时间:2024-01-13 16:28:10
引言:寻求写作上的突破?我们特意为您精选了4篇表观遗传学研究方法范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
3.遗传学教学中在细胞与分子水平上理解等位基因的显性与隐性
4.果蝇唾腺多线染色体研究进展及其在遗传学教学中的应用
5.以人类血型为遗传学案例教学的思考与实践
6.表观遗传学药物的研究进展
7.表遗传学几个重要问题的述评
8.构建优质教学体系,促进《遗传学》精品教育
9.小鼠毛色遗传的控制机制及其在遗传学教学中的应用
10.肝癌发生的分子遗传学和表遗传学研究
11.景观遗传学原理及其在生境片断化遗传效应研究中的应用
12.以遗传信息为主线的遗传学教学架构及与其他课程的衔接
13.认知过程中的表观遗传学机制
14.我国高校遗传学教材的出版与使用现状的调查
15.表观遗传学:生物细胞非编码RNA调控的研究进展
16.表观遗传学视角下运动干预阿尔茨海默病的机制分析
17.遗传学与基因组学整合课程探讨
18.表观遗传学研究进展
19.癫痫表观遗传学研究进展
20.不仅仅是遗传多样性:植物保护遗传学进展
21.利用文献精读教学新模式优化遗传学教学
22.2015年中国医学遗传学研究领域若干重要进展
23.发展行为遗传学简介
24.光遗传学技术应用于动物行为学在神经回路中的研究进展
25.表遗传学推动新一轮遗传学的发展
26.生物教育专业《遗传学》教学改革的探索
27.糖尿病肾病遗传学研究进展
28.肿瘤表观遗传学研究热点的聚类分析
29.浅谈高校《遗传学》课程教学改革与实践
30.2015年中国微生物遗传学研究领域若干重要进展
31.利用经典文献优化《遗传学》双语教学
32.孟德尔豌豆基因克隆的研究进展及其在遗传学教学中的应用
33.表观遗传学在肺癌诊治中的研究进展
34.人格行为遗传学研究的两类取向
35.害虫遗传学控制策略与进展
36.表观遗传学及其应用研究进展
37.阿尔兹海默病的表观遗传学机制及相关药物研究
38.胃癌遗传学及表遗传学研究进展
39.遗传学在胆管细胞癌发展中的重要性
40.子痫前期表观遗传学研究进展
41.行为遗传学:从宏观到微观的生命研究
42.遗传学史在遗传学教学中的作用
43.男性不育的遗传学评估
44.表观遗传学与肿瘤干细胞
45.开放式教学在遗传学实验教学中的探索与实践
46.表观遗传学调控与妇科肿瘤发生、演进及治疗的研究进展
47.规律运动干预人类衰老过程的表观遗传学机制研究进展
48.表观遗传学及其在同卵双生子研究中的新进展
49.分子群体遗传学方法处理鲤形态学数据的适用性
50.番茄果重数量性状基因的研究进展及在遗传学教学中的应用
51.遗传学教学中遗传学史及科学方法论的教育
52.景观遗传学:概念与方法
53.孤独症的遗传学和神经生物学研究进展
54.肺癌表观遗传学的研究进展
55.肿瘤的表观遗传学研究
56.遗传学课程群的设置和思考
57.《遗传学》课程的建设与优化
58.表观遗传学在中枢神经系统退行性疾病中的研究进展
59.遗传学实验教学体系的改进
60.肝癌表观遗传学研究进展
61.保护生物学一新分支学科——保护遗传学
62.表观遗传学在淋巴系统肿瘤研究中的新进展
63.大肠癌的表观遗传学研究进展
64.重视经典遗传学知识体系构建和学生自学能力的培养
65.植物化学遗传学:一种崭新的植物遗传学研究方法
66.关联分析及其在植物遗传学研究中的应用
67.表观遗传学及现代表观遗传生物医药技术的发展
68.三阴性乳腺癌与表观遗传学研究现状
69.构建培养新型医学人才的医学遗传学课程体系改革
70.骨髓增生异常综合征的遗传学检测研究进展
71.钉螺遗传学及其生物学特性的研究进展
72.羞怯:来自行为遗传学的观点
73.遗传学探究性实验教学的思考及实践
74.“教学、实践、科研、临床”四位一体的医学遗传学教学体系建设探索与实践
75.国内高校遗传学教材发展研究
76.男性生殖遗传学检查专家共识
77.肿瘤表遗传学研究的进展
78.创新性遗传学大实验对提高大学生综合能力的研究
79.白内障表观遗传学研究的现状及进展
80.遗传学研究性实验教学模式探索与创新人才培养
81.表观遗传学在木本植物中的研究策略及应用
82.高通量测序技术结合正向遗传学手段在基因定位研究中的应用
83.激发与培养学生学习遗传学兴趣的教学途径
84.从表观遗传学开展复杂性疾病证候本质的研究
85.蓝藻分子遗传学十年研究进展
86.建设遗传学课件体系 提高多媒体教学质量
87.表观遗传学与肿瘤
88.原发性肝癌的表观遗传学及其治疗
89.青少年焦虑、抑郁与偏差行为的行为遗传学研究
90.儿童孤独症的遗传学研究进展
91.本科生遗传学实验教学的改革探讨
92.与闭经有关的遗传学问题
93.多媒体教学在遗传学“三点测验”教学中的实践
94.一个实用的群体遗传学分析软件包——GENEPOP3.1版
95.论从“肾为先天之本”到“中医遗传学”
96.《遗传学》多媒体教材的编写与实践
97.肺癌的表观遗传学研究进展
近年研究表明,高等生命遗传信息的复杂性不仅在于基因组有更多的结构蛋白基因编码,还在于基因表达调控机制的复杂性。因此基因表达调控是现代分子生物学的核心。其主要探讨在不改变DNA序列的条件下改变基因的表达,这种改变不仅可以影响个体的发育,还可以遗传,因此表观遗传学(epigenetics)应运而生。表观遗传是指DNA序列未发生改变,而基因表达发生了可遗传的改变[1]。表观遗传改变从3个层面上调控基因的表达[2],
1.DNA修饰:DNA共价结合一个修饰基团,例如甲基基团(CH3),使具有相同序列的等位基因处于不同的修饰状态;
2.蛋白修饰:通过对蛋白进行修饰或者改变蛋白的空间构象来调控基因的表达,例如组蛋白乙酰化等;
3. 非编码RNA的调控:由非编码的RNA通过某些机制对基因转录或转录后进行调控,例如RNA干扰(RNA interference,RNAi)。
表观遗传学研究的内容非常广泛,涉及染色质重塑、DNA甲基化、X染色体失活和非编码RNA调控等[2],目前研究最充分的表观遗传改变是DNA甲基化。
表观遗传学被Feinberg[3]认为是现代医学的中心,这是因为其有助于解释个人的遗传背景、环境因素、老龄化和疾病发生之间的关系。表观遗传学可以完成这样的工作是因为虽然DNA序列没有发生改变,但是表观遗传状态在人的一生中和不同的组织中是不同的,并且随着细胞逐渐适应人体内部环境和外部环境的改变,表观遗传机制将会通过对基因表达的编程和再次编程过程将这些改变记录下来[3]。
对于人类疾病,表观遗传学认为那是由于正常表型可塑性被破坏的结果。表型可塑性是指同一基因型受环境的不同影响而产生的不同表型,是生物对环境的一种适应。表型的改变包括行为、生理、形态等[4]。第一个由表观遗传学机制引起的人类疾病的例子就是癌症。1983年,研究发现与同一个患者正常的粘膜组织相比,结肠癌细胞DNA存在全面的去甲基化改变[5]。去甲基化被认为可以导致癌症基因的异常活跃,同时引起遗传不稳定性和染色体重组[6]。接着在癌症抑癌基因的启动子上发现存在高度甲基化[7~9]。
