.
[8]Paustian K, Andren O, Janzen H H, et al. Agricultural Soils as a Sink to Mitigate CO2 Emissions [J]. Soil Use and Management, 1997, 13(4): 230-244.
[9]Follett R F. Soil Management Concepts and Carbon Sequestration in Cropland Soils [J]. Soil Tillage Research, 2001, 61(1-2): 77-92.
[10]金峰, 杨浩,赵其国.土壤有机碳储量及影响因素研究进展 [J].土壤, 2000,(1):11-17. [Jin Feng, Yang Hao, Zhao Qiguo. Advance in Evaluation the Effect of Soil Organic Carbon Sequestration and the Effect Factors [J]. Soil, 2000, (1):11-17.]
[11]West T O, Post W M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation: A Global Data Analysis [J]. Soil Science Society of America Journal, 2002, 66: 1930-1946.
[12]胡立峰,李洪文,高焕文. 保护性耕作对温室效应的影响 [J]. 农业工程学报, 2009, 25(5): 308-312. [Hu Lifeng, Li Hongwen, Gao Huanwen. Influence of Conservation Tillage on Greenhouse Effect [J]. Transactions of the CSAE, 2009, 25(5): 308-312.]
[13]Steinbach H S, Alvarez R. Changes in Soil Organic Carbon Contents and Nitrous Oxide Emissions after Introduction of NoTill in Pam Pean Agroecosystems [J]. Journal of Environmental Quality, 2006, 35(1): 3-13.
[14]Six J, Ogle S M, Breidt F J, et al. The Potential to Mitigate Global Warming with NoTillage Management is Only Realized When Practiced in the Long Term [J]. Global Change Biology, 2004, 10: 155-160.
[15]Smith P, Goulding K W, Smith K A, et al. Enhancing the Carbon Sink in European Agricultural Soils: Including Trace Gas Fluxes in Estimates of Carbon Mitigation Potential [J]. Nutrient Cycling in Agroecosystems, 2001, 60(1-3): 237-252.
[16]Choudhary M A, Akramkhanov A, Saggar S. Nitrous Oxide Emissions From a New Zealand Cropped Soil: Tillage Effects, Spatial and Seasonal Variability [J]. Agriculture, Ecosystems and Environment, 2002, 93(1): 33-43.
[17]Prieme A, Christensen S. Seasonal and Variation of Methane Oxidation in a Danish Spurce Forest [J]. Soil Biology Biochemistry, 1997, 29(8): 1165-1172.
[18]万运帆, 林而达.翻耕对冬闲农田CH4和CO2排放通量的影响初探 [J].中国农业气象,2004, 25(3): 8-10.[Wan Yunfan, Lin Erda. The Influence of Tillage on CH4 and CO2 Emission Flux in Winter Fallow Cropland [J]. Chinese Journal of Agrometeorology, 2004, 25(3): 8-10.]
[19]王爱玲.黄淮海平原小麦玉米两熟秸秆还田效应及技术研究 [D].北京:中国农业大学,2000.[Wang Ailing. Effects and Techniques of Straw Return to Soil in WheatMaize Rotation of Huanghuaihai Plain [D]. Beijing: China Agricultural University, 2000.]
[20]王改玲,郝明德,陈德立.秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响[J].植物营养与肥料学报,2006.12(6):840-844.[Wang Gailing,Hao Mingde,Chen Deli.Effect of Stubble Incorporation and Nitrogen Fertilization on Denitrification and Nitrous Oxide Emission in an Irrigated Maize Soil[J].Plant Nutrition and Fertilizer Science.2006,12(6):840-844.]
[21]Vleeshouwers L M,Verhagen A.Carbon Emission and Sequestration by Agricultural Land Use:A Model Study for Europe[J].Global Change Biology,2002.(8):519-530.
[22]Lal R,Bruce J P.The Potential of World Grop Land Soils to Sequester C and Mitigate the Greenhouse Effect[J].Enviornmental Science & Policy,1999.(2):177-185.
[23]王绍强, 刘纪远. 土壤碳蓄积量变化的影响因素研究现状 [J]. 地球科学进展, 2002, 17 (4): 528-534. [Wang Shaoqiang, Liu Jiyuan. Research Status Quo of Impact Factors of Soil Carbon Storage [J]. Advance In Earth Sciences, 2002, 17 (4): 528-534.]
[24]Richard D. Chronic Nitrogen Additions Reduce Total Soil Respiration and Microbial Respiration in Temperate Forest Soils at the Harvard Forest Bowden [J]. Forest Ecology and Management, 2004, 196: 43-56.
[25]李明峰, 董云社, 耿元波, 等. 草原土壤的碳氮分布与CO2排放通量的相关性分析 [J]. 环境科学, 2004, 25(2): 7-11. [Li Mingfeng, Dong Yunshe, Geng Yuanbo, et al. Analyses of the Correlation Between the Fluxes of CO2 and the Distribution of C & N in Grassland Soils [J]. Environmental Science, 2004, 25(2): 7-11.]
[26]张秀君. 温室气体及其排放的研究 [J]. 沈阳教育学院学报, 1999, 1(2): 103-108. [Zhang Xiujun. Studies on Greenhouse Gas and Its Emission [J]. Journal of Shenyang College of Education, 1999, 1(2):103-108.]
[27]齐玉春, 董云社, 章申. 华北平原典型农业区土壤甲烷通量研究 [J].农村生态环境, 2002, 18(3): 56-58. [Qi Yuchun, Dong Yunshe, Zhang Shen. Methane Fluxes of Typical Agricultural Soil in the North China Plain[J]. Rural EcoEnvironment, 2002, 18(3): 56-58.]
[28]胡荣桂. 氮肥对旱地土壤甲烷氧化能力的影响 [J]. 生态环境, 2004, 13(1): 74-77. [Hu Ronggui. Effects of Fertilization on the Potential of Methane Oxidation in Upland Soil [J]. Ecology and Environment, 2004, 13(1): 74-77.]
[29]Erisman J W, Sutton M A, Galloway J, et al. How a Century of Ammonia Synthesis Changed the World [J]. Nature Geoscience, 2008, 1: 636-639.
[30]Bhatia A, Sasmal S, Jain N, et al. Mitigating Nitrous Oxide Emission From Soil Under Conventional and NoTillage in Wheat Using Nitrification Inhibitors [J]. Agriculture, Ecosystems and Environment, 2010, 136: 247-253.
[31]Lal R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security [J]. Science, 2004a, 304: 1623-1627.
[32]Liebig M A, Morgan J A, Reeder J D, et al. Greenhouse Gas Contributions and Mitigation Potential of Agricultural Practices in Northwestern USA and Western Canada [J]. Soil Tillage Research, 2005, 83: 25-52.
[33]Monteny G J, Bannink A, Chadwick D. Greenhouse Gas Abatement Strategies for Animal husbandry [J]. Agriculture, Ecosystems and Environment, 2006, 112: 163-170.
[34]Fierer N, Schimel J P. Effects of DryingWetting Frequency on Soil Carbon and Nitrogen Transformations [J]. Soil Biology Biochemistry, 2002, 34: 777-787.
[35]Cynthia M K, Dennis E R, William R H. Cover Cropping Affects Soil N2O and CO2 Emissions Differently Depending on Type of Irrigation [J]. Agriculture, Ecosystems and Environment, 2010, 137: 251-260.
[36]Akiyama H, McTaggart I P, Ball B C, et al. N2O, NO, and NH3 Emissions from Soil After the Application of Organic Fertilizers, Urea, and Water [J]. Water Air Soil Pollution, 2004, 156: 113-129.
[37]Linn D M, Doran J W. Effect of Waterfilled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and NonTilled Soils [J]. Soil Science Society of America Journal, 1984, 48: 1267-1272.
[38]Bateman E J, Baggs E M. Contributions of Nitrification and Denitrification to Nitrous Oxide Emissions from Soils at Different Waterfilled Pore Space [J]. Biology Fertility of Soils, 2005, 41: 379-388.
[39]Jarecki M, Lal R. Crop Management for Soil Carbon Sequestration Critical Reviews in Plant Sciences [J]Plant Sciences, 2003, 22: 471-502.
[40]Freibauer A, Rounsevell M, Smith P, et al. Carbon Sequestration in the Agricultural Soils of Europe [J]. Geoderma, 2004, 122: 1-23.
[41]Reganold J P, Palmer A S, Lockhart J C, et al. Soil Quality and financial Performance of Biodynamic and Conventional Farms in New Zealand [J]. Science, 1993, 260: 344-349.
[42]Pulleman M, Jongmans A, Marinissen J, et al. Effects of Organic Versus Conventional Arable Farming on Soil Structure and Organic Matter Dynamics in a Marine Loam in the Netherlands [J]. Soil Use and Management, 2003, 19: 157-165.
[43]Sainju U M, Schomberg H H, Singh B P, et al. Cover Crop Effect on Soil Carbon Fractions under Conservation Tillage Cotton [J]. Soil Tillage Research, 2007, 96: 205-218.
[44]McCracken D V, Smith M S, Grove J H, et al. Nitrate Leaching as Influenced by Cover Cropping and Nitrogen Source [J]. Soil Science Society of America Journal, 1994, 58: 1476-1483.
[45]Paustian, K. et al. Agricultural Mitigation of Greenhouse Gases: Science and Policy Options[R]. Council on Agricultural Science and Technology Report, 2004. 120.
Advance in Evaluation the Effect of Carbon Sequestration Strategies on
Greenhouse Gases Mitigation in Agriculture
SHI Yuefeng1 WU Wenliang1 MENG Fanqiao1 WANG Dapeng1 ZHANG Zhihua2
(1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
2. College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China)
Abstract
中图分类号 X22 文献标识码 A 文章编号 1002-2104(2011)08-0087-08 doi:10.3969/j.issn.1002-2104.2011.08.014
进入工业革命以来,大气中CO2浓度在不断升高,全世界大多数科学家已一致认为,不断增长的CO2浓度正导致全球温度上升,并可能带来持续的负面影响[1]。地表和大气之间的反馈对气候变化起着至关重要的作用,而农业生产过程不仅改变了地表环境,而且改变了大气、土壤和生物之间的物质循环、能量流动和信息交换的强度,因此带来了一系列环境问题,如土地沙化退化、水土流失、温室气体排放增强等。近十多年来,温室气体排放增加引起的全球气候变暖成为人们普遍关注的焦点,而农业则是CO2、CH4和N2O这三种温室气体的主要排放源之一[2]。据估计,农业温室气体占全球总温室气体排放的13.5%,与交通(13.1%)所导致温室气体排放相当[3]。因此,农田温室气体排放相关研究已成为目前国际研究热点之一。
1 农田温室气体净排放的涵义
农田是温室气体的排放源,但同时也具有固碳作用,研究农田温室气体排放的重点之一就是从“净排放”的角度综合考虑其“固”与“排”的平衡。如图1所示,在农田生态系统中,作物通过光合作用吸收大气中的CO2,而根和秸秆还田后分解转化成较稳定的有机碳(SOC),将CO2固定在土壤中。因此,SOC是农田生态系统的唯一的碳库。SOC的形成和土壤呼吸是一个同时进行的过程,采用黑箱的理论方法可得出,农田土壤固碳和土壤呼吸的共同作用最终体现为SOC变化量(dSOC)。农田土壤能排放CO2、N2O和CH4,其中CO2排放来自秸秆分解及土壤呼吸,已包含于dSOC中,故不再重复计算[4],而CH4则是由有机碳通过一系列反应后转化而成,从土壤释放到大气中后其增温效应比CO2强,则须加以考虑。农田生产物资(柴油、化肥、农药等)的使用所造成的温室气体(主要为CO2、N2O和CH4)排放亦需加以考虑。
综上所述,农田温室气体净排放计算组成因素为dSOC、农田土壤N2O和CH4的排放、农田生产物资的使用所造成的温室气体(主要为CO2、N2O和CH4)排放,影响以上组成因素的农业措施主要有耕作方式、施肥、水分管理、作物品种、轮作及间套作等。当土壤固定的碳(CO2-eq)大于农田土壤N2O和CH4、农田生产物资的使用所造成的
之则为碳源。
2 农田温室气体净排放的主要影响因素
农业生产过程中采用的农业措施(如耕作、施肥、灌溉等)影响着SOC含量、农田土壤温室气体排放及物资投入量,从而影响了农田温室气体净排放结果。因此,了解其主要的影响因素具有一定的现实指导意义,具体如下。
