时间:2024-01-20 10:45:47
引言:寻求写作上的突破?我们特意为您精选了12篇焊接技术的发展范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
焊接是现代制造业中最为重要的材料成形和加工技术之一,焊接制造技术的发展对我国成为制造强国有着极为重要的意义。对近年我国焊接制造技术中几个主要领域的最新进展进行总结和分析,提出未来焊接制造领域的发展策略建议。由于钢材仍将是未来较长时间占主导地位的基础结构材料,应加强新一代钢材焊接冶金理论的研究及高品质焊接材料的发展;我国是世界最大的电子产品制造国,加强无铅连接材料及无铅封装技术的研究是发展无铅电子技术的唯一途径;以激光束、电子束为代表的高能束流焊接技术可大幅提高焊接生产效率,我国应加强其在装备制造业中的研究和应用;对焊接热过程的数值模拟,可为深入理解焊接过程中的复杂物理现象提供重要的理论依据和基础数据,近年来我国在焊接热过程、残余应力与变形以及焊接冶金等方面的数值模拟研究方面也取得了显著进步,应加强应用技术的研究;自动化焊接和智能化焊接是实现高效焊接制造的重要手段,应加强其集成应用技术的研究;我国应加强焊接结构完整性评价技术的研究和应用,这是确保焊接结构可靠服役的重要前提。
焊接是一门重要的基础工艺,它的发展依托于现代科学技术的发展。焊接技术诞生至今仅有百余年的历史,但是它的发展却是十分迅速的。20世以来,尤其是近二三十年随着科学技术的空前发展,各种新的焊接技术层出不穷,等离子物理、电子束、红外线、真空、超声、声学、微电子等现代科学技术的新成就都在焊接上获得广泛应用。新技术的应用奠定了焊接技术发展的基础,增强了焊接技术的能力,扩大了焊接技术应用的范围。目前,已经形成了几十种各具特色的焊接方法。焊接技术已经在能源、交通、化工、机械、特种设备、电子、航空航天、石油等诸多领域得到广泛的应用。可以说,现代科学技术的新成就日益渗透到焊接领域,促进了现代焊接技术的快速发展。
从早期的气焊、电弧焊发展至今天的近百种焊接方法,焊接技术依托于能源科学的进步而不断前进,当今焊接中已采用了力、热、电、磁、光、声等一切可以利用的能源手段。这些不同形式的能源以不同的方式作用于不同的材料上,通过一系列热力学、冶金学和力学相互作用过程制造出各种工程结构和零件。人们对这个过程进行不懈探究,衍生出独具特色的焊接冶金学、焊接物理和焊接力学等学科,并由此指导焊接材料、焊接制造工艺和焊接结构工程不断向前发展。
电弧熔化焊仍是目前焊接生产中的基础技术,保持高效、优质、低成本的焊接过程是人们一直所关注的方向。以激光束、电子束、等离子束为代表的高能束流焊接技术可大幅度提高生产效率,在进行厚板焊接时甚至可以不开坡口直接对接焊,因此近年来得到了较多的重视和发展,尤其是采用激光复合电弧的焊接技术受到了极大的关注。自动化焊接和智能化焊接是提高焊接生产效率和焊接质量的重要手段。目前在核电工程、重容重机、航空航天等行业中,自动化技术的应用主要是通过不同类型的成套焊接专机,而焊接机器人则在汽车整车及零部件、工程机械、铁路、船舶、航天、一般制造业等行业的焊接生产中有明显的增长。这二者都依赖于成熟的焊接自动化控制技术。综合利用机械、电弧、光等物理信息对焊接过程进行控制和检测,是实现自动化焊接的基础,同时又可以保证焊接过程向智能化发展。在智能化焊接过程时,机器可在敏锐捕捉焊接特征信号和信息的基础上,直接模拟焊工进行操作。
对焊接热过程的数值模拟与仿真,可以为深入理解焊接过程中的复杂物理现象进而实现焊接过程自动化提供重要而实用的理论依据和基础数据。随着现代计算机硬件和软件的高度发展,现在已经能够通过数值模拟和仿真的方法对焊接热过程、焊接冶金过程及焊接结构的应力变形等物理化学现象进行求解和分析,预测焊缝组织、性能及焊接结构的应力与变形,并指导焊接生产。近年来在焊接热过程、残余应力与变形以及焊接冶金等方面的数值模拟研究方面也取得了长足的进步。