流行病学是关于人群疾病的研究,而疾病表观遗传学的进步只能来源于一门新兴的交叉学科,即表观遗传流行病学[3]。目前对表观遗传流行病学还没有公认的定义,Waterland and Michels[10]认为表观遗传流行病学是研究疾病发生危险与表观遗传变异之间关联的科学,而Jablonka[11]认为暂时的,表观遗传流行病学可以被定义为“研究可遗传的表观改变对疾病发生和分布的流行病学分支”。表观遗传流行病学在传统的流行病学病例对照研究、暴露测量和风险评估上做了一些改进。其所增加的表观遗传测量和统计学上的革新,主要是为了解决某些表观遗传方式不符合孟德尔遗传定律的问题。例如,某些印迹基因,其等位基因表达与否与其是来自于父亲还是母亲有关,这需要新的模型分析技术。
在表观遗传流行病学领域进行的第一项研究,是由De Baun等[12]建立的一个以人群为基础的脐疝巨舌巨人症综合征,beckwithwiedemann syndrome,BWS)登记系统。BWS临床表现为胚胎和胎盘过度增长、正中腹壁缺陷、耳垂皱纹或耳轮小凹、新生儿低血糖症、Wilms瘤和其他胚胎肿瘤的发生危险增加,例如肾上腺皮质癌、胚胎性横纹肌肉瘤和肝母细胞瘤等。BWS是了解肿瘤表观遗传学的经典范例,因为它是由少数几个基因发生表观遗传改变而导致的罕见家族性疾病。DeBaun等[12]设计了一个BWS登记系统,由一组专家通过对临床症状、家族史资料和医院病历进行严格调查,最终获得了数百个BWS家庭。研究将BWS每个临床体征发生的危险与每个遗传缺陷联系起来,第一个遗传缺陷就是胰岛素样生长因子II(insulinlike growth factorII, IGF2)基因发生印迹丢失(loss of imprinting,LOI)的改变。IGF2是一个印迹的生长因子基因,正常情况下只有遗传自父亲的等位基因才会表达,但是在BWS中,来自父亲和母亲的等位基因都表达了。这项研究最重要的结果是,虽然只有大约15 %的BWS患者出现IGF2基因的LOI改变,但是该研究将癌症的发生与表观遗传改变特异的联系在一起[12]。这是第一个以人群为基础将表观遗传暴露与肿瘤的发生特异的结合起来的范例,从流行病学角度探讨表观遗传学改变导致人类肿瘤发生机制的实例[12]。同时研究还将其他的表观遗传改变与BWS其他表型联系起来,将长QT内含子转录子1基因(long QT intronic transcript1,LIT1)基因的印迹丢失和细胞周期素依赖性激酶(cyclindependent kinase inhibitor,P57KIP2)基因突变与过度增长和正中腹壁缺陷联系起来,将单亲二倍体本身与低血糖症联系起来[12]。
二、表观遗传流行病学假说
由于表观遗传流行病学是一门新兴的交叉学科,其学科定义、发展方向和基本理论受到其前身学科流行病学和表观遗传学的影响。流行病学的发展方向虽然不断扩展,但其根本的学科定义和基本理论已经相当成熟。而表观遗传学这个学科名称虽然已经沿用了大约60年,但是学科领域正在不断扩展,其学科定义的内涵比较大而外延还在不断延伸中。因此作为下游学科的表观遗传流行病学的理论也在不断更新。目前表观遗传流行病学有若干假说,但是这些假说之间关系究竟是何种关系,还有待于进一步验证,本文仅提出两个相对成熟的假说。
1.年龄相关性疾病和常见疾病遗传和表观遗传学假说:现代医学更多关注的是减缓或减轻衰老造成的结果,而不是逆转和消灭疾病,因为对人类所有组织和器官的功能将随着时间的推移而逐渐衰退。有人将衰老定义为在相当一段时间内的表型可塑性的缺失[2]。这种可塑性的缺失会使得一些与潜在的与遗传变异相关的疾病的作用被加强,表现为部分与年龄相关常见疾病的发生,例如心脏病、糖尿病等。但是什么导致了这种表型可塑性缺失?这种缺失与疾病易感性位点的DNA甲基化水平是否存在相互关联?
Bjornsson等[13]提出了一个模型,可以从表观遗传学角度回答上述问题,这就是常见疾病遗传和表观遗传学模型(common disease genetic and epigenetic model,CDGE)。这是一个疾病遗传易感性模型,同时包括一个表观遗传因素与其相互作用。环境因素作用改变了DNA和染色质上的表观遗传学标志,例如DNA甲基化依赖于从膳食摄入的蛋氨酸和叶酸,后二者都受到个体营养水平的影响。对小鼠的研究发现,降低膳食中蛋氨酸的水平,可以通过改变agouti基因的DNA甲基化水平而改变其毛发的颜色[14]。给大鼠简单地摄入低蛋氨酸水平的膳食,可以通过导致其DNA发生去甲基化的方式,诱导其更容易发生肝癌[15]。
在CDGE模型中,表观遗传学组还可以间接地与基因组相互作用。一些因素如DNA甲基化转移酶I和MeCP2蛋白是由基因表达产生,如果基因存在变异,可以通过影响DNA甲基化机器的保真度来影响疾病的易感性。这一机制来自新杆状线虫蠕虫实验。研究发现,遗传变异可以影响很多信号途径,这些途径似乎与编码染色质重塑的基因有关[16]。反过来,一些常见的DNA变异所编码的突变蛋白,如果由于表观遗传学原因没有被表达,也不会产生生物学作用。一个非常明显的例子是Rutherford和Lindquist[17]进行的果蝇实验,通过热休克。这一种外界刺激,可以提高果蝇表观遗传学的筛选能力,从而允许一些潜在突变基因表达的频率更高,但是对生物体本身不会产生严重影响。
对一组不同年龄的同卵双生子同胞的研究发现,提示与年轻的同胞对相比,年龄较大的同胞对个体之间表观遗传学标志物,例如DNA甲基化水平的不一致性更大[18]。但是,这项研究没有探讨同一个个体不同时期的表观遗传改变情况,所以我们不知道这是由于DNA甲基化水平的变化,还是他们本身就有差异。后来的一项研究没有发现DNA甲基化水平的变异与年龄之间存在相关,但是这项研究同样的也没有分析单个个体的甲基化水平是否随时间发生变化[19]。
CDGE提供了一个流行病学框架,通过这个框架将表观遗传学引入到疾病年龄相关易感性的遗传研究。在CDGE模型中,表观遗传学编码可以修正有害基因的效应或者受到异常环境因素的影响。因此,将表观遗传学引入到人类疾病的流行病学研究中,有助于解释基因组和环境因素之间的关系,还可以为疾病预防和治疗提供新的线索。
2.疾病和健康的发育源性假说:在近40年内,越来越多的流行病学研究提示胎儿宫内生长环境对其一生健康和疾病状况有着重要的作用。Forsdahl[20]首先通过队列研究发现,挪威40~69岁人群年龄调整心血管疾病(cardiovascular disease, CVD)死亡率与同一人群婴儿死亡率呈正相关关系。这一结果提示宫内环境因素决定了个体今后发生CVD的风险。随后Barker和Osmond[21]发现,在英格兰和威尔士,新生儿死亡率高的地区,成年人冠心病(coronary heart disease,CHD)死亡率也比较高,提示宫内环境是一个重要的中间变量。