黄坚雄等:农田温室气体净排放研究进展
中国人口•资源与环境 2011年 第8期2.1 耕作方式
2.1.1 耕作方式对农田土壤有机碳含量的影响
目前,国内外学者基本一致认为,与传统翻耕相比,以少免耕和秸秆还田为主要特征的保护性耕作能主要提高0-10 cm土层SOC含量[5-10],而对深层SOC含量影响不大[11-12]。据估计,全世界平均每公顷耕地每年释放C素为75.34 t[13],而保护性耕作则相对减少了对土壤的扰动,是减少碳损失的途径之一。在美国,Kisselle等和Johnson等的研究表明,与传统耕作相比,以少免耕和秸秆还田为主要特征的保护性耕作提高了土壤碳含量[5-6],美国能源部门的CSiTE(Carbon Sequestration in Terrestrial Ecosystems)研究协会收集了76个的农业土壤碳固定的长期定位试验的数据进行分析,结果表明从传统耕作转变免耕,0-30 cm的土壤平均每年固定337±108 kg/hm2[14]碳。在加拿大,Vanden等分析对比了西部35个少耕试验,结果表明平均每年土壤碳固定的增长量为320±150 kg/hm2 [8]碳。国内的许多研究亦表明保护性耕作能提高SOC含量,如罗珠珠等和蔡立群等的试验表明,免耕和秸秆覆盖处理可显著增加SOC含量[9-10]。但也有部分的研究的结果表明免耕和秸秆还田没有显著增加土壤碳含量[15],可能的原因是SOC变化受气候变化的影响或测定年限较短造成的[12]。总体而言,与传统耕作相比,通过少免耕和秸秆还田等措施能提高SOC含量是受到广泛认同的结论。
2.1.2 耕作方式对农田土壤温室气体排放的影响
(1)耕作方式对农田CH4排放的影响。农田CH4在厌氧条件下产生,而在有氧条件下,土壤中的甲烷氧化菌可氧化CH4并将其当作唯一的碳源和能源。甲烷氧化菌在团粒结构较好的壤土中可保护自己免受干扰[16],有利于其氧化CH4,而耕作方式对土壤团粒结构有一定的影响[17]。许多研究结果表明,与传统耕作相比,保护性耕作减少CH4的排放。如David等在玉米农田的长期耕作试验的研究结果表明免耕是CH4的汇,而深松和翻耕则为CH4的源[18]。Verlan等和Liebig等的研究亦得出类似的结果[19]。在国内,隋延婷研究表明玉米农田常规耕作处理的CH4排放通量大于免耕处理的CH4的排放通量,由于在常规耕制度下土壤受到耕作扰动,促进了分解作用,导致土壤有机质含量下降,而免耕制度下减少了对土壤的扰动,从而增加了土壤有机质的平均滞留时间,降低了CH4排放量[20]。但亦有部分研究结果表明保护性耕作增加了CH4的排放,如Rex等的研究表明在玉米大豆轮作体系中免耕比深松和翻耕排放更多的CH4[21]。总体而言,少免耕措施能基本减少CH4排放。
(2)耕作方式对农田N2O排放的影响。土壤中N2O的产生主要是在微生物的参与下,通过硝化和反硝化作用完成。目前,耕作方式对农田N2O排放的影响没有较一致的结果。郭李萍研究表明,与传统耕作相比,免耕措施和秸秆还田处理的小麦农田的N2O排放量比传统耕作低,保护性耕作减少了土壤N2O的排放[22],李琳在研究不同耕作措施对玉米农田土壤N2O排放量影响的结果中表明,不同耕作方式土壤N2O排放量大小为翻耕>免耕>旋耕[23]。国外的一些研究结果亦与以上研究结果一致,如Malhi等的研究表明传统耕作处理的N2O排放高于免耕[24]。David等在玉米农田的耕作试验结果表明N2O年排放量最大为翻耕,其次为深松,最小免耕[18]。但也有部分研究结果与上述结果不同,如Bruce等的研究表明免耕会增加N2O的排放[25]。钱美宇在小麦农田的研究表明传统耕作方式农田土壤N2O排放量较高,单纯的免耕措施会降低N2O通量,而秸杆覆盖和立地留茬处理会相对增加免耕处理的农田土壤N2O通量[26]。总体而言,少免耕措施比传统耕作更能减少农田土壤N2O的排放的研究尚存在一定的争议,可能是土壤、气候等因素导致存在差异。
2.1.3 耕作方式对物资投入的影响
农业是能源使用的主要部分,Osman等指出,能源消耗指数和农业生产力有极显著的正相关性[27]。耕作方式改变意味着化石燃料的使用亦发生改变。农业生产过程中,耕地和收获两个环节耗能最大,实践表明,采用“免耕法”或“减少耕作法”每年每公顷能节省23 kg燃料碳。日本在北海道研究认为,在少耕情况下,每公顷可节省47.51 kg油耗,相当于125.4 kgCO2的量,总的CO2释放量相比传统耕作减少15%-29%[28]。实施保护性耕作将秸秆还田,能保土保水[29-30],从而减少了养分和水分投入所造成的温室气体排放。所以,培育土壤碳库是节约能源、减少污染、培肥土壤一举多得的措施[31]。晋齐鸣等的研究指出,保护性耕作田的致病菌数量较常规农田有较大幅度提高,并随耕作年限的延长而增加[32]。Nakamoto等的研究表明旋耕增加了冬季杂草的生物量,翻耕减少了冬季和夏季杂草多样性[33]。类似的,Sakine的研究表明深松处理杂草密度最高,其次为旋耕,最小为翻耕[34]。因此,因保护性耕作导致土壤病害和草害的加重很可能会导致农药的使用量增加。总而言之,采取保护性耕作在一定程度上可减少柴油、肥料等的投入,但却可能增加农药等的投入,其对减少农田温室气体排放的贡献需综合两者的效应。
2.2 施肥
2.2.1 施肥对农田土壤有机碳含量的影响
在农田施肥管理措施中,秸秆和无机肥配施、秸秆还田、施有机肥、有机肥和无机肥的施用均能提高SOC的含量[35-36],其中,有机肥和无机肥配施的固碳潜力较大[37]。Loretta等在麦玉轮作体系中长期施用有机肥和无机肥的试验结果表明,从1972至2000年,单施无机氮肥处理的SOC均变化不明显,而有机粪肥和秸秆分别配施无机氮肥均能显著提高SOC含量[38]。Cai等在黄淮海地区开展14年定位的试验结果表明,施用NPK肥和有机肥均能提高0-20 cm土层土壤的有机碳含量。有机肥处理的SOC含量最高,为12.2 t/hm2碳,NPK处理的作物产量最高,但SOC含量却较低,为3.7 t/hm2碳,对照为1.4 t/hm2碳。因此,有机肥和无机化肥配施既能保证产量,又能提高SOC含量[37]。Purakayastha等的研究亦得出相同结论[39]。总而言之,施肥(特别是配施)能提高SOC含量的研究结果较一致。
2.2.2 施肥对农田土壤温室气体排放的影响
农田是N2O和CH4重要的排放源之一,其中农田N2O排放来自土壤硝化与反硝化作用,而施用氮肥可为其提供氮源。N2O的排放量与氮肥施用量成线性关系,随着无机氮施用的增加,N2O的产生越多[40]。项虹艳等的研究表明施氮处理对紫色土壤夏玉米N2O排放量显著高于不施氮肥处理[41]。Laura等的试验也得出了相同的结果,且有机物代替化肥能减少N2O的排放[42]。孟磊等在旱地玉米农田的研究及秦晓波等在水稻田的研究表明施有机肥处理下N2O的排放通量比施无机肥处理小[43-44],但在水稻田中施有机肥促进了CH4的排放[45]。石英尧等的研究表明随着氮肥用量的增加,稻田CH4排放量增加[46]。此外,施肥种类对温室气体排放亦有一定的影响[47]。总体而言,施肥对土壤N2O和CH4排放有影响,N2O排放主要受无机氮肥影响较大,且在一定程度上随氮肥用量的增大而增大,而CH4主要受有机物料的影响较大,可能是有机物料为CH4的产生提供了充足的碳源。
2.3 水分管理
农田土壤N2O在厌氧和好氧环境下均能产生,而CH4则是在厌氧环境下产生。水分对土壤农田透气性具有重要的调节作用,是影响农田土壤N2O和CH4排放的重要因素之一。旱地土壤含水量与土壤中的硝化作用和反硝化作用具有重要的相关性,N2O排放通量与土壤含水量显著正相关,直接影响着土壤N2O的排放[48]。Ponce等的试验指出,在一定程度上随着土壤含水量的增加,N2O的产生越多,提高含水量促进N2O的产生[49],Laura等亦得出相似的研究结果[42]。Liebig等、Metay等和郭李萍在其研究当中均指出CH4在旱地土壤表现为一个弱的碳汇[19,22],其对农田温室气体排放的贡献较小。因此,在旱田的水分管理中要提倡合理灌溉。
水稻田是一个重要的N2O和CH4的排放源,并且排放通量的时空差异明显[50]。稻田淹水下由于处于极端还原条件,淹水期间很少有N2O的排放[22],但稻田淹水制造了厌氧环境,有利于CH4的产生[51],且管理措施对其有重要影响,假如水稻生长季至少搁田一次,全球每年可减少4.1×109t的CH4排放,但搁田增加了N2O的排放[52]。Towprayoon等的研究亦得出了类似的结论[53],因此,稻田水分对减少N2O和CH4排放有相反作用,需综合进行平衡管理。
2.4 作物品种、轮作及间套作
品种对农业减排亦有重要作用。如水稻品种能影响CH4排放,由于根氧化力和泌氧能力强的水稻品种能使根际氧化还原电位上升,抑制甲烷的产生,同时又使甲烷氧化菌活动增强,促进甲烷的氧化,则产生的甲烷就减少,排放量亦会减少[54]。抗虫棉的推广亦能减少农药使用,减少了农药制造的能耗;培育抗旱作物能减少对水分的需求量,使之更能适应在逆境中生长,增加了生态系统的生物量,作物还田量增加,有利于SOC的积累。品种的改良与引进能增加生物多样性,改善了作物生态环境,可减少物资的投入[55]。因此,品种选育是减少农田温室气体排放的途径之一。
轮作、间套作在一定程度上能减少农田温室气体排放。Andreas等指出,轮作比耕作更有减排潜力,其对20年的长期定位的试验结果分析表明,玉米-玉米-苜蓿-苜蓿轮作体系土壤固碳量较大,每年固碳量为289 kg/hm2碳,而玉米-玉米-大豆-大豆轮作体系表现为碳源。与玉米连作对比,将豆科植物整合到以玉米为主的种植系统能带来多种效益,如提高产量、减少投入、固碳并减少温室气体的排放。玉米和大豆、小麦和红三叶草轮作能减少相当于1 300 kg/hm2CO2的温室气体。苜蓿与玉米轮作每年能减少至少2 000 kg/hm2CO2。豆科植物具有固氮作用,比减少氮肥使用、减少化肥生产和土壤碳固定减少温室气体排放更有显著贡献[8]。West and Post总结了美国67个长期定位试验,表明轮作使土壤平均每年增加200±120 kg/hm2碳[56]。Nzabi等的研究表明,豆科植物秸秆还田能提高SOC,但由豆科种类决定[57]。Rao等研究表明,间作使SOC减少[58]。Maren等研究表明,玉米与大豆间作系统N2O排放量显著比玉米单作少但比大豆单作多,且间作系统是比较大的CH4汇[59]。陈书涛等研究表明不同的轮作方式对N2O排放总量影响不同[60]。总体而言,作物类型对温室气体排放具有较大的差异性,部分轮作模式和间作模式对提高农田SOC含量,减少农田温室气体排放具有一定的贡献。
3 讨 论
3.1 国内外关于农田温室气体净排放研究的差异
人们在关注到固碳减排的重要性的同时,也意识到了农业生态系统具有巨大的固碳潜力。固碳指大气中的CO2转移到长期存在的碳库的过程[4,61],农田生态系统中的碳库则是土壤有机碳库。据估计,到2030年全球农业技术减排潜力大约为5.5×109-6.0×109 t CO-ep2,其中大约89%可通过土壤固碳实现[3]。然而,系统范围的界定对土壤固碳潜力计算的结果存在较大的影响。目前,国内和国外在此方面的研究取向存在着一定的差异。
国外学者关于农田温室气体排放计算的相关研究大多考虑了农业措施(如物资投入)造成的隐藏的温室气体排放[61-63],并得出了一些比较有价值的结论,如Ismail等根据肯塔基州20年的玉米氮肥长期定位试验计算结果表明,施用氮肥显著地促进了土壤碳固定,然而来自氮肥使用所排放的CO2抵消了土壤固定的碳的27%-65%。类似的,瑞士的Paustian等也指出41%土壤固定的碳被氮肥生产使用所抵消。Gregorich等则指出增长的有机碳被生产使用的氮肥抵消了62%[63]。
相较之下,国内对农田温室气体排放的研究主要集中在农田土壤的碳源碳汇范围,多数没有考虑物资投入所造成的排放。国内从“净排放”进行的相关研究较少,类似问题从近期开始得到重视,如逯非等就提出了净减排潜力(Net Mitigation Potential,NMP)[64],如伍芬琳等估算了华北平原小麦-玉米两熟地区保护性耕作的净碳排放[65],但没有考虑农田土壤N2O和CH4的排放。韩宾等从耕作方式转变的角度研究了麦玉两熟区的固碳潜力[66],亦没有考虑农田土壤N2O和CH4的排放。
综上所述,国内外关于农田温室气体排放的研究差异主要在于对温室气体排放计算范围的界定,考虑隐藏的碳排放更能体现农田温室气体的真实排放。农田温室气体净排放能真实地反应出一系列农业措施的综合效应是碳源还是碳汇,具有重要的指导意义,需加以重视。
3.2 研究展望
鉴于国内农田温室气体排放研究的重要性及不足,在未来关于农田温室气体排放计算的研究当中,需注重以下两点:一是加强各种农业措施对农田温室气体排放影响的研究。农业生态系统是一种复杂的系统,由于气候、土壤等的差异,同一研究问题得出的结论存在一定的差异,加强研究不同的农业措施对温室气体排放的影响及机制,在各个环节中调控农田温室气体排放具有重要的意义。主要包括以下内容:①综合考虑农业措施对深层SOC含量的影响条件下,研究农田土壤是否为一个碳汇。以往对其的研究主要集中在土壤表层,如保护性耕作能提高表层SOC含量,但亦得出保护性耕作对深层SOC含量影响不大[11-12],仅极少研究报道保护性耕作能提高深层SOC含量[67];②加强耕作措施和施肥对SOC增长潜力的研究[68],如由于气候及土壤环境有差异,如同一物质的玉米秸秆在中国东北地区的腐殖化系数为0.26-0.48,而在江南地区则是0.19-0.22[69],从而对SOC的累计影响较大。中国农业的区域性特点明显,了解不同区域的SOC增长潜力在该领域研究具有重要意义;③加强轮作和间套作对SOC含量及温室气体排放的影响。在国内,轮作和间套作对温室气体排放的研究较少,如陈书涛等的研究表明玉米-小麦轮作农田的N2O年度排放量比水稻-小麦轮作高[60]。Oelbermann等研究表明间作能提高SOC含量[70];④研究减少物质投入的农业措施,且主要为减少氮肥的投入。保护性耕作对减少化石能源有重要作用,但农业投入造成温室排放和农田土壤N2O排放的主要因素为氮肥生产及投入;⑤水稻田水分管理。连续淹水条件下水稻田排放的温室气体主要为CH4,而搁田可减少CH4排放,但却增加了排放N2O排放增加。因此,需要在水稻田提出适宜的水分管理制度。二是加强国内农田温室气体净排放的计算研究。国内近年来对农田温室气体的排放的计算目前,国内对净排放的研究存在不足,主要关注在SOC及农田土壤温室气体排放两方面。近年国外学者对国内学者发表文章的回应就体现了国内在该方面研究的不足[71-72]。值得一提的是,农田投入所造成的温室气体排放清单对净排放研究具有重要影响,如生产等量的纯N、P2O5和K2O,如发达国家的生产造成的温室气体排放分别约是我国的31.1%、40.5%和45.3%[14,73]。因此,排放清单研究有待进一步的加强和跟踪研究。
总之,加强该领域的研究,能在温室气体减排的角度上得出最佳的减排措施及途径,能为提出更合理的建议和制定更准确的决策提供一定的参考依据。
参考文献(Reference)
[1]Baker J M, Griffis T J. Examining Strategies to Improve the Carbon Balance of Corn/soybean Agriculture Using Eddy Covariance and Mass Balance Techniques[J]. Agricultural and Forest Meteorology ,2005, 128 (3-4): 163-177.
[2]李明峰,董云社,耿元波,等.农业生产的温室气体排放研究进展[J].山东农业大学学报:自然科学版, 2003,34(2):311-314.[Li Mingfeng, Dong Yunshe, Geng Yuanbo, et al. Progress of Study on Emissions of Greenhouse Gases of Agriculture[J]. Journal of Shandong Agricultural University Natural Science Edition, 2003,34(2):311-314.]
[3]Metz B, Davidson O R, Bosch P R, et al. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. United Kingdom and New York: Cambridge University Press, 2007.
[4]West T O, Marland G. Net Carbon Flux from Agricultural Ecosystems:Methodology for Full Carbon Cycle Analyses[J].Environmental Pollution, 2002, 116(3,):439-444.
[5]Kisselle K W, Garrett C J, Fu S, et al .Budgets for Rootderived C and Litterderived C:Comparison Between Conventional Tillage and No Tillage Soils [J]. Soil Biology and Biochemistry, 2001,33(7-8):1067-1075.
[6]Johnson J M F, Reicosky D C, Allmaras R R, et al. Greenhouse Gas Contributions and Mitigation Potential of Agriculture in the Central USA [J].Soil and Tillage Research, 2005,83(1):73-94.
[7]Hector J C, Alan J, Joey N S, et al. Soil Organic Carbon Fractions and Aggregation in the Southern Piedmont and Coastal Plain [J]. Soil Science Society of America Journal , 2008, 72 (1) : 221-230.
[8]Andreas M A, Alfons W, Ken J, et al. Cost Efficient Rotation and Tillage Options to Sequester Carbon and Mitigate GHG Emissions from Agriculture in Eastern Canada.Agriculture [J]. Ecosystems & Environment, 2006,117(2-3):119-127.
[9]罗珠珠,黄高宝,辛平,等.陇中旱地不同保护性耕作方式表层土壤结构和有机碳含量比较分析[J].干旱地区农业研究,2008,26(4):53-58.[Luo Z Z, Huang G B, Xin P, et al. Effects of Tillage Measures on Soil Structure and Organic Carbon of Surface Soil in Semiarid Area of the Western Loess Plateau [J]. Agricultural Research in the Arid Areas, 2008,26(4):53-58.]
[10]蔡立群,齐鹏,张仁陟.保护性耕作对麦-豆轮作条件下土壤团聚体组成及有机碳含量的影响[J].水土保持学报,2008,22(2):141-145.[Cai L Q, Qi P, Zhang R Z. Effects of Conservation Tillage Measures on Soil Aggregates Stability and Soil Organic Carbon in Two Sequence Rotation System with Spring Wheat and Field Pea[J]. Journal of Soil and Water Conservation, 2008,22(2):141-145.]