0 引言
激光的研究与发展已经有五十年左右的历史了,是通过光源在被辐射过程被动放大化后产生的。它的使用功率和质量在不断改进中有了很大的提高,激光加工技术因此成了二十一世纪在材料加工方向最有发展前景的应用技术之一。激光焊接技术是在材料加工方面应用最广泛的一种,运用在很多行业,包括轮船制造业、汽车制造业、建筑业及航天制造业等。正确的运用激光焊接技术可以带来很多方面的便捷和高效,是工业的一项新型技术,值得广泛推广。
1 当前激光焊接技术还存在的一些问题
1.1 焊接过程存在气孔
焊接过程为什么会有气孔的伴随出现一直还是个谜,人们一般的猜测是,激光在焊接冷却中由于氢的溶解性突然变差所以产生了氢气孔或者是激光束会引发熔解池金属变化匙孔发生变动[1],熔池内的金属发生紊流从而产生了气孔。科学的解释一般有两种,一种是在高温条件下氢大量融入导致了焊接微型气孔的生成,另一种则是认为气孔不规则的生成是由于其中镁元素的蒸发燃烧损耗导致的。
1.2 焊接过程容易不稳定
激光在深熔的焊接过程中往往会伴随匙孔效应的发生,由于匙孔主要是由等离子体和金属蒸汽组成的,这些气体会对激光有较强的吸收辐射作用,所以导致了在焊接过程中出现了不稳定。只要激光辐射照明度低于一定的标准,就会发生深熔焊和热传导焊不停发生变幻,形成了焊接的不稳定。
1.3 焊接过程容易导致金属有裂痕
激光的功率和密度一般很高,所以热影响区域一般很小。被焊接的金属材料在冷却过程中速度很快,导致有些合金,在最后的凝固状态的柱状形态晶体区域发生低熔点性共晶组织现象,从而导致结晶破裂,金属表面形成裂痕。
2 当前激光焊接技术的广泛应用
2.1 激光焊接技术在汽车工业的应用
随着人们生活水平的提高,汽车已经走进了千家万户,汽车市场的需求也在与日俱增。如何提高汽车制造工业的水平和效率一直是个待攻克的难关。世界上很多的知名汽车企业如奔驰、大众已经从上世纪八十年代开始就研究了激光焊接技术对汽车的应用,主要包括了车身、侧框、车顶灯部位的钒金材料的焊接。九十年代更多的知名汽车制造商如福特、通用也加入了激光焊接技术[2]。日本的汽车公司运用激光焊接和切割技术来制造车身的覆盖件等,因性能的卓越,使得越来越多的高强钢硬激光焊接配件被应用到汽车的制造中。激光的焊接技术也应用到了汽车车体部位部件的加工,如离合器、散热器和排气管及增压器轮轴等等,成了又一项标准的汽车零部件制造技术。而由于我国的汽车发展起步较晚,所以目前只有少数汽车制造商会采用激光焊接技术对汽车进行改造,但是激光技术已经成了市场主流,相信不久我国的汽车制造商都会逐步采用的。而与之相对的是我国的科学研究机构对激光焊接技术的研究却处于前列,并且已经取得了多项骄人的成绩。
2.2 激光焊接技术在医疗方面的应用
激光焊接技术在生物医疗组织方面的应用已经存在了将近四十年的历史。最早的是一名医疗人员成功运用激光焊接技术吧血管和输卵管连接在了一起,并且效果显著,从而给后面的医疗工作者提供了一个争相模仿的典范。更多医学人员大胆的把这项技术从生物组织转移到了其他组织上。例如激光焊接技术在人体神经方面的应用,是国内外医疗人员研究的热点之一,其中主要是存在激光波长的差距、剂量的多少适宜以及使用何种激光焊接材料对功能更好的恢复方面的争议。激光焊接还运用在了牙科方面的治疗,可以修复口腔内的多种问题[3]。材料的选择也很多,可以是钛合金或者钴铬合金等,制作的产品也有很多,从铸造支架到烤瓷官桥再到附着体,激光焊接技术和以前的医疗技术相比无不体现出了其绝对的优越性。
2.3 激光技术在轮船制造业的应用