在英国赫特福郡进行的一次回顾性研究发现,新生儿出生体重与CHD病死率之间存在负相关[22]。随后大量的研究结果都提示,新生儿低出生体重与心脏病[23]、高血压[24]、II型糖尿病[25]的发病危险增加有关,此外新生儿低出生体重还与异常的血糖胰岛素代谢[25]和血清胆固醇浓度[26]变化有关。
宫内环境除了与上述成年期慢性疾病发病危险增加有关,还有假说认为与成年期癌症的发生有关。1990年Trichopoulos[27]认为,乳腺癌的发生可能与个体胎儿时期宫内因素暴露有关。新生儿高出生体重与其今后发生乳腺癌的危险性增高有关[28,29]。此外,儿童白血病和癌也与新生儿高出生体重有关[30]。因此,有学者提出,胎儿在宫内暴露于较高的生长激素水平,可能会启动一些潜在的生物学机制,使得新生儿的出生体重和细胞增殖增加,为成人期发生心脑血管疾病、癌症和其他慢性病设定了相应的风险[29]。
不同的研究采用不同的观察终点都提示了胎儿早期宫内环境暴露与其今后的疾病状况存在关联。Lucas[31]用“编程”一词来描述在胎婴儿发育的关键或敏感时期,外界的刺激或伤害将对个体出生后造成永久的或长期的影响。Waterland和Garze[32]采用“代谢性印迹”来描述在生命的早期,胎婴儿在特定的敏感时期,对特定的营养水平的适应性反应,这种反应将会在该个体的成年期长期存在。此外代谢性印迹还提出宫内暴露和结局之间的关系是特异的和可测量的,并且可以用剂量反应关系或阈值关系来表示。
2004年,Lucas和Gluckman等[31~34]提出了人类健康和疾病的发育源性假说(developmental origins of health and disease,DOHaD),即在哺乳动物出生前和出生后发育的关键时期,营养和其他环境刺激将对哺乳动物的发育进程产生影响并且在代谢和慢性疾病易感性上引起永久的改变。尽管很多人群流行病学和动物模型实验数据支持这个假说,但是关于该假说的生物学机制目前还不清楚。Waterland等[10]认为要理解DOHaD的生物学机制,就需要对表观遗传学的定义有个清晰的界定,应当接受Jaenisch和Bird[35]关于表观遗传学的新定义,即表观遗传除了遗传基因表达的改变外,还应当包括遗传基因表达改变的可能性。这个定义上的微小改变是非常关键的,这样表观遗传不仅能遗传基因的表达情况,还可以将应对细胞外信号反应而改变基因表达水平的能力进行遗传。Waterland等[10]认为,不同的引起个体间表观遗传变异的因素都可以导致疾病的发生,除了遗传和表观遗传外,随机性也可以影响个体表观遗传调控的建立。在表观遗传机制建立和成熟过程中,环境刺激对出生前和出生后早期的表观遗传水平有着重要的影响,所产生的错误信息在以后的表观遗传复制中被不断积累,最终导致个体随着年龄的增长而表观差异变得越来越大,一些个体更容易发生疾病。
目前大多数关于DOHaD的人群流行病学研究,都是采用出生体重作为新生儿营养水平和宫内发育的标志,尽管出生体重的结果很容易获得,但是对宫内发育来说这个指标还比较粗,会受到很多因素的影响。今后需要采用一些能够反映代谢性印迹的分子生物学标志物对DOHaD假说进行研究。
三、表观遗传流行病学研究常用的指标
前面已经提及,表观遗传学涉及的研究内容非常广泛,目前研究最充分的是DNA甲基化水平的改变,这也是表观遗传流行病学最为常用的指标。DNA甲基化是一种可遗传的表观遗传改变,并且在基因的转录表达抑制、X染色体失活、基因印记和基因组稳定中发挥作用。异常的甲基化水平改变与许多疾病的发生有关,包括出生缺陷、肿瘤、糖尿病、心脏病和神经系统疾病[36]。甲基化反应通常发生在DNA序列中位于鸟嘌呤之前的胞嘧啶碱基上,后者通常被称为CpG双核苷酸。DNA甲基化是在DNA复制后形成,在胞嘧啶环的第5位碳原子上共价结合的一个甲基,从而形成甲基化胞嘧啶。发生这种表观遗传学改变的胞嘧啶占到了哺乳动物基因组总胞嘧啶数的5 %,并且这种改变虽然不是DNA序列的改变,但是可以遗传。DNA甲基化反应是由一组DNA甲基化转移酶(DNA methyltransferases,DNMTs)催化,并且利用S腺苷蛋氨酸(SAM)和DNA作为反应的底物。蛋氨酸、胆碱、叶酸和维生素B12可以直接的提供或者再生甲基单位,并且被证实可以影响DNA的甲基化水平[37]。
对于DNA甲基化的研究,目前有很多方法,黄琼晓等[38]将这些方法大致分为两类:一类是从DNMTs的角度,另一类是从DNA甲基化水平的角度进行研究,后者又分为全基因组甲基化水平和位点特异性甲基化水平。目前表观遗传流行病学较多采用全基因组甲基化水平作为指标。
由于叶酸可以作为一碳单位的载体参与蛋氨酸循环,为甲基化反应提供甲基单位[37],因此很多表观遗传流行病学研究开始探讨叶酸增补对甲基化水平的影响及与肿瘤发病危险之间的关系。例如Rampersaud等[39]的研究发现,叶酸缺乏会显著降低全基因组甲基化的水平。Pufulete等[40]研究发现,与安慰剂组相比,结肠癌病例每日增补400 μg/d叶酸可以使得白血球全基因组甲基化水平升高31 %,结肠粘膜组织细胞全基因组甲基化水平升高25 %。
除了DNA甲基化外,研究比较充分的表观遗传学改变还有染色质重塑,例如丝氨酸的磷酸化、赖氨酸的乙酰化和赖氨酸的泛素化等[3]。但是,目前这些指标在哺乳动物的研究还很少,因此还未被表观流行病学所利用。
四、表观遗传流行病学的未来研究方向
现在越来越多的研究围绕着疾病表观遗传学进行了更加深入的分析,包括全基因组分析和更大人群的研究。这些研究依赖于分析技术的发展,这些技术可以在上百万个位点深入评价表观基因组的变化。Feinberg[3]研究常见疾病,如精神分裂症和孤独症所采用的方法是基于全基因组高通量芯片的相对甲基化水平分析(comprehensive high throughout arraybased relative methylation analysis, CHARM)。该方法用于分析全基因组两百万个以上CpG双核苷酸位点。
表观遗传流行病学目前仍然存在很多待解决的问题,例如在人群研究和动物模型中应当收集怎样的科学信息?发生改变的表观遗传状态是否稳定?它们是通过生殖细胞传递的吗?如果是,这种表观遗传改变将会持续多少代人?这些表观遗传改变是否可以被逆转?等等[11]。尽管表观遗传流行病学非常复杂,但是作为一个新兴的领域,丰富了经典流行病学研究的内容,使我们对人类疾病的病因和分布情况有了更加深入的了解,最终可以帮助解释基因组和环境因素之间的关系,为疾病预防和治疗提供新的线索。
参考文献
1 Wolffe AP, Matzke MA. Epigenetics: regulation through repression [J]. Science, 1999, 286: 481486.
2 张永彪, 褚嘉祐. 表观遗传学与人类疾病的研究进展[J]. 遗传, 2005,27:466472.