[11]John M B, Tyson E O, Rodney T, et al. Tillage and Soil Carbon Sequestration:What Do We Really Know?[J]. Agriculture, Ecosystems & Environment, 2007 ,118(1-4):1-5.
[12]Z. 威利,B. 查米迪斯. 清洁农作和林作在低碳经济中的作用―如何确立、测量和核证温室气体抵消量[M].北京: 科学出版社,2009:71. [Willey Z, Chameides B. Harnessing Farms and Forests in the LowCarbon Economy:How to Create, Measure, and Verify Greenhouse Gas Offsets[M]. Beijing: Science Press, 2009:71.]
[13]张厚.农业减排温室气体的技术措施[J].农业环境与发展, 1998,1:17-21[Zhang Hou. The Techniques on Reduce Greenhouse Gas Emission in Agriculture[J].AgroEnvironment and Development, 1998,1:17-21.]
[14]West T O, Gregg M. A Synthesis of Carbon Sequestration, Carbon Emissions, and Net Carbon Flux in Agriculture:Comparing Tillage Practices in the United States[J]. Agriculture, Ecosystems & Environment, 2002, 9(1-3):217-232.
[15]Shashi B V, Achim D, Kenneth G, et al. Annual Carbon Dioxide Exchange in Irrigated and Rainfed Maizebased Agroecosystems[J]. Agricultural and Forest Meteorology, 2005,13(1-2):77-96.
[16]李俊,同小娟,于强.不饱和土壤CH4的吸收与氧化[J].生态学报,2005,25(1):141-147[LI J,Tong X J,Yu Q.Methane Uptake and Oxidation by Unsaturated Soil[J]. Acta Ecologica Sinica,2005,25(1):141-147]
[17]廉晓娟,吕贻忠,刘武仁,等.不同耕作方式对黑土有机质和团聚体的影响[J]. 天津农业科学, 2009,15(1):49-51.[Lian X J,Lu Y Z,Liu W R, et al.Effect of Different Tillage Managements on Organic Matter and Aggregates In Black Soil[J]. Tianjin Agricultural Sciences, 2009,15(1):49-51.]
[18]David A N U, Rattan L, Marek K J.Nitrous Oxide and Methane Emissions from Longterm Tillage Under a Continuous Corn Cropping System in Ohio[J].Soil and Tillage Research, 2009,104(2):247-255.
[19]Liebig M A, Morgan J A, Reeder J D, et al. Greenhouse Gas Contributions and Mitigation Potential of Agricultural Practices in Northwestern USA and Western Canada[J].Soil and Tillage Research, 2005, 83(1):25-52.
[20]隋延婷.免耕与常规耕作下旱田CH4、N2O和CO2排放比较研究[D].长春:东北师范大学,2006.[Sui parative Study of Emissions of NO2 and CH4 and CO2 in Glebe Systems by Notillage and Normal Tillage[D].Chang Chun:Northeast Normal University,2006.]
[21]Rex A O, Tony J V, Doug R S, et al. Soil Carbon Dioxide and Methane Fluxes from Longterm Tillage Systems in Continuous Corn and Cornsoybean Rotations[J].Soil and Tillage Research, 2007,95(1-2):182-195.
[22]郭李萍.农田温室气体排放通量与土壤碳汇研究[D]. 北京:中国农业科学院研究生院, 2000.[Guo L P. Study on the Emission Flux of the Green house Gases from CroPland Soils and the soil Carbon Sink in China[D]. Beijing: Graduate School of Chinese Academy of Agricultural Sciences, 2000.]
[23]李琳.保护性耕作对土壤有机碳库和温室气体排放的影响[D]. 中国农业大学,2007.[Li L. Influence of Conservation Tillage on Soil Organic Carbon pool and Greenhouse Gases Emission[D]. Beijing: China Agricultural University, 2007.]
[24]Malhi S S, Lemke R. Tillage, Crop Residue and N Fertilizer Effects on Crop Yield, Nutrient Uptake, Soil Quality and Nitrous Oxide Gas Emissions in a Second 4yr Rotation Cycle[J].Soil and Tillage Research, 2007 ,(1-2):269-283.
[25]Ball B C,Scott A, Parker J P. Field N2O, CO2 and CH4 Fluxes in Relation to Tillage, Compaction and Soil Quality in Scotland[J]. Soil & Tillage Research, 1999,53(1): 29-39.
[26]钱美宇.干旱半干旱区保护性耕作对农田土壤温室气体通量的影响[D].兰州:甘肃农业大学,2008.[Qian M Y. Effect of Conservation Tillage on Fluxes of Greenhouse Gases of Arable Soil in the Arid and Semiarid Regions[D].Lanzhou:Journal of Gansu Agricultural University, 2008.]
[27]Karkacier O, Gokalp G Z, Cicek A. A Regression Analysis of the Effect of Energy Use in Agriculture[J].Energy Policy, 2006,34(18):3796-3800.
[28]刘建民,胡立峰,张爱军.保护性耕作对农田温室效应的影响研究进展[J].中国农学通报,2006,22(8):246-249.[Liu J M, Hu L F, Zhang A J.Research Progress in Greenhouse Effect Caused by Conservation Tillage[J]. Chinese Agricultural Science Bulletin,2006,22(8):246-249.]
[29]马春梅,孙莉,唐远征,等.保护性耕作土壤肥力动态变化的研究――秸秆覆盖对土壤水分的影响[J].农机化研究,2006,(5):54-56.[Ma C M, sun L, Tang Y Z, et al. Study of Dynamics Variation of Soil Fertilizer in Conservation Tillage:The Effect of Covering Straw on Soil Moisture[J].Journal of Agricultural Mechanization Research. 2006,(5):54-56.]
[30]张星杰,刘景,李立军,等.保护性耕作对旱作玉米土壤微生物和酶活性的影响[J]. 玉米科学,2008,16(1):91-95,100.[Zhang X J,Liu J,Li L J, et al. Effects of Different Conservation Tillage on Soil Microbes Quantities and Enzyme Activities in Dry Cultivation[J]. Journal of Maize Sciences, 2008,16(1):91-95,100.]
[31]黄鸿翔.培育土壤碳库 减排二氧化碳[E].省略/caas/news/showYb.asp?id=4693[Huang H X. Cultivating Siol C Pool Reducing Carbon Dioxide[E].省略/caas/news/showYb.asp?id=4693 ]
[32]晋齐鸣,宋淑云,李红,等.不同耕作方式玉米田土壤病原菌数量分布与病害相关性研究[J]. 玉米科学,2007,15(6): 93-96.[Jing Q M, Song S Y,Li H, et al. Investigations on Soil Pathogens Quantitative Distribution and Diseases Access from Different Cultivated Types in the Maize Fields[J]. Journal of Maize Sciences, 2007,15(6): 93-96.]
[33]Nakamoto T, Yamagishi J, Miura F. Effect of Reduced Tillage on Weeds and Soil Organisms in Winter Wheat and Summer Maize Cropping on Humic Andosols in Central Japan[J]. Soil and Tillage Research, 2006, 85(1-2):94-106.
[34]Sakine O.Effects of Tillage Systems on Weed Population and Economics for Winter Wheat Production Under the Mediterranean Dryland Conditions[J].Soil and Tillage Research, 2006, 87(1):1-8.
[35]Elisée O, Abdoulaye M, Lijbert B, et al. Tillage and Fertility Management Effects on Soil Organic Matter and Sorghum Yield in Semiarid West Africa[J]. Soil and Tillage Research, 2007,94(1): 64-74.
[36]陈茜,梁成华,杜立宇,等.不同施肥处理对设施土壤团聚体内颗粒有机碳含量的影响[J]. 土壤,2009,41(2):258-263.[Chen Q, Liang C H, Du L Y, et al. Effects of Different Fertilization Treatments on Organic Carbon Contents of InterAggregate Particulate in Greenhouse Soil[J]. Soils, 2009,41(2):258-263.]
[37]Cai Z C, Qin S W. Dynamics of Crop Yields and Soil Organic Carbon in a Longterm Fertilization Experiment in the HuangHuaiHai Plain of China[J]. Geoderma, 2006, 136(3-4):708-715.
[38]Loretta T, Anna N, Gianni G, et al.Can Mineral and Organic Fertilization Help Sequestrate Carbon Dioxide in Cropland[J].European Journal of Agronomy, 2008, 29(1):13-20.
[39]Purakayastha T J, Rudrappa L, Singh D, et al. Longterm Impact of Fertilizers on Soil Organic Carbon Pools and Sequestration Rates in Maizewheatcowpea Cropping System[J]. Geoderma, 2008,144(1-2):370-378.
[40]Gregorich E G, Rochette P, Vanden B A J, et al.Greenhouse Gas Contributions of Agricultural Soils and Potential Mitigation Practices in Eastern Canada[J].Soil and Tillage Research, 2005, 83(1):53-72.
[41]项虹艳,朱波,王玉英,等. 氮肥对紫色土夏玉米N2O排放和反硝化损失的影响[J].浙江大学学报:农业与生命科学版, 2007,33 (5):574-583.[Xiang H Y, Zhu B, Wang Y Y, et al.Effects of Nitrogen Fertilizer for Maize on Denitrification Loss and N2O Emission in Purple Soil[J]. Journal of Zhejiang University Agriculture and Life Sciences Edition, 2007,33 (5):574-583.]
[42]Laura S M, Vallejo A,Dick J, et al. The Influence of Soluble Carbon and Fertilizer Nitrogen on Nitric Oxide and Nitrous Oxide Emissions from Two Contrasting Agricultural Soils[J]. Soil Biology and Biochemistry, 2008, 40(1):142-151.
[43]孟磊,蔡祖聪,丁维新. 长期施肥对华北典型潮土N分配和N2O排放的影响[J]. 生态学报, 2008, 28( 12): 6197-6203.[Meng L, Cai Z C, Ding W X. Effects of Longterm Fertilization on N Distribution and N2O Emission in Fluvoaquci Soil in North China[J]. Acta Ecologica Sinica, 2008, 28(12): 6197-6203.]
[44]秦晓波,李玉娥,刘克樱,等.不同施肥处理对稻田氧化亚氮排放的影响[J].中国农业气象, 2006,27(4):273-276.[Qin X B, Li Y E, Liu K Y, et al. Effects of Different Fertilization Treatments on N2O Emission from Rice Fields in Hunan Province[J]. Chinese Journal of Agrometeorology, 2006,27(4):273-276.]
[45]秦晓波,李玉娥,刘克樱,等.不同施肥处理稻田甲烷和氧化亚氮排放特征[J].农业工程学报, 2006,22(07):143-148.[Qin X B, Li Y E, Liu K Y, et al. Methane and Nitrous Oxide Emission from Paddy Field Under Different Fertilization Treatments[J].Transactions of the Chinese Society of Agricultural Engineering, 2006,22(07):143-148.]
[46]石英尧,石扬娟,申广勒,等. 氮肥施用量和节水灌溉对稻田甲烷排放量的影响[J].安徽农业科学, 2007,35(02): 471-472.[Shi Y Y, Shi Y J, Shen G L,et al. Effect of Different Nitrogenous Fertilizer Level on the Release of Methane[J]. Journal of Anhui Agricultural Sciences, 2007,35(02): 471-472.]
[47]Smith K A, McTaggart I P, Tsuruta H.Emissions of N2O and NO Associated with Nitrogen Fertilization in Intensive Agriculture, and the Potential for Mitigation[J]. Soil Use and Management, 1997,13(s4): 296-304.
[48]刘运通,万运帆,林而达,等.施肥与灌溉对春玉米土壤N2O排放通量的影响[J].农业环境科学学报,2008,27(3): 997-1002.[Liu Y T, Wan Y F, Lin E D, et al. N2O Flux Variations from Spring Maize Soil Under Fertilization and Irrigation[J]. Journal of AgroEnvironment Science,2008,27(3): 997-1002.]
[49]Ponce M A, Boeckxb P F,Gutierrez M, et al.Inflence of Water Regime and N Availability on the Emission of Nitrous Oxide and Carbon Dioxide from Tropical, Semiarid Soils of Chiapas, Mexico[J]. Journal of Arid Environments ,2006,64(1):137-151.
[50]张远,齐家国,殷鸣放,等.辽东湾沿海水稻田温室气体排放的时空动态模拟[J].中国农业科学,2007,40(10):2250-2258.[Zhang Y, Qi J G, Yin M F, et al.Simulating SpatialTemporal Dynamics of Greenhouse Gas Emission From Rice Paddy Field in Liaodong Coastal Region, China[J]. Scientia Agricultura Sinica, 2007,40(10):2250-2258.]
[51]陈槐,周舜,吴宁,等. 湿地甲烷的产生、氧化及排放通量研究进展[J]. 应用与环境生物学报, 2006,12(5): 726-733.[Chen K, Zhou S, Wu N, et al. Advance in Studies on Production, Oxidation and Emission Flux of Methane from Wetlands[J] .Chinese Journal Of Applied And Environmental Biology, 2006,12(5): 726-733.]
[52]Yan X Y, Akiyama H, Yagi K, et al. Global Estimations of the Inventory and Mitigation Potential of Methane Emissions from Rice Cultivation Conducted Using the 2006 Intergovernmental Panel on Climate Change Guidelines [J]. Global Biogeochemical Cycles, 23, GB2002.
[53]Towprayoon S, Smakgahn K, Poonkaew S. Mitigation of Methane and Nitrous Oxide Emissions from Drained Irrigated Rice Fields[J]. Chemosphere,2005,59(11):1547-1556.
[54]曹云英,朱庆林,郎有忠,等.水稻品种及栽培措施对稻田甲烷放的影响[J].江苏农业研究,2000,21(3):22-27.[Cao Y Y,Zhu Q L,Lang Y Z, et al. Effect of Rice Varieties and Cultivation Approach on Methane Emission from Paddy Rice[J]. Jiangsu Agricultural Research , 2000,21(3):22-27.]
[55]李大庆. 我国农业发展可用低碳农业代替高碳农业[N].科技日报,2009-8-17(3). [ Li D Q.High Carbon Agriculture Can Be Replaced by Low Carbon Agriculture During the Development of Agriculture in Our Country[N]. Science and Technology Daily, 2009-8-17(3).]
[56]West T O, Post W M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation: A Global Data Analysis[J]. Soil Science Society of America,2002,66:1930-1946.
[57]Nzabi A W, Makini F, Onyango M, et al. Effect Of Intercropping Legume With Maize On Soil Fertility And Maize Yield[E]. 省略/fileadmin/publications/Legume_Project/Legume2 Conf_2000/26.pdf.
[58]Rao M R, Mathuva M N. Legumes for Improving Maize Yields and Income in Semiarid Kenya[J].Agriculture, Ecosystems & Environment, 2000,78( 2):123-137
[59]Maren Oelhermann, Echarte L, Vachon K, et al .The Role of Complex Agroecosystems in Sequestering Carbon and Mitigating Global Warming[C]. Earth and Environmental Science 6,2009,242031.
[60]陈书涛, 黄耀, 郑循华, 等. 轮作制度对农田氧化亚氮排放的影响及驱动因子[J]. 中国农业科学, 2005, 38(10):2053-2060.[Chen S T, Huang Y, Zheng X H, et al. Nitrous Oxide Emission from Cropland and Its Driving Factors Under Different Crop Rotations[J]. Scientia Agricultura Sinica, 2005, 38(10):2053-2060.]
[61]Lal R. Agricultural Activities and the Global Carbon Cycle[J]. Nutrient Cycles in Agroecosystems ,2004,70, 103-116.
[62]Philip G R , Eldor A P, Richard R H.Greenhouse Gases in Intensive Agriculture:Contributions of Individual Gases to the Radiative Forcing of the Atmosphere[J].Science ,2000,289(5486):1922-1925.