轮船上使用的木板一般都有比较厚、焊接缝隙比较长等特点。所以容易经常性引发在焊接过后的船板翘动,甚者严重的发生变形等问题。根据粗略的统计结果表明,如果使用普通的焊接技术焊接轮船上的木板,大概有四分之一以上的总工作量都要花在船板的整理改动过程中,浪费时间和资源,相当的不合理。但是如果使用激光焊接技术就完全不同了,根据激光自身特有的性质,激光焊接在一定区域能量集中高,同时光束面积一般也很小,导致热影响到的区域和普通的弧焊方式相比较会小很多。所以焊接过后船板不会发生较明显的形变,可以很好的应用到轮船制造业中。还有一方面就是,由于船板的制造有很多道不同的工序,要在不同的地方分别完成,材料在一个工作台被切割后要送到另一个工作台中进行焊接部分,如果使用的是激光焊接技术,那么可以通过使用适合的传输设备和发射器,让材料的切割和焊接部分在一个地方一起完成,提高了工作效率,节约了时间和资源。同时由于激光焊接有很大的深宽比值,所以在很小焊缝不变形的情况下也能完成对大船板的焊接工作,所以国外最高可以完成十厘米厚的船板焊接。而目前我国这方面还处于起步阶段,仍然需要大量进口一些激光焊接先进设备。
3 结语
激光焊接技术作为激光应用中的重要组成部分,尽管还存在一些小问题,但是由于其自身的卓越优点,已经在全世界各个行业领域取得了广泛的应用,给工业的制造和人们的生活带来了便捷与高效,正确运用好这项技术一定能提高我国的科技发展水平,最终促进社会的不断发展。
参考文献:
1.激光焊接综述
激光焊接是一种非接触焊接工艺,利用激光能源将若干不同的焊接材料进行拼合,从而择接成一个整体,以满足不同零部件对材料性能的不同要求的焊接工艺。激光焊接仅在焊点处施加垂直压力,从而能够将产品受到的机械应力降至最低,用最轻的重量、最优结构和最佳性能实现装备轻量化,以保证焊接质量。
激光焊接与传统择接方法的主要区别就在于二者的热传导方式不同,并且很多因素都会影响到焊接材料对激光束能量的吸收,例如即时激光束的能量密度、激光c的类型、煌接材料的表面状况都会影响到能量的传输。激光焊接的两个重要指标是:(溶化效率,即培合区刚好熔化工件所需要的热量与工件吸收的热量之比;(热传输效率,即工件吸收的热量与激光束能量之比。
2.引进激光焊接的优势
激光焊接机是利用激光束的高方向性和高功率密度的特点,通过光学系统将激光束聚集于一小区域内形成局部高温,从而使金属熔化焊接起来。激光加工是无接触加工,能量在短时间内供给,因此能避免对加工点外的热影响,又由于加工时间短,对运动中的物体也能进行加工。
随着经济的不断发展,企业的市场压力不断加大,迫使企业需要寻求新的发展方向,得以在激烈的市场竞争中生存。激光焊接可以从根本上提高产品质量,增强企业的市场竞争力。以前采用激光焊接的主要障碍是激光焊接机的价格高,这是因为所需要的激光功率较大。而近年来激光焊接机每瓦的价格已经下降,因而可与其它焊接工艺竞争,并且激光焊接的运作费用较低,从而使得激光焊接可以进入企业生产流程。
激光焊接的熔透深而且易于控制,熔透深度取决于金属导热率,焊缝的深宽可比电弧焊的大,充分提高产品的焊接质量。激光焊接速度快,焊接取决于材料.、熔透深度和激光功率。薄材料焊接速度可达30m/s,提高产品的生产效率,增加产值。激光焊接的工艺重复性好,对于水冷壁等形状固定,可使用自动焊的部位容易实现计算机化,适用于大批量生产,进一步提高产品的生产效率。同时,激光焊接的应用范围非常广,可提供足够高的功率来焊接各种同类或不同类材料,还可以焊接形状不规则的接缝,对于一些传统技术很难焊接的合金系列,采用激光焊接可使过程稳定,焊缝强度提高并具有优异的成形。在锅炉的整个生产过程中,基本上全部都是围绕着焊接来进行的,焊接质量以及焊接所用时间和所消耗的劳动