3 Feinberg AP. Epigentics at the Epicenter of Modern Medicine [J]. JAMA, 2008, 299: 13451350.
4 Pigliucci M. Evolution of phenotypic plasticity: where are we going now [J]? TEE, 2005, 20: 481486.
5 Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts [J]. Nature, 1983, 301: 8992.
6 Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer [J]. 2004, 4: 143153.
7 Wu H, Chen Y, Liang J, et al. Hypomethylationlinked activation of PAX2 mediates tamoxifenstimulated endometrial carcinogenesis [J]. Nature, 2005, 438: 981987.
8 Nishigaki M, Aoyagi K, Danjoh I, et al. Discovery of aberrant expression of RRAS by cancerlinked DNA hypomethylation in gastric cancer using microarrays [J]. Cancer Res, 2005, 65: 21152124.
9 Sato N, Maitra A, Fukushima N, et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma [J]. Cancer Res, 2003, 63: 41584166.
10 Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis [J]. Annu Rev Nutr, 2007, 27: 363388.
11 Jablonka E. Epigenetic epidemiology [J]. Int J Epidemiol, 2004, 33: 929935.
12 De Baun MR, Niemitz EL, McNeil DE, Brandenburg SA, Lee MP, Feinberg AP. Epigenetic alterations of H19 and LIT1 distinguish patients with BeckwithWiedemann syndrome with cancer and birth defects [J]. Am J Hum Genet, 2002, 70: 604611.
13 Bjornsson HT, Fallin MD, Feinberg AP. An integrated epigenetic and genetic approach to common human disease [J]. Trends Genet, 2004, 20: 350358.
14 Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation [J]. Mol Cell Biol, 2003, 23: 52935300.
15 Wilson MJ, Shivapurkar N, Poirier LA. Hypomethylation of hepatic nuclear DNA in rates fed with a carcinogenic methyldeficient diet [J]. Biochem J, 1984, 218: 987990.
16 Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG. Systematic mapping of genetic interactions in Caenorhabditis elegans indentifies common modifiers of perse signaling pathways [J]. Nat Genet, 2006, 38: 896903.
17 Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution [J]. Nature, 1998, 396: 336342.
18 Fraga MF, Ballestar E, Paz MF et al. Epigenetic differences arise during the lifetime of monzygotic twin [J]. Proc Natl Acad Sci USA, 2005, 102: 1060410609.
19 Echhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22 [J]. Nat Genet, 2006, 38: 13781385.
20 Forsdahl A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease [J]? Br J Prev Soc Med, 1977, 31: 9195.
21 Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales [J]. Lancet 1986. 1: 107781.
22 Osmond C, Barker DJ, Winter PD, Fall CH, Simmonds SJ. Early growth and death from cardiovascular disease in women [J]. BMJ, 1993, 307: 15191524.
23 RichEdwards JW, Stampfer MJ, Manson JE, Rosner B, Hankinson SE, et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976 [J]. BMJ, 1997, 315: 396400.
24 Law CM, Shiell AW. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature [J]. J Hypertens, 1996, 14: 935941.
25 Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, et al. Fetal and infant growth and impaired glucose tolerance at age 64 [J]. BMJ, 1991, 303: 10191022.
26 Barker DJ, Martyn CN, Osmond C, Hales CN, Fall CH. Growth in utero and serum cholesterol concentrations in adult life [J]. BMJ, 1993, 307: 15241527.
27 Trichopoulos D. Hypothesis: Does breast cancer originate in utero [J]? Lancet, 1990, 335: 939940.
28 Michels KB,Trichopoulos D, Robins JM, Rosner BA, Manson JE, et al. Birthweight as a risk factor for breast cancer [J]. Lancet, 1996, 348: 15421546.
29 Michels KB, Xue F. Role of birthweight in the etiology of breast cancer [J]. Int J Cancer, 2006, 119: 20072025.
30 Hjalgrim LL, Westergaard T, Rostgaard K, Schmiegelow K, Melbye M, et al. Birth weight as a risk factor for childhood leukemia: a metaanalysis of 18 epidemiologic studies [J]. Am J Epidemiol, 2003, 158: 724735.