[63]William H S. Carbon Sequestration in Soils:Some Cautions Amidst Optimism[J]. Agriculture, Ecosystems and Environment,2000,82(1-3):121-127.
[64]逯非,王效科,韩冰,等.农田土壤固碳措施的温室气体泄漏和净减排潜力[J].生态学报, 2009,29(9):4993-5005.[Lu F, Wang X K, Han B, et al. Researches on the Greenhouse Gas Leakage and Net Mitigation Potentials of Soil Carbon Sequestration Measures in Croplands[J]. Acta Ecologica Sinica, 2009,29(9):4993-5005.]
[65]伍芬琳,李琳,张海林,等.保护性耕作对农田生态系统净碳释放量的影响[J].生态学杂志, 2007, 26 (12):2035- 2039. [Wu F L, Li L, Zhang H L, et al. Effects of Conservation Tillage on Net Carbon Flux from Farmland Ecosystems[J].Chinese Journal of Ecology, 2007, 26 (12):2035-2039.]
[66]韩宾,孔凡磊,张海林,等. 耕作方式转变对小麦玉米两熟农田土壤固碳能力的影响[J]. 应用生态学报,2010,21(1): 91-98.[Han B,Kong F L,Zhang H L, et al.Effects of Tillage Conversion on Carbon Sequestration Capability of Farmland Soil Doubled Cropped with Wheat and Corn[J].Chinese Journal of Applied Ecology, 2010,21(1): 91-98.]
[67]Robert M B, Claudia P J, Pauloc C, et al. Carbon Accumulation at Depth in Ferralsols under Zerotill Subtropical Agriculture[J]. Global Change Biology, 2010, 16(2): 784-795.
[68]孙文娟, 黄耀, 张稳, 等. 农田土壤固碳潜力研究的关键科学问题[J]. 地球科学进展, 2008,23(9): 996-1004.[Sun W J, Huang Y, Zhang W, et al. Key Issues on Soil Carbon Sequestration Potential in Agricultural Soils[J]. Advances in Earth Science, 2008,23(9): 996-1004.]
[69]王淑平,周广胜,吕育财, 等. 中国东北样带 (NECT) 土壤碳、 氮、 磷的梯度分布及其与气候因子的关系[J]. 植物生态学报,2002,26(5):513-517.[Wang S P, Zhou G S, Lu Y C, et al. Distribution of Soil Carbon, Nitrogen and Phosphorus along Northeast China Transect (NECT) and Their Relationships with Climatic Factors[J]. Acta Phytoecologica Sinica, 2002,26(5):513-517.]
[70]Oelbermann M, Echarte L. Evaluating Soil Carbon and Nitrogen Dynamics in Recently Established Maizesoyabean Intercropping Systems[J]. European Journal of Soil Science, 2011, 62:35-41.
[71]Lu F, Wang X, Han B, et al. Soil Carbon Sequestrations by Nitrogen Fertilizer Application, Straw Return and Notillage in China’s Cropland[J]. Global Change Biology, 2009, 15(2):281-305.
[72]William H S. On Fertilizerinduced Soil Carbon Sequestration in China’s Croplands[J]. Global Change Biology, 2010,16(2):849-850.
[73]梁龙. 基于LCA的循环农业环境影响评价方法探讨与实证研究[D].北京:中国农业大学,2009. [Liang L. Environmental Impact Assessment of Circular Agriculture Based on Life Cycle Assessment:Methods and Case Studies[D]. Beijing: China Agricultural University, 2009.]
Research Progress of Net Emission of Farmland Greenhouse Gases
HUANG Jianxiong CHEN Yuanquan SUI Peng GAO Wangsheng
WANG Binbin WU Xuemei XIONG Jie SHI Xuepeng SUN Ziguang
最新研究表明,目前大气中CO2的浓度有379ppmv(2005年),而所有温室气体总体的浓度水平在433―477ppmvCO2当量,与Stern(2006年)设定的“大气层中温室气体浓度不高于550ppmvCO2当量”的目标只有约100ppmvCO2当量的距离。而目前全球温室气体的年排放量一直在增长。相比1970年,目前的年排放总量增长了70%,与1990年的水平相比也增长24%。其中CO2的年排放总量比1970年代增长80%,相比1990年水平增长28%。甲烷的排放量相比1970年增长40%,相比1990年增长11%。氮氧化物的排放相比1970年增长50%,相比1990年增长11%。人口增长和人均GDP的增加是全球温室气体排放的主要驱动力,IEA的一项最新研究认为,仅考虑这两个方面的影响,全球温室气体排放总量还将持续增长到2030年。只有靠加快技术进步、实现对化石燃料的替代,使得全球的碳排放强度不断降低,才有可能使得碳排放总量出现下降态势。
从部门上看,CO2排放量增加最快的部门是电力行业和公路运输业,家庭和服务业的CO2排放量在过去35年中的排放量基本稳定在同一水平。2004年电力部门产生的CO2排放量占人为排放总量的27%,成为第一排放部门。从来源的角度看,2004年的温室气体排放增加量中,26%来自于能源供应(电力和热力),有19%来自于工业,有14%来自于农业,17%来自于土地利用,13%来自于交通运输,8%来自于居民生活、商业和服务业。
从地区和国家来看,不同地区的CO2排放趋势存在巨大差别。北美、亚洲和中东地区的CO2排放量从1972年开始都还在不断增加,但是增长越来越缓慢。前苏联地区的排放量从1990年开始则呈下降趋势,目前比1972年的水平还略低。
除了前苏联地区的国家之外,2002年二氧化碳排放比1990年有所减少的发达国家有德国、英国、瑞典和瑞士。英国的排放量减少主要原因是燃料由煤炭改为天然气,德国排放量减少的主要原因则是褐煤用量大幅度减少。
还有一些国家通过减少非二氧化碳温室气体排放来实现减少温室气体排放。法国大幅减少化工业N2O排放量,从而使温室气体排放总量降低。德国通过关闭废旧煤矿减少了45%的甲烷(CH4)排放量和30%的一氧化二氮(N2O)排放量。
二、减排政策的变化趋势
到目前为止,发达国家在减少温室气体排放方面主要是采取具有综合性的经济和财政政策,包括:自愿协议、能源/二氧化碳税、排放贸易、可再生能源或热电联产生产配额、能源效率标准、对可再生能源等的直接资金鼓励如优惠费率、赠款、免税措施等等。但是这些政策随着实施情况的差别,也在发生不断变化。以能源/CO2税收为例,已经从单纯税收向“税收+补贴”的形式转变。
从上世纪90年代初,一些发达国家为了提高财政收入和/或降低对国外石油供应的依赖程度而开始实行能源或以燃料碳含量为依据的CO2税。由于能源/CO2税具有减少能源消费和温室气体排放的作用,许多发达国家都把能源/二氧化碳税作为减少温室气体排放的重要措施。
但是,后来,为了避免能源/二氧化碳税影响本国工业在世界市场上的竞争力,一些国家对高耗能部门实行了低税率,挪威降低了海上油气生产的CO2税率,瑞典制造业的CO2税率已经改为标准税率的35%,某些能源密集型工业的税率也已经降低到接近为零税率,英国的能源密集型工业的税率仅为标准税率的20%。
为了激励节能技术的发展,又避免影响本国工业在国际市场的竞争力,很多国家变税收为补贴。实行了对可再生能源和热电联产等高能效技术的税收优惠或减免政策,以鼓励其供应和消费。从供应端来说,主要包括对与可再生能源生产或热电联产相关的各种税收如生产税、固定资产税、增值税、进口关税等的优惠或减免。
英国政府为热电联产的发展制定了税收优惠政策。2002年,英国的热电联产装机为4700MW,按照政府的目标,在2010年时要建成高效的热电联产10000MW,为此英国政府对热电联产不征收气候变化税,并以税收优惠的形式对投资热电联产的企业提供投资补助。
法国对热电联产企业减少50%的企业税,地方政府可以将减少率提高到最多100%。对可再生能源的使用也实施了税收优惠政策,通过税收优惠和降低增值税率,企业用于购买可再生能源设备的成本将降低15%,同时,对可再生能源投资的企业一年以后可以享受加速折旧的政策。
三、对我国的启示
未来几十年我国仍将处于工业化阶段,能源消费增长将不可避免。目前能源供应和能源环境问题已经成为制约我国经济发展的突出问题之一。由于我国人口、资源、环境等各方面条件的限制,我国的经济发展必须走低资源消耗、低能耗的发展道路。我国应该借鉴部分发达国家的经验,将减排工作与推动节能技术的普及和可再生能源的发展结合起来,有助于减轻我国未来经济发展对化石燃料的依赖,缓解国内能源供应和能源环境的巨大压力,为我国经济的可持续发展提供保障,大幅度降低我国温室气体排放。
联合国的气候变化政府座谈小组(IPCC)提出的最新研究报告指出,在过去的100年中,全球平均地表气温升高了0.74℃;过去50年的全球平均气温在过去的500年和1300年以来可能是最高的,20世纪的北半球可能是过去1000年中最热的世纪。
持续“发烧”的地球
在气候不断变暖的过程中,欧洲阿尔卑斯山的冰川面积比19世纪中叶缩小了1/3;非洲乞力马扎罗山的山顶冰冠自上个世纪初期至今已经缩小了80%;北极冰层在过去的50年中已变薄40%;“世界第三极”青藏高原的冰川消减速度近年来呈加速趋势,预计到2050年冰川面积将比现有面积减少28%。
根据专家的分析,地球接收到的太阳光一半多被地球南北两极的冰盖和高原冰雪以及云层反射掉,大约只有47%照射到地球表面。而冰盖面积缩小,被反射掉的太阳光减少,地球的温度就会进一步增高,从而使冰雪融化得更多,冰雪面积进一步缩小。在这种“恶性循环”的作用下,全球气候持续变暖已经不可逆转。据IPCC预测,从现在开始到2100年,全球平均气温的“最可能升高幅度”是1.8℃~4℃。
残酷的现实以及振聋发聩的预言让人们为一个日益“发热”的地球绷紧了神经。IPCC在其报告中称,国际社会对气候变暖的关注度已经超过了美伊对抗等国际事务。在前不久世界知名的《自然》杂志评选出的十大年度科学大事中,全球气候变暖榜上有名。无独有偶,英国气象学家警告说,全球变暖给人类带来的危害并不亚于核武器等大规模杀伤性武器。
人类是“元凶”
虽然导致地球变暖的因素中也有自然活动,如火山爆发,但以大规模工业化为主要标志的人类经济活动,才是气候变暖的最大推动力。IPCC的最新评估报告旗帜鲜明地指出,过去50年中,全球气温异常和快速升高与人类进入温室气体排放密集期正好相吻合。
人类活动引起的全球气候变化主要表现在两个方面:一是直接向大气排放温室气体,例如工业生产过程直接向大气排放二氧化碳和甲烷等;二是人类活动改变了气候,如森林砍伐直接削弱了大气消化CO2的能力,农业活动改变了土地利用状况而增加了大气中的甲烷。而在上述两个因素中,温室气体的排放导致气候变化最为猛烈。
二氧化碳是引起全球气候变暖的罪魁祸首。研究表明,从地球上无数烟囱、汽车排气管排出的二氧化碳约有50%留在大气里,而二氧化碳所产生的增温效应占所有温室气体总增温效应的63%。世界气象组织的研究报告指出,自1750年以来,地球大气中二氧化碳含量增长了35.4%,且目前已经远远超出了工业革命前的浓度范围,达到了65万年以来的最高峰。仅2006年全球二氧化碳的排放量就增加了33%,达到了地球有史以来的最高水平。
而一个约定俗成的研究结论是:大气中二氧化碳含量每增加25%,近地面气温将会升高0.5?C。
除了二氧化碳之外,甲烷、一氧化二氮等致热气体也在近百年人类工业化过程中与日俱增。目前发达国家仍是温室气体的主要排放者。发达国家人口虽然仅占全球的20%,但排放的二氧化碳等温室气体却占到全球的66%,其中美国名列第一,在全球二氧化碳排放量中占到四分之一。
世界经济的噩梦
动植物灭绝、各种瘟疫流行、飓风与热浪等恶劣气候频频出现……,尽管气象学家们制造的预言有点危言耸听,但由于无节制排放温室气体所导致全球变暖,人类所遭受的的“惩罚”其实早已开始。
而且气候变暖,全球经济也将为此支付巨大的代价。
联合国环境规划署发表的一项报告认为,如果在未来50年中,各国不能采取有效措施减少温室气体的排放,每年就将有高达3000亿美元的经济损失。无独有偶,IPCC也认为,如果在2030年前不能将温室气体的浓度控制在450ppm至550ppm二氧化碳当量之间,全球的GDP可能每年损失0.2%到3%。而英国政府《斯特恩报告(Stern Report)》则指出,气候变暖将导致全球GDP每年降低5%到10%。
冰川的加速融化必然导致海平面上升。根据IPCC的调查,全球平均海平面在上个世纪上升了10到20厘米,而海平面上升50厘米会直接导致海岸线后退50米。目前,世界大约1亿居民居住在海平面1米以内的区域。海平面仅仅上升10厘米就可能使马尔代夫、塞舌尔等许多南太平洋海岛从地面上消失,上海、威尼斯、香港、里约热内卢、东京、曼谷、纽约等海滨大城市以及孟加拉、荷兰、埃及等国也难逃厄运。人类数百年苦心经营的工业化成果将付之东流。