31 Lucas A. Programming by early nutrition in man [J]. Ciba Found Symp, 1991, 156: 3850.
32 Waterland RA, Garza C. Potential mechanisms of metabolic imprinting that lead to chronic disease [J]. Am J Clin Nutr, 1999, 69: 179197.
33 Gluckman PD, Hanson MA. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective [J]. Pediatr. Res, 2004, 56: 311317.
34 McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome prediction, plasticity, and programming [J]. Physiol Rev, 2005, 85: 571633.
35 Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals [J]. Nat Genet, 2003, 33(Suppl.): 245254.
36 Robertson KD. DNA methylation and human disease [J]. Nat Rev, 2005, 6: 597610.
37 McCabe DC, Caudill MA. DNA methylation, genomic silencing, and links to nutrition and cancer [J]. Nutr Rev, 2005, 63: 183195.
表观遗传学是研究没有DNA序列变化的情况下,生物的表型发生了可遗传改变的一门学科[2]。表观遗传学即可遗传的基因组表观修饰,表观修饰包括:DNA甲基化、组蛋白修饰、染色质重塑、X染色体失活、基因组印记、非编码RNA调控等[3],任何一方面的异常都可能导致疾病,包括癌症、染色体不稳定综合征和智力迟钝[4]等。表观遗传的改变是可逆的,这就为治疗人类疾病提供了乐观的前景。本文从表观遗传学与人类疾病、环境与表观遗传学的关系以及表观遗传治疗3个方面进行综述。
1 表观遗传学修饰与人类疾病
1.1 DNA甲基化相关疾病
DNA甲基化是指在DNA甲基转移酶(DNMTs)的催化下,将甲基基团转移到胞嘧啶碱基上的一种修饰方式。它主要发生在富含双核苷酸CpG岛的区域,在人类基因组中有近5万个CpG岛[5]。正常情况下CpG岛是以非甲基化形式(活跃形式)存在的,DNA甲基化可导致基因表达沉默。DNMTs的活性异常与疾病有密切的关系,例如位于染色体上的DNMT3B基因突变可导致ICF综合征。有报道[6]表明,重度女袭性牙周炎的发生与2条X染色体上TMP1基因去甲基化比例增高有关。DNMT基因的过量表达与精神分裂症和情绪障碍等精神疾病的发生也密切相关。风湿性疾病等自身免疫性疾病特别是系统性红斑狼疮(SLE)与DNA甲基化之间关系已经确定[7],在SLE病人的T细胞发现DNMTs活性降低导致的异常低甲基化。启动子区的CpG岛过度甲基化使抑癌基因沉默,基因组总体甲基化水平降低导致一些在正常情况下受到抑制的基因如癌基因被激活[8],都会导致细胞癌变。
1.2 组蛋白修饰相关疾病
组蛋白的修饰包括乙酰化、甲基化、磷酸化、泛素化、糖基化、ADP核糖基化、羰基化等,组成各种组蛋白密码。其中,研究最多的是乙酰化、甲基化。一般来说,组蛋白乙酰化标志着其处于转录活性状态;反之,组蛋白低乙酰化或去乙酰化表明处于非转录活性的常染色质区域或异染色质区域。乙酰化修饰需要乙酰化转移酶(HATs)和去乙酰化酶(HDACs)参与。组蛋白修饰酶异常可导致包括癌症在内的各种疾病,例如,H4K20的三甲基化是癌症中的一个普遍现象。甲基化CpG2结合蛋白2(MeCP2)可使组蛋白去乙酰化导致染色质浓缩而失活,其中Rett综合征就是MeCP2的突变所致。
1.3 染色质重塑相关疾病
染色质重塑是DNA甲基化、组蛋白修饰、染色质重塑复合物的共同作用。它通过影响核小体结构,为其他蛋白提供和DNA的结合位点[9]。其中染色质重塑因子复合物主要包括SWI/SNF复合物和ISW复合物。染色质重塑复合物如果发生突变,可导致染色质不能重塑,影响基因的正常表达,导致人类疾病。如果突变引起抑癌基因出现异常将导致癌症,例如:小儿科癌症中检测到SNF5的丢失。编码SWI/SNF复合物相关的ATP酶的基因ATRX、ERCC6、SMARCAL1的突变可导致B型Cockayne综合征、Schimke综合征甚至肿瘤。ATRX突变可引起DNA甲基化异常,从而导致数种遗传性的智力迟钝疾病如:X连锁α2地中海贫血综合征和SmithFinemanMyers综合征,这些疾病与核小体重新定位的异常引起的基因表达抑制有关[10]。
1.4 X染色体失活相关疾病
哺乳动物雌性个体不论有多少条X染色体,最终只能随机保留一条的活性。X染色体失活由X失活中心(Xic)调控,Xic调控X染色体失活特异性转录基因(Xist)的表达。X染色体的不对称失活可导致多种疾病,例如男性发病率较高的WiskottAldrich综合征是由于WASP基因突变所致。X染色体的PLP基因突变失活常导致PelizaeusMerzbacher病;X染色体的MeCP2基因突变失活导致Rett综合征[11]。在失活的X染色体中,有一部分基因因逃避失活而存在2个有活性的等位基因,使一些抑癌基因丧失功能,这是引发女性癌症的一个重要原因[12]。
1.5 基因组印记相关疾病
基因组印记是指二倍体细胞的一对等位基因(父本和母本)只有一个可以表达,另一个因表观遗传修饰而沉默。已知在人体中有80多种印记基因。印记丢失导致等位基因同时表达或有活性的等位基因突变,均可引起人类疾病。一些环境因素,如食物中的叶酸也会破坏印记。印记丢失不仅影响胚胎发育,并可诱发出生后的发育异常。如果抑癌基因中有活性的等位基因失活可导致癌症的发生,如IGF2基因印记丢失导致的Wilms瘤[13]。15号染色体的表观遗传异常可导致PraderWilli综合征(PWS)和Angelman综合征(AS),PWS是由于突变导致父本表达的基因簇沉默,印记基因(如SNURF/SNRPN)在大脑中高表达所致;AS是由于母本表达的UBE3A或ATP10C基因的缺失或受到抑制所致。Beckwithweideman综合征(BWS)是11号染色体表观遗传突变引起印迹控制区域甲基化的丢失,导致基因印记丢失引起[14]。
1.6 非编码RNA介导相关疾病
功能性非编码RNA分为长链非编码RNA和短链非编码RNA。长链RNA对染色质结构的改变起着重要的作用。短链RNA对外源的核酸序列有降解作用以保护自身的基因组。小干涉RNA(siRNA)和微小RNA(miRNA)都属于短链RNA,在人类细胞中小片段的siRNA也可以诱导基因沉默。miRNA能够促使与其序列同源的靶基因mRNA的降解或者抑制翻译,在发育的过程中起着关键性作用。转录的反义RNA可以导致基因的沉寂,引起多种疾病,如使地中海贫血病人的正常球蛋白基因发生甲基化。由于miRNA在肿瘤细胞中的表达显著下调,P53基因可通过调控miRNA34ac的表达治疗肿瘤。在细胞分裂时,短链RNA异常将导致细胞分裂异常,如果干细胞发生这种情况也可能导致癌症。
2 环境表观遗传学
对多基因复杂症状性疾病来说,单一的蛋白质编码基因研究远远不能解释疾病的发生机理,需要环境与外界因素的作用才会发病。疾病是外界因素与遗传因素共同作用的结果。流行病学研究已经证实,人类疾病与环境有明确的关系,高血压、中风、2型糖尿病、骨质疏松症等疾病的发病率与环境有着密切的关系[15]。特别是在发育初期,不利的环境、 营养的缺乏都有可能导致出生低体重、早产、胎儿发育不成熟等[16]。环境与DNA甲基化的关系一旦建立,将为环境射线暴露与癌症发生提供依据[17]。
环境污染等不利因素均有可能增加基因的不稳定性,每个人对环境和饮食的敏感性可因先天遗传不同而不同,环境因素与个体遗传共同作用,决定潜在表观遗传疾病的危险性。有人推测上述因素肯定会在我们基因组上遗留下微量的基因表遗传学痕迹[1]。随着年龄增长,DNA甲基化等化学修饰改变也在长时间中错误积累,这也有助于解释为什么很多疾病总是在人进入老年后才发生。由此可见,如果改变不良生活习惯、减少环境污染,都有可能降低表观遗传疾病的发病率。因此研究环境与表观遗传改变的关系对于预防和治疗人类疾病都有着重要的意义。
3 表观遗传学药物
人类许多疾病都可能具有表观遗传学的改变,表观遗传学治疗研究如火如荼。已经发现许多药物可以通过改变DNA甲基化模式或进行组蛋白的修饰等来治疗疾病。目前,很多药物处于研制阶段,尽管其有效性尚未得到充分证实,但给癌症、精神疾病以及其他复杂的疾病的治疗带来了希望。