干旱、火灾、热浪、风暴等极端天气是气候变暖的直接结果。据统计,20世纪90年代,全球发生的重大气象灾害比1950年代多了5倍,因此造成的年均经济损失从1960年代的40亿美元飚升至1990年代的290亿美元。IPCC报告也预测,全球变暖将使地球上近10亿人受到缺水的影响。而且由于气候恶化和生态失衡将产生大量的“气候难民”。 据英国“眼泪基金会”的报告称,目前已经有2500万气候难民,预测未来50年,将会产生2亿气候难民,全球经济发展过程的补偿成本将随之无节制地放大。
农业是气候变暖中最为脆弱的行业。由于全球气候变暖带来的旱灾,世界银行在撒哈拉沙漠以南非洲地区开展的农业扶贫项目中有四分之一面临危机。不仅如此,联合国粮农组织研究报告指出,如果气温升高2摄氏度,农业可能减产30%;如果不对气候变暖采取任何措施,到21世纪后半期,全球主要农作物如小麦、水稻和玉米的产量最多可下降36%,进而严重影响全球的粮食安全。
经济落后国家将成为全球气候变暖的“重灾区”。 特别是非洲地区,撒哈拉沙漠面积扩大已经成为该地正面临全球气候变暖威胁的主要“标志”。尽管非洲是废气排放量最少的大陆,但由于经济落后,贫困严重,应对自然灾害的能力也更脆弱。
克服变暖知易行难
面对“全球变暖”,世界各地都泛起了一股象征式的运动:悉尼全城熄灯一小时警示全球变暖问题,并把这一小时命名为“地球时间”。法国首都巴黎等多个城市也拉闸关灯数分钟,埃菲尔铁塔的2万盏灯全部熄灭……事实上,这些立足于选举政治或宗教信条的行动不足以抵抗全球变暖。抗拒全球变暖需要全球协同行动和各国制定长效政策。
从目前来看,抗拒全球变暖有两条思路,分属于两大相互不妥协的阵营。持第一种思路的国家相信人类活动是全球变暖的主因,并主张通过大幅减少温室气体排放或限制温室气体排放来遏制全球变暖。这一派由《京都议定书》批准国,尤其是欧洲国家代表。持另一种思路的国家则不相信人类活动是全球变暖的主因,他们主张通过本国科技创新来减少能耗和发展替代能源,并主张用高科技来应对地球自身不可避免的全球变暖问题。持这一种思路的国家以美国为代表。
在G8峰会之前,美国总统布什抛出了一项名为“气候变化动议”的计划,呼吁全球主要经济体与美国一道,在他任期结束前就减少二氧化碳排放的全球目标达成一致。但布什的“气候变化动议”仍然没有就减排规模做出承诺,更没有提及具体的时间表。不仅如此,布什仍主张不通过政府的强制措施而是市场的自主安排达到减排。
6年前,布什政府以“减少温室气体排放将会影响美国经济发展”和“发展中国家也应该承担减排和限制温室气体的义务”为由,宣布退出《京都议定书》。如今布什旧话重提,其精心策划的“气候变化动议”无非是原有心迹的再版。
当然,“气候变化动议”要最终取代2012到期的《京都议定书》恐怕没那么容易。布什的倡议必然会遭到欧洲国家的怀疑和反对。
让发展中国家承担与发达国家同步或同等份额的减排和限排义务,是不公平的,但是,任何国家都没有权利永久逃避此类义务。因为对于任何国家而言,如果只顾自身利益,最终也逃不过全球变暖的惩罚。正如联合国政府间气候变化专门委员会的报告所强调的,无论哪个国家或地区,面对全球气候变暖,谁都不会成为真正的赢家。
中国无法置身事外
与中国经济高速增长招徕全球关注的目光一样,中国温室气体的排放规模和程度以及可能造成的危害也成为国际舆论的关注点。总部设在巴黎的国际能源署估计,中国2007年将有可能取代美国,成为全球最大的年度温室气体排放国。
《纽约时报》甚至在最显眼的位置作出评论,虽然中国正在快速发展核能、风能等清洁能源,但煤炭的消耗量仍然很大,煤炭虽然便宜但污染更大。所以美国担心如果中国不设置二氧化碳的排放限额,将抵消其他国家减少温室气体排放的努力。
按照《京都议定书》,中国作为发展中国国家并不承担减排义务,而且还可以依托“清洁能源机制”享受到发达国家提供的减排技术与资金的支持,但中国政府愿意承担更多的社会责任。
由中国气象局、中国科学院等六部门联合的《气候变化国家评估报告》指出,20世纪中国气候变化趋势与全球变暖的总趋势一致。近100年来的平均气温已经上升了0.5至0.8℃。今后气候变化的速度将进一步加快,到2020年,中国的平均温度有可能上升1.7度,到2050年可能上升2.2度。
IPCC的报告也指出,由于中国的人均自然资源拥有量已十分紧张,全球变暖给中国带来的影响比对发达国家要大得多。事实也确实如此,据统计,我国每年受各类灾害影响的人口达4亿人次,造成的经济损失平均高达2000多亿元。
2006年,北半球大范围持续高温天气创下了历史最新记录,我国也经历了十年的暖冬。这些情况在不断提醒人们全球气候变暖正在日益加剧。人类活动是造成气候变化的主要原因,如果得不到缓解,气候变化将引发洪水、干旱和热浪等更多自然灾害。
应对气候变化,关键是减少温室气体在大气中的积累,其做法是减少温室气体的排放(减排)和增加温室气体的吸收(增汇)。减少温室气体的排放主要是通过降低能耗、提高能效、使用清洁能源来实现。而增加对温室气体的吸收,主要是通过森林的碳汇功能来实现。 由于森林吸收二氧化碳投入少、成本低、简单易行,有利于保护生物多样性,在《中国应对气候变化国家方案》和《中国应对气候变化的政策与行动》两个政策文件中,我国政府把林业纳入减缓和适应气候变化的重点领域,要求全力打好“森林碳汇”这张牌,充分发挥林业在应对气候变化中的特殊作用。
一、立项宗旨
通过碳汇造林、中幼林抚育经营及发展林下经济等措施,增强森林生态系统整体固碳功能,提高林业应对气候变化能力,建设资源节约型和环境友好型社会,拟利用欧洲投资银行优惠贷款开展多功能碳汇林培育和中幼林抚育经营,以生态效益为主,兼顾生物多样性保护和当地农民收入的公益性林业碳汇项目。
二、黑龙江省森林资源丰富,是巨大的碳库
黑龙江省森林资源丰富,是林业大省。林业经营总面积3145万 hm2,其中森林总面积1919万hm2,活立木蓄积达15.7亿m3,占全国总量的13.85%,森林覆盖率43.6%[1]。从森林面积、森林总蓄积和木材产量上看,均居全国首位,丰富的森林资源形成了巨大的碳库。按照全省森林蓄积量15.7亿m3 计算,黑龙江省森林现有碳库储量为(储存二氧化碳)27.34亿t,以国际京都市场交易二氧化碳平均价格5.52美元/t计算,黑龙江省森林碳汇价值为150.92亿美元。随着天保二期和退耕还林的深入实施,碳储量及碳汇效益会更加显著。
三、项目建设的必要性
1.林业落实《中国应对气候变化国家方案》的需要
我国政府于2007年制定出台了《中国应对气候变化国家方案》,指出我国应对气候变化是减缓与适应并重,以加强生态保护与建设等为重点,控制温室气体排放、增强可持续发展能力。在应对气候变化措施上,提出要推动植树造林进一步发展,增加森林资源和林业碳汇,加强防火和森林病虫害防治等保护工作,把加强生态保护和建设、大力开展植树造林作为应对气候变化的基本立场。
2.森林固碳为减缓温室气体排放提供重要保障
通过培育碳汇林,挖掘森林碳汇潜力,增强森林碳汇功能,是减缓气候变化,实现人类可持续发展最直接最有效的方法之一。森林是陆地生态系统中最大的碳库。研究显示:全球陆地生态系统中存储了2.48万亿t碳,其中1.15万亿t碳存储在森林生态系统中。在生长季节,lhm2阔叶林每天可以吸收1t二氧化碳;森林每生长1 m3木材,就能从空气中吸收1.83t二氧化碳,同时释放1.62t氧气。从20世纪80年代到现在,工业排放的二氧化碳由森林生态系统吸收的达到24%~36%[2]。而且枯枝落叶混入土壤,使土壤也变成了一个巨大的二氧化碳储存库,森林固碳可为温室气体减排提供重要保障。
3.提高黑龙江省森林资源数量和质量的迫切需要
据全国第七次森林资源清查结果显示,黑龙江省森林面积1923.2万 hm2,其中幼龄林533.3万hm2,占森林面积的27.7%,中龄林面积807.9万hm2,占森林面积的42%。幼龄林、中龄林、近熟林、成熟林、过熟林面积之比为28:42:18:8:4。可以说,中幼龄林面积在整个森林面积中具有举足轻重的地位。然而由于目前未采取切实有效的抚育和改造措施,致使部分中龄林因单位面积株数太多,密度过大,生长不良,严重影响了林分质量;部分中幼龄林杂草丛生,霸王树、灌木、藤条等非目的树种占据了主要生长空间,严重制约着目的树种的生长,影响林木生长发育;部分中幼龄林因自然稀疏,枯死木急剧增多,枯立木比重显著提高,为森林病虫害的发生和蔓延提供了场所,为森林火灾、雪压、风倒等自然灾害创造了条件;部分中幼龄林因公顷株数太少,林分质量低,影响了林地生产力和森林效益的发挥。及时采取森林经营措施,加强森林抚育和改造,可改善林分生长条件,促进林分生长,从而提高林分生产力和固碳能力。
四、项目建设的可行性
1.碳汇造林已成为各国减排的重要措施
面临日益严峻的气候变暖形势,由于国民经济增长和增加就业的需要,各国化石燃料减排的难度大,许多国家采取生物固碳减排。日本承诺二氧化碳等温室气体排放量与1990年相比削减6%,其中3.9%要采取“森林经营活动”和“植被恢复活动”两个方面的措施来完成。越来越多意大利人在哥斯达黎加和意大利北部的森林区购买林地,发展林业,应对日益恶化的全球温室效应。加拿大除了立足国内还从海外购买减排额度。林业活动已成为各国致力温室气体减排增汇最经济、最有效的措施之一。我国发展该项目,无论对于国内建设,环境友好型社会、间接减排,还是对于国际市场购汇需要都是可行的。
2.组织、政策和资金有保障
我国政府一直在林业应对气候变化中持积极主动的态度,规划未来林业发展要加快造林营林步伐,力争用30到50年时间将森林生长量提高1倍,使森林生态系统整体的碳汇功能再增加1倍。同时加强森林经营工作,提高森林质量及森林吸碳固碳能力。并成立了应对气候变化及碳汇有关机构,制定了相关鼓励企业参与碳汇造林等优惠政策,并力所能及的安排任务、资金等方面向碳汇造林方面倾斜。这些都为本项目的顺利开展提供了强有力的组织、政策、资金和实施队伍保障。
中图分类号:F124.5 文献标识码:A 文章编号:1005-2674(2012)04-086-05
一、引言
人类社会进入后工业社会阶段,发达国家的工业化和城市化基本完成,以大量耗费能源发展经济的模式逐步被抛弃,低消耗、低排放、低污染的低碳发展,已经成为全球应对气候变暖问题和解决人类社会发展与环境矛盾的首选模式。低碳经济是继农业文明、工业文明之后的人类文明史上的又一次重大发展。2009年哥本哈根全球气候变化会议后,这种经济模式已经得到了国际社会的广泛认同。各国政府特别是西方发达国家政府,通过各种方式和途径,努力推进低碳化,力争抢占低碳技术的领先地位。低碳经济的实质是提高能源利用效率,减少温室气体排放量,降低对化石能源的依赖,改善生态系统的自我调节能力,维持生态系统平衡。其目标是降低和控制温室气体排放量,减少大气污染,改善生态环境,避免气候发生灾难性变化,从而实现经济社会可持续发展。
中国是一个经济高速增长的国家,环境污染相当严重,与其他国家相比,中国的温室气体排放量比较大,虽然作为一个发展中国家没有降低碳排放的国际要求,但是出于环境保护的目的,中国政府也积极向国际社会承诺降低碳排放。据国际能源机构(IEA)估计,如果不进行任何控制,到2030年中国的二氧化碳排放量将达到114亿吨,为此中国政府承受着巨大的压力。中国政府承诺到2020年,单位GDP的二氧化碳排放量比2005年降低40%~45%。要实现这个目标,需要我们制定科学的政策,实施有效的措施。在制定中国发展低碳经济的各种政策时,首先需要认真学习和借鉴发达国家的做法,汲取他们的经验。
二、发达国家低碳经济发展规划和策略
(一)发达国家发展低碳经济的战略性规划
自2003年英国提出低碳经济概念以来,英国、德国、日本、加拿大、美国等发达国家相继提出了发展低碳经济的战略目标。这些战略目标虽然各不相同,但是,基本方向是一致的,就是要达到降低能耗,减少温室气体排放,发展新能源产业,实现向低碳经济的转变。为了发展低碳经济,发达国家还制定了相应的政策,这些政策的重点概括起来就是开发低碳技术,发展清洁能源,改造传统产业,以便降低温室气体的排放量。
英国在2003年了《我们能源的未来:创建低碳经济》,在2008年了《气候变化法案》,使其成为世界上第一个为减少温室气体排放、适应气候变化的具有法律约束性长期框架的国家。2009年7月15日,颁布了《英国低碳转型计划》白皮书。英国在《我们能源的未来:创建低碳经济》中提出,到2050年将英国二氧化碳排放量消减60%。《气候变化法案》提出到2050年在1990年的基础上减少80%的温室气体排放,到2020年的中期目标是减少34%的排放。德国在2008年制定了《可再生能源法》。其后,又制定了《可再生能源供暖法》等法律法规。《可再生能源法》把风能作为发展的重点,尤其海上风能。《可再生能源供暖法》规定,德国积极促进可再生能源用于供暖,计划到2020年将可再生能源供暖比例提高到14%(2006年为6%)。
日本政府为了达到低碳社会目标,制定了详细的“低碳社会行动计划”(2008年),公布了《绿色经济与社会变革》(2009年)政策法案,对高排放、高污染的工业进行整顿,提出了减少温室气体排放的具体措施,推动低碳社会建设。日本把节能技术和低碳能源技术创新作为重点,对可以大规模降低温室气体的捕捉和封存技术进行大力扶持。政府继续投资化石能源的减排技术研发和推广应用,特别是投资燃煤电厂的烟气脱硫技术,确保日本形成国际领先的脱硫环保技术。
澳大利亚在2008年了《减少碳排放计划》政策绿皮书。提出了减排计划目标:2050年达到2000年气体排放的40%。计划2020年可再生能源比重要达到全部电力的20%。计划7年投资5亿澳元,重点用于热能技术升级与太阳能开发利用。计划建立一个全球碳捕集与储存中心。
(二)发达国家低碳经济的财政政策
为了促进低碳经济的发展,建设低碳社会,发达国家在进行战略规划的同时,还制定了相应的政策措施。在所有的政策措施中,制定和实施鼓励低碳产业发展的财政税收政策,是十分重要的举措。在财政政策中,支出政策和收入政策是其两个主要方面,二者的方式不同,但目的是一样的。其内容主要是财政投入政策、补贴、政府采购、税收政策等。
中图分类号:X511 文献标识码:A
1 污水处理厂的温室气体来源
污水理厂在运行过程中会直接或间接排放温室气体。污水收集输送、污水处理、污泥处理处置过程以及处理水中残留物降解过程中都会存在温室气体的直接排放;污水污泥收集处理过程中消耗的电能、热能和药剂造成温室气体的间接排放。另外,如果回收利用污水污泥处理处置产生的沼气,直接排放可以得到部分抵消。污水处理厂排放的温室气体主要有CO2、CH4和N2O。其中直接排放的CO2是生物成因,不会导致大气中CO2含量的净增长,所以不应计入温室气体排放总量。因此本文认为污水处理厂的温室气体主要是污水污泥收集输送、处理处置过程中直接排放的CH4、N2O及能源消耗所带来的CO2的间接排放。
2 污水处理厂温室气体减排策略
2.1 污水处理工艺的选择
不同地方的环境条件、经济水平和居民生活习惯不同,污水水质水量、处理要求也会差异较大,因此在选择污水处理工艺时必须遵循的原则就是因地制宜。在经济落后的地区,可以先采用强化一级污水处理工艺待条件相对成熟后再过渡到二级处理;土地资源丰富时可选择利用当地的自然地形,如塘沟、洼地等作为污水处理的场地,优先考虑采用人工湿地、稳定塘等生态处理工艺。