3.1 组蛋白去乙酰化酶抑制剂
目前发现的组蛋白去乙酰化酶抑制剂(HDAC Inhibitor)有近百种。其中FK228主要作用机制是抑制肿瘤细胞内组蛋白去乙酰化酶(HDAC)活性,引起乙酰化组蛋白的积聚,从而发挥抑制肿瘤细胞增殖、诱导细胞周期阻滞、促进细胞凋亡或分化等作用[18]。FK228单独用药或与其他药物或方法联合应用表现出良好的抗肿瘤作用,同时还可阻碍血管生成,具有抑制肿瘤转移、逆转耐药性、调节免疫力等作用。FK228还具有治疗炎症、免疫性疾病、视网膜新生血管疾病及神经系统等多种疾病的药理学作用。
3.2 DNA甲基转移酶抑制剂
核苷类DNA甲基转移酶抑制剂作用机理是在体内通过代谢形成三磷酸脱氧核苷,在DNA复制过程中代替胞嘧啶,与DNMTs具有很强的结合力。核苷类似物5氮杂胞苷(5azacytidine)是第一个发现的甲基化抑制剂,最初被认为是细胞毒性物质,随后发现它可抑制DNA甲基化和使沉默基因获得转录性,用于治疗高甲基化的骨髓增生异常综合征,低剂量治疗白血病。其他核苷类DNA甲基转移酶抑制剂有5氮2脱氧核苷(5aza2′deoxycytidine),Zebularine(5azacytidine的衍生物)[19],5Fluoro2′deoxycytidine,RG108,Procainamide,Psammaplins(4aminobenzoic acid衍生物),MG98(寡聚核苷酸)等。DNA甲基化抑制剂Procainamide可用于抗心律失常。另外在茶叶和海藻中提取的EGCG也显示具有体外活性。临床中应用反义寡核苷酸对DNA甲基转移酶进行抑制正在进行实验。
3.3 联合治疗
DNA甲基化抑制剂与HDAC抑制剂联合应用治疗疾病可能具有协同作用。进行表观修饰治疗后的细胞可能对于化疗、干扰素、免疫治疗更具有敏感性。在癌症的治疗方面,应当包括遗传治疗和表观遗传治疗两个方面,同时运用两种或两种以上表观修饰的方法对病人进行治疗对人类疾病意义重大。
3.4 其他方法
人胚胎干细胞保留有正常基因印记,这些干细胞可能具有治疗意义[20]。另外,在女性细胞中非活性的X染色体中存在正常的野生型基因,如果选择正确的靶点,就有可能激活这个正常但是未被利用的野生型基因,从而对其进行基因治疗。有报道[21]运用RNAi技术沉默胰岛β细胞相关基因,抑制胰岛淀粉样形成可能用来治疗糖尿病。短链脂肪酸(SCFAs)丙戊酸钠用于抗癫痫,丁酸可用来治疗结肠癌[22]等。siRNA可在外来核酸的诱导下产生,通过RNA干扰(RNAi)清除外来核酸,对预防传染病有重要作用。目前,RNA干扰已大量应用于包括肿瘤在内的疾病研究,为一些重大疾病的治疗带来了新的希望。
4 结 语
从表观遗传学提出到现在,人们对表观遗传学与人类疾病的发生有了更深入的认识。人类表观基因组计划(human epigenome proiect,HEP)已经于2003年开始实施,其目的是要绘制出不同组织类型和疾病状态下的人类基因组甲基化可变位点(methylation variable position ,MVP)图谱。这项计划可以进一步加深研究者对于人类基因组的认识,为表观遗传学方法治疗人类复杂疾病提供蓝图[1]。但是,表观遗传学与人类生物学行为(临床表型)有密切关系,人类对表观遗传学在疾病中的角色研究还处于初级阶段。应更进一步研究表观遗传学机制、基因表达以及与环境变化的关系,有效减少表观遗传疾病的发生风险,努力探索这片造福人类的前沿领域。
参考文献
[1] DAVID R,MELLISSA M. Epigenetic and human disease:translating basic biology into clinical applications[J]. CMAJ, 2006,174(3):136-146.
[2] 董玉玮,候进惠,朱必才,等.表观遗传学的相关概念和研究进展[J].生物学杂志,2005,22(1):1-3.
[3] 张永彪,褚嘉佑.表观遗传学与人类疾病的研究进展[J].遗传,2005,27(3):466-472.
[4] GERDA E, GANGNING L, ANA A,et al. Epigenetics in human disease and prospects for epigenetic therapy[J].Nature,2004,429(27):457-462.
[5] 吴超群.表观遗传学和人类疾病[J].中国优生优育2007,13(3):112-119.
[6] 赵红宇,李红,张旭,等.侵袭性牙周炎的表观遗传学研究[J].医药论坛杂志,2006,27(21):29.
[7] MARTIN H,MARCO A.Epigenetics and human disease[J].Int J Biochem Cell Biol,2009,41:136-146.
[8]李莉,李真.表观遗传学在肿瘤诊断及治疗中的研究进展[J].重庆医学,2008,37(11):1250.
[9] LEWIN B.Gene Ⅷ[M]. New Jersey:Perarson Prenc Hall press, 2004:315-320.
[10] HUANG C, SLOAN E A, BOERKOEL C F. Chromatin remodeling and human disease[J].Curr Opin Genet Dev, 2003, 13 (3): 246-252.
[11] HEARD E.Recent advances in Xchromosome inactivation[J]. Curr Opin Cell Biol,2004,16:247-255.
[12] LIAO D J, DU Q Q, YU BW,et al. Novel perspective: focusing on the X chromosome in rep roductive cancers[J].Cancer Invest,2003,21(4):641-658.
[13] FEINBERG A P,TYCKO B.The history of cancer epigenetic[J].Nat Rev Cancer,2004,4(2):143-153.
[14] ANDREW P.Phenotypic plasticity and the epigenetics of human disease[J].Nature,2007,447(24):433.
[15] GODRREY K M, LILLYCROP K A, BURDGE G C,et al. Epigenetic mechanismsand the mismatch concept of the developmental origins of health and disease[J].Pediatr Res, 2007,61:5R-10R.
[16] WAYNE S, CUTFIELD,PAUL L.et al. Could epigenetics play a role in the developmental origins of health and disease?[J]. Pediatr Res,2007,61(5):68R.
[17] EDWARDS T M, MYERS J P. Environmental exposures and gene regulation in diseaseetiology[J]. Environ Health Perspect,2007;115:1264-1270.
[18] 南,徐克前.表观遗传学药物FK228的药理作用及机制[J].国际病理科学与临床杂志,2008.28(4)297-300.
[中图分类号] R541.61 [文献标识码] A [文章编号] 1673-7210(2012)06(a)-0007-03
表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因及基因表达发生了可遗传的变化。这些改变包括DNA的甲基化、多种形式的组蛋白修饰及小分子RNA(microRNA)等。个体间疾病易感性及治疗反应性的差异在很大程度上取决于遗传因素[1]。然而,根据全基因组研究,笔者不得不承认遗传表型的改变不仅仅是核苷酸序列的变化[2-3]。表观遗传学与核苷酸的改变共同调控了基因的表达,因而从另一种角度解释了个体间的差异。
表观遗传学研究发现,基因及其表达的遗传性改变不仅仅是指基因突变或基因多样性等DNA序列的变化。已知的三种可调节基因表达的表观遗传学改变主要是:基因组DNA的甲基化,组蛋白修饰,非编码RNA的调节(如microRNA)。上述机制均涉及外在因素在蛋白质编码序列不变的情况下仍可调节基因转录[4]。表观遗传学调节机制存在个体及组织差异性,并且可以随年龄增长、环境及疾病状态的改变而变化。表观基因组在基因组表达过程中起关键作用,个体间基因表达的不同造成药物不同的反应性,这可能是通过表观遗传学改变进行调节的。因此,目前认为表观遗传学改变可以帮助解释基因突变在药物反应中的作用,继而在临床医学中发挥作用,这一迅速崛起的新学科称为表观遗传药理学。个体间药物的反应性不同,该学科不仅研究表观遗传因子在这一过程中的作用,而且旨在开发新的药物靶点[5]。笔者认为表观遗传药理学与遗传药理学将共同在药理学、临床医学中发挥重要作用。
目前为止,表观遗传药理学的大多数研究集中于肿瘤学领域,例如,研究细胞色素p450在个体间表达的差异。幸运的是,表观遗传学修饰的作用已被应用于解释其他复杂并且多源的现象,应用的范围越来越广。在这里,笔者总结了表观遗传修饰在心衰及心血管疾病治疗方面最新的研究。
1 表观遗传修饰与心力衰竭
1.1 组蛋白的修饰
庞大的真核生物基因组在高度保守的组蛋白的作用下得到了紧密的压缩。在核小体中,基因组DNA围绕核心组蛋白(核心组蛋白H2A、H2B、H3、H4各两组)折叠、压缩,形成了染色体的基本单位。基因组DNA与染色体蛋白的相互作用有助于转录因子向靶基因片段聚集,从而调节转录活性[6]。通过这种机制,核小体利用其核心组蛋白的共价修饰传递表观遗传学信息。这些修饰包括组蛋白乙酰化、甲基化、磷酸化、泛素化及SUMO化修饰。核心组蛋白的氨基末端从染色质丝上伸出来,与DNA或其他组蛋白、蛋白质等相互作用。该末端上的赖氨酸、精氨酸残基是组蛋白修饰的主要靶点。多数研究旨在了解赖氨酸乙酰化、甲基化的作用。事实证明,赖氨酸的乙酰化作用主要与染色质亲和力及转录相关,而赖氨酸的甲基化作用取决于何种残基被修饰。
有趣的是,正如Mano所总结的那样,组蛋白乙酰化的调控与心肌肥厚相关。去氧肾上腺素可诱导心肌细胞肥大,这一过程需要乙酰基转移酶介导的组蛋白乙酰化。与此结果相一致的研究是针对Ⅱ类组蛋白去乙酰基酶(HDACs)5、9的研究,其通过抑制心肌细胞增强因子2(MEF2)的活性进一步阻碍致肥厚基因(pro-hypertrophic genes)的表达来发挥抗肥厚的作用。与此相反,Ⅰ类HDACs具有相当强的致肥厚作用,其通过调节磷脂酰肌醇三磷酸酰胺磷酸酯酶的表达发挥作用。这意味着,HDACs在多水平上控制肌肉细胞的体积。
1.2 DNA甲基化
在真核生物中,DNA甲基化是通过将甲基团转移到核苷酸胞嘧啶环的5''位碳原子上完成的。在哺乳动物体内,DNA甲基化主要发生在基因的5''-CG-3''序列,也指的是CpG双核苷酸;人体内,大约70%的CpGs发生甲基化。另一方面,未甲基化的CpGs存在于许多基因的5''端调控区域,以CpG岛的形式出现。与其他DNA区域相比,CpG双核苷酸在CpG岛出现的概率较高。人体内CpG岛甲基化的不同是表观遗传学改变的组成部分。
DNA胞嘧啶甲基化有助于局部转录因子复合物的结合,其与组蛋白修饰共同在局部及整个基因组中影响染色体的结构。因此,DNA甲基化的一个重要作用是调控基因的表达。在这方面,CpG岛超甲基化可以使基因沉默,而低甲基化使基因发生转录。有人认为,甲基化是一种稳定遗传的修饰,但同时它也受到环境因素的影响。如小鼠野鼠色基因位点,可以受到其上游转座子甲基化状态的影响。从遗传角度来讲,完全相同的亲代其野鼠色基因不同的甲基化状态可使得后代出现不同的毛色[7]。
最近,Kao等[8]的研究结果发现,DNA甲基化在心衰特定的基因转录调控中发挥作用。他们发现促炎症基因TNF-α可下调肌浆网Ca2+-ATPase(SERCA2A)的表达,这是通过增强SERCA2A启动子的甲基化状态完成的。Movassagh等[9]发现,在心肌病及人类心肌组织形成时甲基化的状态是不同的。而且,他们鉴别出三个基因位点(IECAM1、PECAM1、AMOTL2),在不同的心脏样本中,位点甲基化状态与基因表达的调控密切相关。
1.3 MicroRNAs
MicroRNAs是短的双链RNA分子,来源于细胞核及细胞质中较大的RNA前体,其可以在基因转录后对基因表达发挥调节作用。miRNAs可以对30%~50%的蛋白质编码基因进行调控,这一过程主要是通过与mRNA3''端未转录区域的碱基对进行互补结合,继而干扰转录,靶mRNAs可降解或暂时沉默[10]。miRNAs调节蛋白的表达是非常复杂的,多种miRNAs可以作用于同一基因,不同基因也可受到同一种miRNAs的调节。miRNAs的表达具有组织、疾病特异性。近年来,多种病理状态下的miRNA分子标记已被检测出来,如各种类型的肿瘤以及多种心血管疾病[11]。
越来越多的证据表明,miRNAs与基本的细胞功能密切相关。目前,miRNAs与心衰的关系已得到明确,在过去的几年中,该领域的报道层出不穷。对心血管疾病的研究主要集中于两种心脏组织特异表达的miRNA家族(miRNA-1/miRNA-133、miRNA-208)。多项研究显示,miRNA在健康、高血压以及不同病因所导致的人、小鼠、大鼠衰竭的心脏中均有表达,Divakaran等[12]发现心脏特异性的miRNA-208不仅可调节心肌细胞肥大、纤维化同时可在应激、甲退时调节β-肌球蛋白重链(β-MHC)的表达。这种miRNA由α-MHC基因的内含子编码。该基因编码α-MHC及一种主要的心肌收缩蛋白,使心脏变大,在应激以及激素信号作用下通过miRNA-208及其作用位点发挥调节作用。再者,定向删除心肌特异性的miRNA,miRNA-1-2,揭示了它们在心脏中的多种功能,包括调节心脏的形态发生、电信号传导及细胞周期的调控。Thum等[13]发现,受损心肌中miRNA标记与胚胎心中miRNA表达的类型极为相似,这说明受损心肌中重启了胚胎基因的表达程序。Thum等[13]另一个发现是miRNA-21可以调控ERK-MAP激酶途径,这种调控在心脏成纤维细胞中尤为明显,心肌细胞中却没有这种表现,这可以影响到心脏的结构及功能。在成纤维细胞中,miRNA-21水平的增高可通过抑制特定基因来激活ERK激酶,经由这种机制,miRNA-21调节了间质纤维化、心肌肥厚。上述研究揭示了在心脏成纤维细胞中,基因调节的另一种方式是在miRNA介导的旁分泌水平上进行的。
miRNA在心脏肥厚反应中的意义得到了进一步的研究,miRNA成为基因调控的主要调节因子。到目前为止,miRNA已被证实不仅可以影响心肌,还可以影响心脏电信号转导及调节血管再生[14]。
2 表观遗传筛选方法
表观基因组学示意图不是固定的,它因细胞类型、时间的不同而不同,并且可在生理学、病理学、药物作用情况下发生改变。因此,作为人类基因组计划的后续工程,表观基因组测序是一项艰巨的任务。虽然判断基因组序列的表观遗传学状态是比较容易完成的,描绘整个表观基因组需要对数十个基因组进行测序,覆盖一个有机体在生命不同阶段的所有细胞类型。
亚硫酸氢盐测序法是标测DNA甲基化类型最为准确的方法。基因组DNA与亚硫酸氢钠相作用,导致未甲基化的胞嘧啶脱氨基转变成尿嘧啶,而甲基化的胞嘧啶保持不变。为观察特定基因的甲基化状态,用特异性引物对目的片段进行扩增,随后对产物测序。在序列中,甲基化的胞嘧啶被标记为Cs,未甲基化的胞嘧啶为Ts。
近来出现了多个对甲基化进行定位的全基因组研究方法,它们都是以甲基化和未甲基化的CpGs对限制性内切酶的敏感性不同为基本原理的。限制长度的基因组扫描利用两种酶双酶切DNA,一种是频繁切割的甲基化非敏感性限制内切酶,另一种是罕见的甲基化敏感性的酶如Not1,这种酶只有在非甲基化状态时才可以酶切所识别的位点。还有一种完全不同全基因组研究方法是利用DNA芯片技术,它可以一次性标测成千上万的CpG岛的甲基化状态。这种方法可以用来识别CpG岛,相对于正常的调控过程来说,CpG岛在肿瘤组织中发生甲基化。
亚硫酸盐转化的替代方法是ChIP-seq方法(一种与测序相结合的染色质免疫沉淀方法)。通过免疫共沉淀技术使得目的蛋白与DNA发生交联,然后对DN段进行基因组测序。这一方法可以帮助识别任何DNA相关蛋白的DNA结合位点。该技术还可以提供组蛋白修饰的信息,如乙酰化、甲基化、磷酸化、泛素化、SUMO化修饰。对ChIP技术进行改进得到的DCS方法,是将ChIP与消减式PCR进行偶联。该方法旨在避免基因组片段与芯片杂交后产生非特异性信号。
以同样的方式可以检测人体病理状态下miRNA的作用,大多数研究是利用高通量的方法分析临床病例中总miRNA的表达情况。高通量技术是以miRNA基因芯片和real-time RCP为代表的。尽管分子间的差别给这些技术带来了巨大的挑战,但miRNA芯片最大的优点是具有很高的特异性,而缺陷是其敏感性较低。
3 药物可以改变表观遗传状态