厌氧工艺不需供氧因而消耗的能量少,并可将进水有机物转化为CH4,若回收利用这一能源既能降
低CH4排放量,还可减少化石化石燃料的消耗。当进水BODu浓度大于300 mg/L时(见图1),厌氧生物处理工艺排放的温室气体更少,并且减排效果随着进水BODu浓度的增大而越发显著。另外,一般厌氧工艺产生的污泥量较少,使其经济性和环保性更好。因此,条件适宜时选用厌氧工艺有利于减少温室气体的排放量。
下面以某污水处理厂为例分析污水处理工艺确定的过程。该污水厂进水为生活污水和工业废水的混合污水,其中工业废水所占比例较大。进水几乎不含有重金属和有毒有害物质,但生化可行性较差,氮磷浓度较大,所要求的污水处理程度较高,水量水质不够稳定,与大城市相比水量较小。从处理效果来看,A2/O、SBR、氧化沟三个系列工艺均可满足要求,但每种工艺均具有一定的优点和局限性。进行工艺选择时,应充分考虑技术的可靠性、先进性,同时要与工程项目污水厂进出水水质及当地自然、经济条件等方面相适应。根据该规划污水处理厂进水水质特点和出水水质要求,选择具有脱氮除磷功能,且经济、高效、节能、环保、科学的工艺。
氧化沟多为分建式,回流量大,且通常采用机械曝气,电耗较大;还会因动态沉淀影响出水水质。而A2/O工艺和SBR系列中的CASS工艺的脱氮除磷效果都比较稳定,其次,A2/O工艺成熟可靠、脱氮除磷效果更好、运行成本较低,不易发生污泥膨胀;CASS工艺具有处理流程简单、节省投资及占地、抗冲击负荷能力强、运行稳定、技术先进且成熟等特点。因此,根据本项目的特点,暂排除氧化沟法,而将A2/O工艺和CASS工艺作为备选方案再进行比较(见表1)。
两工艺方案技术成熟可靠,对水质水量有较强的适应性,不易发生污泥膨胀,都能保证出水水质稳定且能达到设计要求。A2/O工艺方案构筑物数量多,占地多,投资大;CASS工艺流程简单,无二沉池及污泥回流泵房,布置紧凑,节省投资、占地及能耗,更适应当地的自然条件。CASS方案自动化控制要求较高,需提高污水厂员工的素质,这与社会人类的发展方向相适应。CASS工艺一般产生的污泥较少,更凸显其在经济上和温室气体减排方面的优越性。
综上所述,并充分考虑到 CASS 工艺的先进性、成熟性,且占地少、投资省、易实现设备的集成化和自动化,因而更适应当地自然条件和未来的发展,推荐采用水解酸化+CASS法作为本工程的处理工艺。在该工艺的设计中,可通过选取最佳工艺运行参数、采用节能技术与设备,最大限度地降低工程造价、运行费用及温室气体排放量,实现污水厂工艺方案的整体优化。
2.2 污泥处理处置工艺的选择
不同污泥处理处置工艺的温室气体排放量和减排程度比较见表2。由表2可以看出,在各种污泥处理处置工艺中填埋的温室气体排放量最大;污泥厌氧消化+沼气发电的减排程度最高,其次是污泥余热干化+焚烧、余热干化后混烧、好氧堆肥等。
在确定污泥处理处置工艺时,应综合考虑安全、经济、高效、环保等因素。污泥量较大时,建议选择厌氧消化+沼气发电的方式,其温室气体排放量较少,所产沼气纯度高、稳定,便于回收利用,且污泥经消化后脱水性能好。例如巴姆堡污水厂(9万m3/d污水)将污泥厌氧消化产生的沼气净化处理后用于发电发热,2011年电力热力已完全实现自给。如果厌氧消化设施的建设受到限制时,污泥经余热干化后可在当地的工业窑炉混烧或焚烧发电,这既可以降低投资和运行费用又可节省化石燃料而减少温室气体的排放。污泥量很少时,湿污泥可不经干化而直接混烧。经济相对落后的地区,适宜采用好氧堆肥的方式,污泥经堆肥后可代替化肥并增加碳汇,抵消污泥处理过程中的大部分的温室气体排放量。若受条件限制只能选择填埋时,可将污泥与生活垃圾混合经好氧预处理后再填埋,改善填埋作业条件,减少填埋过程中的温室气体排放。
为减少温室气体排放还改善现有工艺。当污泥消化设施容积有剩余时,可通过投加过期食品、废油脂、厨房垃圾、屠宰场废弃物等增加产沼原料,从而增加沼气产量。例如德国的阿伦斯堡污水处理厂投加了大约3%体积的废油脂等,电力自给率由30%提高到100%。污泥厌氧消化过程中的水解阶段比较缓慢,若通过碱处理、热处理、超声波、射线、臭氧氧化等方法进行预处理,污泥中的颗粒成分被破坏,释放出厌氧微生物所需的有机质,从而提高水解效率,增加沼气产量。
2.3 优化污水厂的总体设计及管理体系
污水处理厂的平面布置时应结合污水厂中各构筑物的功能和特征进行。为便于管理、减少温室气体排放、节约占地、减少连接管渠的长度,布置要紧凑,生产关系密切的应互相靠近,甚至组合在一起。连接各构筑物的管渠要简短,避免不必要的拐弯和立体交叉。立面布置时,要充分利用地形,减少挖填方量,尽量做到重力自流。若实现不了重力自流时应尽量实现污水污泥的一次提升,避免多次提升。合理确定各构筑物的标高、进出水口形式、管渠的尺寸及构筑物和管渠之间的连接方式等,尽量减少水头损失。
目前我国污水处理厂大多采用政府建设、政府运营的管理模式,这样浪费了很多资源,运行效率也不是很高,对此,可以实行污水处理厂建设与运营的市场化和产业化。国家和污水处理行业应制定相应规范指导温室气体排放评价的进行,建立减排管理评价体系,以检验低碳运行成果,并采取相关经济措施鼓励低碳运行。行业协会或环保部门等非盈利组织可实时监控全国污水处理系统的运行状况并进行汇总分析,提出相应各处理环节的温室气体排放平均值和优化指导值,方便运行管理人员参考。此外,也可在条件允许的地区开展示范项目,向社会公开其运行结果,以便于其他污水处理系统进行各方面运行状态的比较,由此了解温室气体减排潜力和方向进而开展相应减排工作。
3 结论与建议
为响应低碳城市的号召,在规划、建设和运行污水处理厂时必须要考虑温室气体减排问题。本文从污水处理工艺的选择、污泥处理处置工艺的选择、污水处理厂的总体设计这三个方面来探讨了温室气体减排策略,认为污水处理厂需要综合考虑当地的自然环境、经济状况、环境标准、居民生活习惯、污水水质水量、处理要求及各种污水处理工艺类型及运行条件等因素,确立合理可行的减排策略。
由于污水处理厂系统复杂,涉及环节较多,不同处理单元、处理工艺的参数和指标各异,而污水处理厂的温室气体排放研究在我国相对较少,很多资料的获取存在困难。因此,为减少温室气体排放,必须要加强在这方面检测和研究。
参考文献:
[1] 张秀梅.考虑碳排放的中小城镇污水处理系统规划研究[D].西南交通大学,2014.
[2] 郝晓地.可持m污水―废物处理技术[M].中国建筑工业出版社,2006.
[3] 杨顺生,陈钰,曹洲榕.德国污水处理考虑减排的工程实例及思考[J].四川环境,2012(1).
[4] 梅小乐,周燕.城市污水处理厂节能水平评估标准探讨[J].给水排水,2011(3).
[5] 陈功,周玲玲,戴晓虎,董滨.城市污水处理厂节能降耗途径[J].水处理技术,2012(4).
中图分类号:F740.2文献标识码:A文章编号:1008-2972(2008)02-0015-05
一、温室气体(碳)排放权市场的诞生
随着全球气温的不断上升和世界范围的气候异常,由人类活动产生的温室气体排放造成的气候变化问题,逐渐被人们所重视。1992年的《联合国气候变化框架公约》(UNFCCC,简称《公约》)提出“将大气中温室气体(GHG)的浓度稳定在防止气候系统受到危险的人为干扰的水平上”的最终目标。而在1997年12月《公约》第三次缔约方大会(cOP3)上通过的《京都议定书》(Kyoto Protoc01),则是全球第一个具有法律约束力的、定量减排温室气体的国际环保协议。其宗旨是通过国际社会的密切合作,降低大气中的温室气体含量,以保护环境。《公约》规定,缔约方(包括发达国家和经济转轨国家)在2008-2012年的第一承诺期是将温室气体排放量比1990年平均削减5,2%。其中,欧盟削减8%、美国削减7%、日本削减6%、加拿大削减6%、东欧各国削减5%至8%。在《京都议定书》的约束下,每个国家的温室气体(碳)排放权开始成为一种稀缺的资源,也就具有商品的属性。
鉴于温室效应具有全球性(即在地球任何地方排放同样数量的一种温室气体所造成的全球温室效应的影响程度是相同的),且不同国家、不同企业之间在减排成本方面又存在巨大差异,所以,《京都议定书》建立了三种灵活减排机制,即联合履约(简称JI,第6条)、清洁发展机制(简称CDM,第12条)和国际排放贸易(简称IET,第17条)。通过这三种机制,京都议定书规定的附件一国家可以成本有效的方式,通过交易转让或者境外合作的模式来获得温室气体排放权。这样,就能够在不影响全球环境完整性的同时,降低温室气体减排活动对经济的负面影响,实现全球减排成本效益最优。京都“三机制”为国家之间就温室气体排放权展开贸易提供了一个全新的框架,且逐渐孕育出了一种崭新的温室气体排放权交易市场。
二、温室气体(碳)排放权市场的发展
随着经济学原理在环境管理领域的广泛应用,政策制定者越来越重视市场在保护环境中的作用。适当的市场规则可以刺激私人部门在提高能源效率和采用更加清洁的工艺和技术方面的创造性,鼓励对清洁的生产模式进行投资,从而以更有效的方式解决复杂的环境问题。
在《京都议定书》生效前,人们已进行了加拿大GERT计划、美国CVEAA计划、丹麦电力行业试点、壳牌集团STEPS计划、澳大利亚新南威尔士州温室气体减排体系(NSW/ACT)等诸多努力,尝试着将温室气体排放权纳入市场机制的方式,以减少和降低温室气体的排放,并取得了一定的成效。2005年2月16日《京都议定书》的生效,更是把国际温室气体(碳)排放权交易推进到高速发展的阶段。
按照《京都议定书》的规定,目前国际温室气体排放权交易可以划分为两种类型(见图1)。一种是以项目为基础的减排量交易。联合履约(JI)和清洁发展机制(CDM)是其中最主要的交易形式。它们都是基于温室气体减排项目合作的机制,其运作基础是由附件一国家企业购买具有额外减排效益项目所产生的减排量,再将此减排量作为温室气体排放权的等价物,用于抵消其温室气体的排放量,以避免高额处罚。JI项目产生的减排量称为减排单位(ERU),CDM项目产生的减排量称为经核证的减排量(CER)。这两种机制的区别在于,联合履约是附件一国家之间的合作机制,而清洁发展机制是附件一国家与非附件一国家之间的合作机制。
另一种是以配额为基础的交易。在配额基础交易中,购买者所购买的排放配额是在限额与贸易机制下由管理者确定和分配(或拍卖)的。《京都议定书》下的国际排放贸易机制就是以配额交易为基础的。在该机制下,人们采用总量管制和排放交易的管理和交易模式。即环境管理者设置一个排放量的上限,受该体系管辖的每个企业将从环境管理者那里分配到相应数量的“分配数量单位”(AAIJ),每个分配数量单位等于1吨C02当量。在承诺期中,如果这些企业的温室气体排放量低于该分配数量,则剩余的AAU(代表排放温室气体的许可权)可以通过国际市场有偿转让给那些实际排放水平高于其承诺而面临违约风险的附件一国家企业,以获取利润;反之,则必须到市场上购买超额的“分配数量单位”(AAU),否则,将会受到重罚。
近年来,温室气体排放权交易市场得到了迅速的发展和扩张,并已成为全球贸易中的新亮点。从2005年到2006年的仅仅一年时间,市场规模就从近100亿美元迅速攀升至220亿美元,而2007年上半年的交易量比2006年同期又有近30%的增长(见表1)。
此外,根据估算,《京都议定书》中发达国家缔约方在2012年以前的总减排需求量为50亿吨c02当量,其中海外的减排需求约占一半。目前全球正在开发CDM项目,预计到2012年可以提供约22亿吨CO:当量。可见,全球温室气体(碳)排放权交易还有较大的发展空间。
三、世界主要温室气体(碳)排放交易市场
目前世界上还没有统一的国际排放权交易市场。在区域性的市场中,它们还存在不同的交易商品和合同结构,各市场对交易的管理规则也不相同。欧盟排放交易体系(Eu ETS)是现有的全球最大的温室气体排放权交易市场。此外,美国的芝加哥气候交易所的减排交易体系也成为GHG排放权交易市场的重要组成部分。
1.欧盟排放交易体系(EU ETS)
欧盟为了帮助其成员国履行《京都议定书》的减排承诺做准备,获得进行排放交易的经验,于2005年1月1日正式启动了欧盟排放交易体系(Eu ETS)。这是世界上第一个国际性的排放交易体系。其目标和功能是减排CO2,涵盖了所有27个欧盟成员国,且非欧盟成员国的瑞士和挪威也决定于2007年自愿加入EU ETS,与欧盟成员国进行排放交易。在该交易体系下,人们采用的是总量管制和排放交易的管理和交易模式。其做法是:欧盟及其成员国政府设置一个排放量的上限,受该体系管辖的每个企业将从政府那里分
配到一定数量的排放许可额度――欧洲排放单位(EUA),而所有企业的排放总量不得超过该上限。如果企业能够使其实际排放量小于分配到的排放许可额度,那么它就可以将剩余的额度放到排放市场上出售,以获取利润;反之,它就必须到市场上购买排放权,否则,将会受到重罚。
欧盟的排放交易制度分两个阶段实施:第一阶段是2005-2007年,第二阶段是2008-2012年。在第一阶段,各成员国要把本国排放总量限制以及国内受体系管辖的设施所分得的EUA数量,以国家分配方案(NAP)的形式提交给欧洲委员会。委员会则对这些NAP进行评估,并决定其是否符合ETS指令函所规定的标准。为保证这项制度的实施,欧盟设计了一个严格的履约框架。它规定,自2005年开始,企业的C02排放量每超过1吨,将被处以40欧元的罚款;自2008年开始,罚款额将提高至每吨100欧元,并在次年的企业排放许可额度中,还应当将该数量加以扣除。
为建立一个全球性的排放交易网络体系,欧盟通过其连接指令函(Eu linking directive,2004年11月14日生效),允许EU ETS系统内的成员从2005年起使用CDM项目和JI项目的减排量指标核证减排量来抵消其排放量。所以,欧盟排放交易体系实现了ETS机制和CDM、JI机制的结合。此外,为扩大欧盟排放交易体系的影响,进一步降低欧盟企业的履约成本,欧盟排放交易体系积极与其他排放交易制度进行连接。目前,它能够与《京都议定书》附件一国家的排放交易制度连接,如加拿大、日本、瑞士等国的ETS。通过双边认可,它还实现了与其他非《京都议定书》机制连接的需要,如美国州一级的排放交易制度。
欧盟排放交易体系的交易基本都是通过直接交易市场或者交易所来实现。欧盟碳交易活动的3/4是通过场外柜台交易和双边交易来实现。其中半数以上的场外柜台交易是通过交易所结算交割。目前欧洲有四个交易所参与碳交易,即阿姆斯特丹的欧洲气候交易所、奥斯陆的北方电力交易所、法国的未来电力交易所、德国的欧洲能源交易所。在所有通过交易所结算交割的碳交易量中,欧洲气候交易所的交易量占82%,其全部碳融资合同都是在伦敦跨洲期货交易市场进行电子交易。
欧盟排放交易体系运行两年多来,取得了较好的成效。从目前情况看,企业的履约率很高,其中英国的履约率超过99%。在国家层面上,除爱尔兰、西班牙、奥地利、葡萄牙、丹麦外,其他国家都接近于完成目标。
2、芝加哥气候交易所的减排计划
芝加哥气候交易所(Chicago Climate Exchange)成立于2003年。它是全球第一个、也是北美地区唯一一个自愿参与温室气体减排量交易,并对减排量承担法律约束力的先驱组织和市场交易平台。
作为世界上第一个包括所有六种温室气体的排放注册、减排和交易体系,自2003年12月12日开始,芝加哥气候交易所进行GHG排放许可和抵消项目的电子交易。
在芝加哥气候交易所的减排计划中,许多北美公司和其他实体(女市政当局)自愿作出了有法律约束力的减少温室气体排放的承诺,以保证芝加哥气候交易所能够实现其两个阶段目标:在第一阶段(2003-2006年),所有的会员单位在其基准线排放水平的基础上实现每年减排1%的目标;在第二阶段(2007-2010年),所有的成员将排放水平下降到基准线水平的94%下。
对每个会员单位来说,他们的排放基准线被设定为1998-2001年期间其年排放量的平均值;对第二阶段的新会员来说,其基准线是2000年的排放量。这些公司可以通过内部减排、从其他面临排放限制的公司购买许可,或者购买满足特定标准的减排项目产生的信用额度来履行承诺。
芝加哥气候交易所开发了一套基于互联网的电子交易平台,供其会员买卖温室气体排放权使用。所有交易都必须通过这个电子交易平台进行。交易的过程和数据由内部系统记录,不对外公布。会员超额完成的减排指标可以储存。
除上述两个交易市场外,世界上还有很多正在运行的温室气体(碳)排放权交易市场,但这些交易市场的规模较小(见表2)。
四、我国的温室气体(碳)排放交易的现状
我国是一个易受气候变化影响的发展中国家。为了应对全球气候变化对我国带来的冲击和影响,我国已先后签署和批准了《联合国气候变化框架公约》及《京都议定书》,并积极采取了一系列有效的应对措施。根据《京都议定书》的规定,中国作为发展中国家,可以清洁发展机制(CDM)为基础,参加以项目为基础的温室气体(碳)排放权交易。由于能源利用效率较低以及对能源需求的迅速增加,决定了在我国实施CDM项目上的巨大潜力。
根据联合国CDM项目执行理事会(EB)的统计,截至2007年12月31日,世界各国在联合国已注册成功的CDM项目总数为890项,其中我国已注册成功的项目为147项,占项目总数的16.51%,仅次于印度(33.82%),居第二位(见图2)。但由于我国已注册项目的减排量规模普遍较大。因此,在总减排量上,我国以90956948吨c02当量雄居榜首,占全球预期年减排量的48.39%(见图3和表3)。
目前,由于我国从事CDM项目的企业(减排量卖方)大多缺乏足够的有关国外买家(减排量买方)的信息,对国际市场上通行的交易方式、交易价格、交易程序以及交易手续都不太了解,因此导致我国目前的CDM项目减排量交易极为不规范,交易价格大大低于国际市场,使国家和企业利益受损,阻碍了我国排放权交易市场的发展。
五、建立我国碳(排放)交易市场的构想
为了推动我国经济的可持续发展,维护国家和企业的最大权益,我国应积极建设有中国特色的温室气体(碳)排放权交易体系,以适应世界形势的发展。
1、规划中国温室气体(碳)排放交易权框架
国家应通过立法的形式,在中国建立一套完善的碳排放交易框架。从现在着手,建立自己的排放交易体系,获取排放交易的经验,以应对中国未来可能承担的《京都议定书》的义务。
中国的碳排放交易应分为两类,即国内交易和国际交易。国内交易应建立在总量管制和排放交易的市场机制之上。按照国家规划,对各省设置排放上限,各省再将具体额度按规定下发给企业。如果企业的实际排放量超过该额度,需要到市场上购买其差额的排放许可额度。如果不能或不愿购买减排量来弥补超额排放的指标,那就只能选择上缴罚款。国际交易则主要是面向国外购买商交易,开发和提供与芝加哥气候交易所、欧洲排放交易体系等成熟交易所相同的产品,并进行交易。
另外,应建立相关的法律体系,以保证温室气体(碳)排放权交易有法可依,有章可循。同时,通过各项规章制度的制定,有利于创造相对公平透明的交易环境,防止不正当竞争,保证温室气体(碳)排放权交易市场的有效运行。
2、设立温室气体(碳)排放权交易中心
交易中心应具有一定的官方权威性,以保证其能够在结合芝加哥气候交易所和欧洲排放交易体系的优点的基础上进行运作,用市场导向来指导中国的温室气体减排项目实施。通过交易中心的市场化运作,产生并传播温室气体(碳)排放权交易市场信息,使温室气体减排成本最小化,并有效地降低交易费用。
3、市场交易产品 我国温室气体(碳)排放权交易的对象不应仅限于减排二氧化碳。在市场发展的初期,可以借鉴芝加哥气候交易所的经验,将二氧化碳、甲烷、氧化亚氮、氢氟碳化物、全氟化物、六氟化硫等六种温室气体都纳入减排对象。
至于交易形式,在初始阶段,我国应以已获认定的《京都议定书》规定的CDM和JI形式的产品现货形式,即减排信用额。未来可以参照芝加哥气候交易所的期货期权合约,以标准化形式进行产品交易。
将适应气候变化纳入战略环评的必要性
由于全球环境演变,可持续发展面临新问题,突出表现在全球温室气体减排效果不明显,气候问题会更加突出。面对国际前沿热点以及国家迫切需要,环境学科发展面临新的机遇与挑战,未来要应对气候变化和气象灾害,确保粮食及水安全,因此须加强研究已有气候变化对环境影响的规律,抓住气候变化与全球减灾热的机遇,努力使环境学科的发展适应全球主流政策,按市场机制的发展模式,开发新技术,推动多元化投资方式的实现。为此有必要在战略环评中纳入适应气候变化的内容,从战略高度评价应对气候变化的行动与计划。
(一)国际社会关于气候变化响应的认识
由于过去温室气体的累积排放,气候变暖已不可避免,有必要采取适应措施以应对变暖所造成的影响。目前我们尚未对适应的限制因素或成本有清晰的了解,还因为有效适应措施在很大程度上取决于具体的、地理的和气候的风险因子。也取决于制度、政治和财政方面的制约。虽然多数技术和策略已被一些国家了解并得到开发,但已有的评估并未指出,各种措施选择是如何有效降低风险的,特别是在变暖更厉害、影响更严重的情况下以及脆弱群体的反应。此外,履行适应措施在环境、经济、信息、社会、态度和行为等方面还存在着相当大的障碍。对发展中国家而言,特别是资源的有效利用以及适应能力建设尤为重要。
非气候压力的出现会加剧气候变化的脆弱性。例如气候波动和气候灾害、不能公平地获取资源并导致贫穷、无法保障的粮食安全、经济的全球化趋势、冲突以及艾滋病等疾病的发生等。
未来气候变化影响的脆弱性不仅取决于气候变化,还取决于发展途径。在不同情景下,地区之间在人口、收入和技术发展上可能存在巨大差异,而这些因素通常对气候变化的脆弱性程度起到很大的决定性作用。在中高排放情景(以人均收入较低、人口增长巨大为特征)下预估的受影响人口数量相当大。
可持续发展能够降低对气候变化影响的脆弱性,气候变化也能阻碍各国实现可持续发展的能力。通过提高适应能力并增强恢复能力,可持续发展能够降低对气候变化影响的脆弱性。然而,目前几乎还没有促进可持续发展计划把适应气候变化的影响或提高适应能力明确地纳入其中。
(二)国际社会关于气候变化响应的行动
现在已针对观测到的和预估的气候变化采取了部分适应措施,但仍有限。自政府间气候变化专门委员会(IPCC)第三次评估以来,有越来越多的人类活动适应已有和未来气候变化的证据被观测到。例如,在基础设施项目的设计中考虑应对气候变化因素,如在青藏铁路设计和建设中考虑了未来气候变暖对冻土地带路基的影响。
兼顾适应和减缓的措施,最能够降低与气候变化有关的风险。提高适应能力的途径之一就是把气候变化影响纳入到发展规划中予以考虑,如通过“把适应措施包含在土地利用规划和基础设施设计中”,“把降低脆弱性的措施包含在现有的降低灾害风险策略中”等方式。
气候变化影响造成的损失将因全球温度的不断升高而逐年增加。IPCC评估清楚地表明,未来温度升高不足1℃-3℃的气候变化的区域影响是混合的,但会增加适应成本。然而,如果温度升高超过约3℃,很可能所有区域不利影响更为严重,而发展中国家预期会承受大部分损失。如果变暧4℃,全球平均损失可达国内生产总值(GDP)的1%-5%。目前。国际社会正在制定针对不同阶段影响的应对措施。
如何把适应气候变化纳入战略环评
(一)战略环评和气候变化
与战略环境影响评价相关的气候变化问题可以归纳为下面几点:
气候变化:包括对已有变化的评估和对未来变化的预测。这些变化包括海平面上升、温度和降雨的变化、极端事件(如暴风雨和干旱事件)发生频率的变化。
影响复杂:气候变化无疑会产生一系列的影响,正面影响和负面影响的类型和强度在不同的区域表现也不一致。
适应措施:气候变化影响的严重程度取决于所采取怎样的适应措施。这些措施包括改善洪水风险管理和防止在海平面上升地段建设不合适的建筑。
减缓措施:人类采取的减少人为活动对气候系统影响的直接行动,特别是减少温室气体排放的措施,这些措施包括提高能源效率,提高建筑物的绝热效果,增加可再生能源的比例等。
人类共识:未来的人为活动必须减少温室气体的排放,走低碳经济的可持续发展道路。
(二)战略环评各个阶段都要考虑气候变化的影响以及适应气候变化的措施
在战略环评中开展评价气候变化对规划的影响不同于评估其他方面的影响。首先,气候变化是多种原因复合累计效应的结果,是多种活动(包括人类活动)累积产生的效果,虽然每一个单独的活动所产生的影响可能很有限,但是这些有限的影响累积起来就会造成非常严重的影响;其次,在战略环评中一般需要考虑下面两项与气候变化有关的重要内容,包括:气候变化对规划所产生的影响及约束(一般在战略环评前言部分描述);规划对未来温室气体排放的影响(一般在战略环评的预测和评估阶段)。
(三)与气候变化一致的目标和指标:气候变化基准的描述和监测
战略环评的目标和指标中应该包括未来可能的气候变化相关内容,与可能的应对气候变化相关的目标和指标要一致,并可以实施。
(四)确定未来可能的气候变化导致的主要问题和约束
气候变化可能导致的影响包括高温的风险,暖冬后的寒潮、干热的夏天、海平面上升,以及洪涝风险的增加、某些极端天气气候事件(强风暴、干旱等)增加等。这些影响结合其他因子的作用可以导致对以下领域的重要影响。
对水供需和水质的影响:气候变化可能会导致夏季河流水位下降,冬季上升,这一影响可能恶化(或加重)水质问题和水资源问题。
对粮食安全的影响:气候变化可能增加粮食生产的波动性,使粮食供不应求、全球粮价持续上涨。
对生物多样性的影响:夏季的洪涝可能严重影响湿地。温度升高可能影响物种习性,导致物种迁移甚至消亡。
对人体健康的影响:事故和某些疾病对天气非常敏感,热的天气可以加速疾病和病菌的传播。
(五)将气候变化的适应措施纳入到评价规划中
中图分类号:S-0 文献标识码:A 文章编号:1674-0432(2010)-06-0001-4
目前全球正经历一场以变暖为主要特征的气候变化,人类的活动在某种程度上加剧了温室效应。农业生产在全球温室气体循环中占有重要地位,农业既是碳汇也是温室气体的排放源。一方面,农业的温室气体排放量是全球温室气体排放的第二大重要来源,另一方面,由于温室效应而引起的气候变化又严重影响到农业生产。因此,发展低碳农业具有重要的特殊意义。
1 低碳经济与低碳农业
1.1 低碳经济
“低碳经济”这一名词最早见诸于政府文件是2003年的英国能源白皮书《我们能源的未来:创建低碳经济》。低碳经济是以低能耗、低污染、低排放为基础的经济模式,它以能效技术、可再生能源技术和温室气体减排技术的开发和应用为核心,以减少化石燃料消耗和温室气体排放为标志,促进产业结构和制度创新以及人类生存发展观念的根本性转变,最终使经济社会与生态环境相互和谐,可持续发展。
2006年,前世界银行首席经济学家尼古拉斯・斯特恩呼吁全世界向低碳型经济模式转化。2007年7月,美国参议院提出了《低碳经济法案》,表明低碳经济的发展道路将有望成为美国未来的重要战略选择和指导方向。2007年12月,“巴厘岛路线图”要求发达国家在2020年前将温室气体减排25%、40%,为全球进一步迈向低碳经济起到了积极的作用,具有里程碑式的意义。联合国环境规划署将2008年“世界环境日”的主题定为“转变传统观念,推行低碳经济”,以低能耗、低污染为基础的“低碳经济”成为全球热点。
1.2 低碳农业
低碳农业是一种比广义的生态农业概念更广泛的概念,不仅要像生态农业那样提倡少用化肥农药、进行高效的农业生产,而且在农业能源消耗越来越多,种植、运输、加工等过程中,电力、石油和煤气等能源的使用都在增加的情况下,还要更注重整体农业能耗和排放的降低。在农业生产和生活中,无论是节地、节水、节肥、节种,还是节电、节油、节柴(节煤)、节粮,只要是可以降低农业生产成本,保护农业生态环境,增强土壤的固碳能力,减少温室气体排放,都属于低碳农业最有效、最现实的形式。
1.3 北京市发展低碳农业的意义
北京市发展低碳农业是在应对未来农业的巨大挑战、实现农业可持续发展的一项重要的举措,其宗旨是在保护生态环境的前提下实现农业的高值化,提高农业的生产能力、产业化规模、竞争力和比较优势效益。发展低碳农业不但可以增加碳汇:还可以节约能源,并推广新能源;减少温室气体的排放;提高废弃物和化肥农药的利用率,减少农民的经济投入,获取更大收益。低碳农业是资源节约型农业――尽可能节约各种资源消耗,减少人力、物力、财力的投入;低碳农业是综合效益型农业――以最少的物质投入,获取全社会最大的产出收益;低碳农业是生态安全型农业――采取各种措施,将农业产前、产中、产后全过程中可能对社会带来的破坏降到最低。简而言之,发展低碳农业经济是应对全球气候变化、减少温室气体排放的迫切要求。
2 北京市发展低碳农业的途径
气候变化引起的水资源短缺和燃料价格的波动都将直接影响到粮食的生产状况和耕作的稳定性。在农业用地中会释放出大量的温室气体,超过全世界人为排放温室气体总量的30%以上,相当于150亿吨CO2。发展低碳农业该采取哪些模式,下面从循环经济的角度来阐述低碳农业上的发展思路。
2.1 减量化原则――发展节约型农业
九节即节地、节水、节肥、节药、节种、节电、节油、节柴(节煤)、节粮,一减就是减少从事“一产”的农民。抓好“九节一减”,不但可以降低农业生产成本和经营成本,而且可以在源头上减轻农民的负担,而更为有效的是可以促进农民增收,治理农业生产中所产生的面源污染,达到保护农业生态环境的目的;还可以增强土壤的固碳能力,减少温室气体的排放。通过转变农业的增长方式,化解农业生产中所面对的风险,发展低碳农业、循环农业,应对气候变化对农业生产所造成的影响。
2.2 再循环原则――大力发展循环农业
在新形式下,依靠水土为中心的传统农业种植模式将接近或达到土地承载能力的临界状态,这就需要我们不断寻求新的种植模式。微生物的利用被称为白色农业。它把传统农业的动植物资源利用拓展到微生物资源利用领域,创建以微生物产业为中心的新型工业化农业。目前农村微生物运用最广泛的是沼气,而且效果显著。沼气的残留物――沼液可以代替农药、沼渣可以代替化肥,是发展有机农产品的重要条件。将农业生产中产生的各种废弃物化害为利、变废为宝,进行循环、深度利用。充分利用太阳能和其他新兴能源代替传统化石燃料。
2.3 再利用原则――发展农产品的加工业
对农产品进行深加工,提高农产品的经济附加值,创造更好的效益。将各种农产品加工后所生成的副产品和有机废弃物循环利用,进行系列开发和深度加工,有些所产生的经济效益甚至会超过主产品的效益。既做到了节约能源资源,又减少了对生态环境的破坏和污染,有效的减少了温室气体排放。