表观遗传学改变正常及疾病状态下的表型,这可能意味着充分理解和调控表观基因组对于人类常见疾病的防治具有重要意义。表观遗传学为我们提供了一个重要的窗口,来认识环境与基因在疾病发生过程中的相互作用以如何调节这些作用达到改善人类健康的目的。
miRNA派生的反义寡核苷酸是单链RNA分子,对其进行化学修饰可能是针对致病miRNA新的方法。但是这种方法困难重重,miRNA属于密切相关的家族,且很难合成针对每一种miRNA的反义寡核苷酸。再者,一个单独的miRNA可针对多种基因发挥作用,它们之中可能含有对心肌有益的分子。在这方面,寡核苷酸的化学修饰可能会特异性破坏miRNA与单个mRNA的作用,这可能是疾病治疗良好的备选方案。每一种miRNA可以以不同的强度针对成百上千的基因发挥作用,所以在体内miRNA修饰的最终作用尚不明了。最终,将miRNA拮抗剂应用于临床领域将面临很多困难,这与我们在基因治疗方面所遇到的极为相似,如导入方式、载体、特异性以及毒性等问题[15]。至少在理论上,针对特异性miRNA的方法将来可能是治疗缺血性心脏病、心肌肥厚、心衰、血管再生、离子通道病的有效手段,可控制心衰的发展。
另一种方法可能是将靶DNA甲基化。一些影响基因组DNA甲基化的化学合成剂已经应用于临床,例如5-氮胞嘧啶、抑制甲基转移酶的氮胞嘧啶可以使DN段脱氨基。其它药物是通过阻碍甲基化酶的活性而发挥抑制甲基化作用。更多信息可参照Gomez等[16]的文章。除了要开发可以调节DNA甲基化的药物外,还需要设计可以影响组蛋白修饰的药物。
在抗肿瘤药物的发展过程中,组蛋白去乙酰化酶(HDAC)抑制剂占据着重要地位,它可以通过逆转与肿瘤相关的异常表观遗传改变,继而发挥作用。已有证据表明,在心肌肥厚时,HDAC抑制剂可修复基因表达程序。Gallo等证明体外试验中,曲古霉素A、丁酸钠可延缓心脏肥厚。
4 表观遗传学和环境
众所周知,环境因素如毒素、饮食可以影响DNA甲基化和染色质修饰,并且可遗传给下一代。雌激素、抗雄激素类物质可改变DNA甲基化状态降低男性的生育能力,这也是可遗传的。该假说认为,环境因素可以改变表观遗传学标记和基因表达形式,这可能在人类疾病研究中具有重要意义。常见疾病大多受到基因和环境因素的双重影响,环境可诱导表观遗传结构发生改变,进而将基因和环境因素联系起来[17]。
年龄在基因与环境相互作用中发挥重要作用。常见病的发病率随着年龄的增加不断增高,这与在人的一生中表观遗传学改变不断累积有关。有研究发现,相对于年轻者而言,年长的同卵双胞胎体内总DNA甲基化及组蛋白H3K9乙酰化的水平较高,但该研究没有检测同一个体中表观遗传学改变随时间变化的情况。
5 结论
表观遗传学为研究个体在临床疗效、药物反应及毒性间的差异,以及发现新的药物治疗靶点等方面开拓了更为广阔的空间。随着人类表观基因组工程的开展,表观遗传学机制得到不断完善,这有助于更为充分地了解人类疾病和表观遗传药物的一系列分子靶点。表观遗传药理学已被应用于肿瘤学领域,对于心血管疾病的表观遗传学研究不断增多,尤其是在miRNA方面的研究最为突出。Mishra等[18]清楚地描述了心血管疾病微观RNA组学的最新进展,以及miRNA作为一种潜在治疗靶点或药物制剂的前景。
表观基因组学在健康或疾病状态下表现型的形成过程中发挥重要作用,这可能意味着充分认识和合理调控表观基因对于人类常见病的防治具有重要意义。
[参考文献]
[1] De Boer RA,Van der Harst P,van Veldhuisen DJ,et al. Pharmacogenetics in heart failure:promises and challenges [J]. Expert Opin Pharmacother,2009,10(11):1713-1725.
[2] Codd V,Mangino M,Van der Harst P,et al. Common variants near TERC are associated with mean telomere length [J]. Nat Genet,2010,42(3):197-199.
[3] Newton Cheh C,Johnson T,Gateva V,et al. Genome-wide association study identifies eight loci associated with blood pressure [J]. Nat Genet,2009,41(6):666-676.
[4] Margulies KB,Bednarik DP,Dries DL,et al. Genomics,transcriptional profiling,and heart failure [J]. J Am Coll Cardiol,2009,53(19):1752-1759.
[5] Peedicadyl J. Pharmacoepigenetics and pharmacoepigenomics [J]. Pharmacogenomics,2008,9(12):1785-1786.
[6] Mano H. Epigenetic abnormalities in cardiac hypertrophy and heart failure [J]. Environ Health Prev Med,2008,13(2):25-29.
[7] Ball MP,Li JB,Gao Y,et al. Targeted and genomescale strategies reveal gene-body methylation signatures in human cells[J]. Nat Biotechnol,2009,27(5):361-368.
[8] Kao YH,Chen YC,Cheng CC,et al. Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes [J]. Crit Care Med,2010,38(1):217-222.
[9] Movassagh M,Choy MK,Goddard M,et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure [J]. Plos One,2010,5:8564.
[10] Schroen B,Heymans S. MicroRNAs and beyond:the heart reveals its treasures [J]. Hypertension,2009,54(6):1189-1194.
[11] Silvestri P,Di Russo C,Rigattieri S,et al. MicroRNAs and ischemic heart disease:towards a better comprehension of pathogenesis,new diagnostic tool and new therapeautic target [J]. Recent Pat Cardiovasc Durg Discov,2009,4(2):109-118.
[12] Divakaran V,Mann DL. The emerging role of microRNAs in cardiac remodeling and heart failure [J]. Circ Res,2008,103(6):1072-1083.
[13] Thum T,Cross C,Fiedler J,et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts [J]. Nature,2008,456(7224):980-984.
[14] Zorio E,Medina P,Rueda J,et al. Insights into the role of microRNAs in cardic diseases:from biological signaling to therapeatic targets [J]. Cardiovasc Hematol Agents Med Chem,2009,7(1):82-90.
[15] Puceat M. Pharmacological approaches to regenerative strategies for the treatment of cardiovascular diseases [J]. Curr Opin Pharmacol,2008,8(8):189-192.
[16] Gomez A,Ingelman SM. Pharmacoepigenetics:its role in interindividual differences in drug response [J]. Clin Pharmacol Ther,2009,85(4):226-230.