2.4 可控性原则
可控性原则包含以下几个方面:保护生态环境;开发安全优质农产品;优化配置农村产业结构。其中有机农产品在生产过程中不施用任何化学合成物质,绿色农产品禁止施用高毒高残留的化肥和农药,减少化学合成物的使用,施用有机肥。大力发展有机农业,如果可以全面覆盖的话,这一领域几乎能够达到碳中和状态。在生产中减少温室气体排放、强化固碳,还可以带来生物多样性进展以及生态环境的改善。
2.5 生物质能源利用原则
重点示范推广生物质燃气中降低焦油污染技术、低温沼气发酵技术、生物质燃料高效利用技术以及沼渣、沼液资源化利用等技术,重点开展利用太阳能光热转换系统、生物质燃料加温等资源替代型技术(产品)试验示范,推广沼渣、沼液定量施肥技术,提高农村生物质资源综合开发利用水平。在有条件的农村地区开展生物质集中气化供气技术、户用炉具多元燃料、生物质成型燃料与能耗成本控制技术、生物质燃气标准化技术、生物质固体成型成套设备与配套炉具开发与应用等。
3 北京市发展低碳农业潜力分析
现代农业提供大量产品,同时也成为面污染源和排放源。高碳排放石油农业不可持续。京郊农业耗能高于全国,单位面积化肥用量为世界平均(109.8kg/hm2)5.5倍,意味着排放强度比全国成倍高出。尽管每公顷产值高出38%,但是农业能源效率仍低于全国平均。作为首都,必须做出低碳经济建设的榜样,向世界显示中国减排的决心和行动的落实。
表1 北京市农业每公顷能耗和产值与全国平均比较
地区 耕地
(万) 农机动力(kw) 农用电(kwh) 化肥
(kg) 猪牛羊肉(kg) 农业地区产值(元/公顷)
全国 12173.5 6.285 4525.5 419.6 433.5 23079.0
北京 23.22 12.95 17715.0 602.9 1486.5 31936.5
3.1 地理条件
北京市地处华北平原西北边缘,地形多样,各种地貌类型较为齐全,气候属暖温带半湿润大陆性季风气候,夏季炎热多雨,冬季寒冷干燥,春、秋短促,年平均气温10-12℃。雨热同期,无霜期较长,光照充足,有利于农业的综合发展。山区占全市总面积的62%,平原约占38%。耕地面积23.2万公顷,全市境内多年平均降水量为600mm,由境内降水而形成的多年平均地表径流量为23 亿m3。有效灌溉面积17.2万公顷,农业用水12亿m3。全市人口1695万多,其中农业人口约占15%。由于特殊的地理位置,全市农业以都市农业为主,生产蔬菜、瓜果、花卉等。
3.2 水和生态资源
北京市拥有密云水库和官厅水库两大淡水湖泊,是重要湿地,其巨大的生态功能对维护首都生态安全具有举足轻重的意义。北京市总面积16400km2,流经市域的河流有永定河、潮白河、北运河、拒马河和枸河。全市年平均降水量为626mm,年内多暴雨集中,汛期6-9月份降雨量占年降水量70-80%以上。北京因水而建都。北京的地表水和地下水主要靠降雨补给。北京水资源的特点:(1)北京属干旱少雨气候,水资源严重不足;(2)年际及季节变化大,年降水量1406-290mm之间,年内降水多集中在6-8月,形成地表径流,不易补充、涵养地下水;(3)北京有蓟运河、潮白河、北运河、永定河、大清河五大水系。共有大小河流100余条,全长2700多千米。有大小湖泊、水库120余座。2008年节水19559t,节水措施245项。生态旅游资源的开发将是北京市利用生态资源取得经济收益的重要途径。
3.3 林业自然资源
北京山地原始植被类型为暖温带落叶阔叶林,因长期受人为影响原始植被类型已不多见,长期大量的人为活动使次生植被在该地区占主导地位,林业在发展低碳经济,应对全球气候变化中的独特作用是显而易见的,而且得到国际公认。森林在发展低碳经济、减缓全球气候变暖的作用主要是要增强森林的碳汇功能,减少和控制森林成为温室气体的排放源。北京市林地面积641368.3公顷,森里覆盖率36.5%,全市林木绿化率52.1%。良好的森林覆盖率为农业温室气体减排提供了良好的生态基础。
图1 森林面积结构
3.4 农业生产条件较好
伴随着农业科技的大力推广和农业产业化经营速度加快,农业的现代化水平和农村基础设施建设的不断完善,传统农业迅速向现代农业转变,生态农业、绿色农业、无公害农业、农业产业化等环境友好型、资源节约型的现代农业成为目前农业发展的重要增长点。建成了多个农产品标准化生产综合示范区。拥有多个使用沼气作为能源的示范乡镇,多数村庄广泛应用沼气作为生产生活的主要能源,为发展低碳农业创造了良好的前提条件。
3.5 秸秆利用效率得到进一步提高
秸秆是一种很好的清洁可再生能源,可用于生物质能源开发,每2t秸秆的热值就相当于1t标准煤,而且其平均含硫量只有3.8‰,而煤的平均含硫量约达1%。在生物质的再生利用过程中,排放的CO2与生物质再生时吸收的CO2达到碳平衡,具有CO2零排放的作用,市场前景非常广阔。除秸秆用作燃料、秸秆还田,秸秆饲用之外,秸秆还用来碳化、秸秆发电等。秸秆发电是秸秆优化利用的最主要形式之一。随着《可再生能源法》和《可再生能源发电价格和费用分摊管理试行办法》等的出台,秸秆发电备受关注,目前秸秆发电呈快速增长趋势。
3.6 农业生态环境得到根本改善,水土流失得到有效控制
北京市开展了农业面源污染综合治理示范研究,初步建立了农业环境监(检)测体系,使农业生态环境大大改善;退耕还林,实施坡改梯工程,水土流失情况明显缓解,截止2008年,全市近40万公顷的水土流失面积得到初步治理。水土流失恶化的趋势初步得到遏制。
3.7 农业节能减排新技术广泛应用与农业生产
由于近年来对循环农业的广泛关注,农业的节能减排技术已经广泛存在于全市广阔农村的生产生活中。农业部举办了“节能减排农村行”,该活动在北京顺利进行,该项目的成功开展为应对世界能源短缺,节约资源,减少温室气体排放,改善农村环境,实现我国农业和农村的可持续节发展做出了很好的示范作用。
免耕技术的推广可以从根本上减少温室气体的排放,而且使产量得以提高,增加农民收入,保护了土壤和水资源。此外,育种技术、测土配方施肥技术、畜禽健康养殖技术、绿肥饲用技术、病虫害防治技术等一系列节能减排技术的实施,使温室气体的排放得到一定的减弱,保农业生产生态环境,实现了经济与环境的双赢。
4 推进北京市低碳农业发展的建议
4.1 大力宣传,编制全市整体规划
低碳农业是一个新兴的农业种植模式和技术体系,对于广大的农民而言,需要改变过去传统的农业思想。因此,需要通过各种媒体,并定期举办培训、讲座等形式,转变公众和社会观念,提高广大农民群众对低碳农业的认识和理解。编制农业总体规划,减少社会生产和生活活中的碳生产率。要做到以下几点:将低碳农业的经营模式纳入北京市农业发展的总体规划,进行全面安排部署;将低碳农业的研发技术纳入北京市的年度科技攻关计划;制定农村新能源发展利用纲要,使农业生产的碳排放量由高向低转变;制定专项规划,提出低碳农业的发展目标、重点和相关措施等,并研究低碳农业的统计方法和考核指标;在北京近郊、远郊平原和山区等不同类型地区分别建立若干低碳都市型农业示范区。
4.2 发挥碳汇潜力,加强碳汇研究
通过土地利用方式的调整和森林覆盖面积的扩大,将大气温室气体储存于生物碳库中是积极有效的减排方式。有研究表明,每增加1%的森林覆盖率,可以使大气中吸收固定0.6-7.1亿吨碳。提高北京市森林覆盖率,确保全市森林覆盖率每年在前一年的基础上都能有所提高,增强北京市森林生态系统整体的碳汇功能,发挥森林的减排潜力。同时,加强农业方面的碳汇研究,系统收集整理有关畜禽牲畜数量、稻田耕作面积、化肥农药使用量、秸秆利用率、耕地面积变化情况等相关资料和数据,为深入研究打下坚实基础。
4.3 推广低碳农业技术,建立农业示范区
在农业生产过程中,大力推广应用垄作免耕技术、沼气工程、绿肥饲用技术、秸秆综合利用技术、节水灌溉技术、农业机械节能减排技术等各种节能减排技术,从而减少温室气体的排放,使生态环境得到改善。并在此基础上,选择与乡村自然条件和生产条件相符合的低碳农业经营模式,建立低碳农业示范园区,示范企业、农户,充分发挥的传、帮、带作用,为节能减排技术的推广提供样板和相关技术支持体系。
4.4 改善农业的能源利用结构,整合能源服务体系
目前对农业和农村节能减排的所产生的问题及其所暗含的潜力重视不足,进展缓慢。主要表现在:种植业能源浪费问题突出,养殖业污染需要治理的空间范围广,农村生活垃圾和废弃物的治理刚刚起步。因此,必须积极转变思维,构建合理的农村能源服务体系,大力开发农村生物质能源,发展新思维。充分利用农村太阳能、风能、地热能等可再生能源和生物质能源,提高可再生能源和生物质能在广大农村能源利用中的比例。北京市建设中的秸秆综合利用、沼气等发展已具一定规模。突破沼气越冬保温与储气难关,加强大型沼气站管理,实现大部人畜粪便和秸秆沼气转化利用。
4.5 提高资源利用效率,优化配置资源
依照相关统计数据,全市农村化肥、农药利用率不足35%,低于很多发达国家的利用效率(很多达到50%以上)。由于多数农户盲目追求高产出,偏施、过量施用化肥现象普遍发生,导致化肥利用逐年下降。化肥是高耗能产品,每生产1t氮肥平均要消耗1.4t煤炭。如果能把化肥利用率提高10个百分点,就相当于减少了1/4的化肥使用量。因此,要发展低碳型农业技术,就必须合理施用化肥和农药。广泛开展测土配方施肥技术,合理使用农药,推广低容量喷雾技术,建立病虫害防治专业组织,运用多种技术,减少农药使用量。提倡和鼓励使用缓释化肥,改进施肥技术,提高化肥利用率和减少氧化亚氮的排放。
4.6 开展清洁发展机制项目研究,加强国际交流
清洁发展机制,简称CDM(Clean Development Mechanism),是《京都议定书》中引入的三个灵活履约机制之一。我国将能够提供给世界清洁发展机制所需的一半项目,这也将给中国带来巨大的经济效益。因此,积极开展CDM项目研究,扩大开发运用CDM项目的内容和范围,同时,加强技术合作与转让,推动发达国家向发展中国家转让减少温室气体排放的资金和技术。要积极参与国际上低碳能源技术的交流,通过气候变化国际合作的新机制,学习先进的低碳技术,使我国农业领域的低碳技术和相关设备、产品达到国际先进水平。
4.7 制定和实施农业减排增汇的生态补偿政策
发展低碳农业,提高农业的节能水平,必须依托相关的政策保障措施。很多发达国家已制定了详尽的法律法规,如德国就有对施用有机肥的农户进行补贴的政策。目前低碳农业的发展急需制定相应的优惠政策与奖励办法,出台一系列相关政策等。改善农业的生态补偿机制,鼓励农业废弃物能源化、资源化利用,鼓励发展循环农业和生物质经济等。依托北京市科技资源,提升观光农业品位,发展创意农业,提高农产品安全、营养和加工水平,增加农产品附加值以大幅度降低单位产值排放强度。
5 结语
伴随着我国农业向现代化的不断推进,建立生态高值农业和生物产业体系不仅能推动农业向生态环保、高效多元化发展,而且能促进农业产业链的不断延伸。与此同时,还可以促进农业产业科学技术和生产能力的升级,不断满足我国对农产品的总量需求和质量需求,全面实现农产品优质化、营养化、功能化,以及农业生态系统的持续良性循环 。这种全新的农业模式促进了“低碳农业经济”的发展,是一种全新的的绿色农业经济。我国未来农业现代化如果建立在低碳经济的发展模式之上,将是农业发展模式的重大创新,必将引领全世界农业发展水平的进步。
参考文献
[1]方涵.“低碳经济”概述及其在中国的发展[J].经济视角,2009,(3):45-46.
[2]贾凤兰.什么是低碳经济[J].求是,2009,(19):50.
[3]季坤森.低碳经济在农业大有可为[N].农民日报, 2009,(12).
[4]康殿邦.凤台县推进低碳农业经济发展的问题与对策[J].安徽农学通报,2009,(15):5.
[5]北京市统计局编.北京统计年鉴[M].北京:中国统计出版社,2009.
[6]任力.低碳经济与中国经济可持续发展[J].社会科学家,2009,(2):47-50.
[7]钱海燕,樊哲文,等.江西省发展低碳农业的潜力分析[C].第三届全国农业环境科学学术研讨会论文集. 2009(10):717-722.
[8]张道明.作物秸秆用途[EB/OL].,2009-07-11.
[9]赵其国,钱海燕.低碳经济与农业发展思考[J].生态环境学报,2009,(3):1614.
[10]王昀.低碳农业经济略论[J].中国农业信息, 2008,(8):12-15.
[11]翁伯琦,王义祥,雷锦桂.论循环经济发展与低碳农业构建[J].鄱阳湖学刊,2009,(3):92-102.
当今社会正以迅猛之势飞速发展,归根到底是高新技术产业的进一步深化。不容乐观的就是环境与发展之间的问题还没有得到彻底根除。
众所周知温室气体的大量排放,至使全球气候气温逐年上升,呈现出愈演愈列的反弹态势。由此带来的南极冰川溶化问题不容回避。环境问题不仅仅体现在二氧化碳等温室气体排放量上,也表现在含氟物质的大量排放上,严格控制这些有害气体的排放已经刻不容缓。对于二氧化碳等温室气体,当前我们只能用节能减排的传统方式进行限制。在以后的某一天一定能够实现科技引领生活,技术革新环境的革局,正确处理环境与发展之间的问题是一项重大的历史选择。我们不能因为要保护环境而舍弃经济建设这个中心点,也不能因为只追求经济建设而忽略环境变化带给我们的不利因素。高端领域科学技术的发展非常迅猛,已经势不可挡。所以它也必将荡涤整个社会生活的每一个角落。环境问题依托于高新技术的发展众望所归,只有从根本上解决技术革新的问题,能源的优化问题,才能实现当前技术能源的合理配置有效的遏制温度上升带给我们的幅面影响。
环境问题这个关系子孙后代的千秋事业不能忽视。一味从自然界索取,必将被大自然所惩处。可持续发展战略的实施使我们有更多的时间精力去实现高新产品的研发。能源问题必须摆在首位,煤、石油、天然气等非可再生资源日趋减少,而在这个高速发展的社会,对资源的需求量去于日俱增,资源与经济的发展几乎形成了相互制约的关系。非可再生资源我们只有减少开发量,为子孙后代赢得宝贵的发展时间和资源利用。主要的也是减少人为的气体粉尘排放量,使空气质量维持在良好的标准范围。而可再生资源的利用正逐步向成熟期过渡,前景是非常美好的。解决这些问题最好的方式就是不污染,这一点相信只要在这些问题上达到绝对的科技含量是能够解决的。太阳能、风能、潮汐能、水能、地热能、核能等等。如果这些合理有效的加以利用必将给我们的生活提供源源不断的能量。百年大计,千秋大业。行之有效的措施还是用高新技术促进这些产业的发展,这样必将带来一劳永逸的好处。有氟物质的排放直接影响大气层中的臭氧层,臭氧层空洞使地球直接裸露于紫外线的强照射之下,幅射随之有很大的加剧。对地球上的生物都有很大损伤,而臭养层破坏主要是大量使用有氟冰箱的结果。而以现在的科技足以杜绝用有氟冰箱继而用新型高效节能的冰箱取代,这就有赖于各个国家统一协调,共同努力。只有这样才能从根本上解决这种危机。
当今社会环境问题最令人关注的就是温室气体的大量排放和氟氯烃等气体的排放,国际社会保护环境的基本框架不能改变。而其他的污染都存在很大的区域性,目前就是各个国家自己关注自己环境变化带给自己的影响,这些就要靠自己解决自己的问题了。
永城职业学院高三:张威林