力对整个锅炉制造过程中的质量及效率是非常重要的。而采用激光焊接技术,能够大大提高在焊接环节的工作效率及生产质量,符合锅炉制造优化效率,规模化发展的前景和趋势。
3.激光焊接技术在锅炉制造中的应用
激光焊接机是利用激光c的高方向性和高功率密度的特点,通过光学系统将激光c聚集于一小区域内形成局部高温,从而使金属熔化焊接起来。激光加工是无接触加工,能量在短嘉誓诠,因此能避免对加工点外的热影响,又由于加工时间短,对运动中的物体也能进行加工。
激光焊接的熔透深而且易于控制,熔透深度取决于金属导热率,焊缝的深宽可比电弧焊的大,充分提高产品的焊接质量。激光焊接速度快,焊接取决于材料、熔透深度和激光功率。薄材料焊接速度可达,提高产品的生产效率,增加产值。激光焊接的工艺重复性好,对于水冷壁等形状固定,可使用自动焊的部位容易实现计算机化,适用于大批量生产,进一步提高产品的生产效率。同时,激光焊接的应用范围非常广,可提供足够高的功率来焊接各种同类或不同类材料,还可以焊接形状不规则的接缝,对于一些传统技术很难焊接的合金系列,用激光焊接可使过程稳定,焊缝强度提高并具有优异的成形。在锅炉的整个生产过程中,基本上全部都是围绕着焊接来进行的,焊接质量以及焊接所用时间和所消耗的劳动力对整个锅炉制造过程中的质量及效率是非常重要的。而采用激光焊接技术,能够大大提高在焊接环节的工作效率及生产质量,符合锅炉制造优化效率,规模化发展的前景和趋势。
锅炉制造并不是一个新鲜的行业,在过去相当长的时期内,锅炉制造的重点在锅炉实用性及安全性上,那是因为过去技术水平有限,所以大多精力都放到了抓质量上。而随着时代的发展,在质量能够得到充分保证的同时,锅炉在外形上的美感也成为消费者选择购买的重要参考因素,激光焊接在提高产品质量的同时还可以在很大程度上改善焊缝的外观质量,使产品外观美观大方,充分吸引购买者的注意力,从而提高产品的市场竞争力。其原因就是激光焊接可实现无接触焊接,激光束不会使工件受力,工件变形小,热影响区也小,从而使得焊接部位更加美观。激光焊接技术运用到锅炉制造行业里,能够帮助锅炉企业更好的解决这个问题,使得产品美观大方,将会成为产品的一大卖点。
对于锅炉制造行业而言,激光焊接技术的出现,能够帮助他们利用更先进的焊接技术对锅炉进行焊接,在保证优秀的焊接质量的同时,使得锅炉外形更加美观大方。并且与金属焊接相比,使用激光焊接的焊缝更加耐一磨、耐腐蚀,这种先进的技术会给锅炉制造业注入新的活力与动力。
4.展望
目前激光焊接在国外,尤其在美国已得到广泛应用。目前我国千瓦级和百瓦级的COZ激光器已成为商品,这就为我国大力开展激光热处理的研究和应用提供有力的工具。我国在激光热处理的应用方面也必将取得重大成就。引进激光焊接在很大程度上可以提高产品质量,改善产品外观,从而提高企业的市场竞争力,使得企业继续充满活力的前进。
结束语
随着科学技术水平的不断提高,激光焊接在汽车,钢铁,造船等行业得到了广泛的应用,并进一步促进了激光焊接技术的不断发展和进步,这也显示出激光焊接技术的应用前景是非常乐观的,相信激光焊接技术在锅炉制造行业中也将得到广泛应用,也会给企业带来巨大的经济效益。但同时我们也要清楚的知道,任何一项技术在发展的过程中都会有其自身的局限性,使用激光焊接技术的过程中,也应该清醒的认识到这项技术自身所存在缺陷与不足,在生产工作中不断地予以改进,这才是企业长久发展的可行之道,相信在不久的将来激光焊接技术一定会得到广泛应用并取得丰硕的成果。
参考文献:
[1]陈根余 , 顾春影 , 梅丽芳 , 李时春.激光焊接技术在汽车制造中的应用与激光组焊单元设计 [J]. 电焊机 ,2010(05).
[2]陈飞 .激光焊接技术在船舶制造中的应用与前景 [J].造船技术 ,2011(05).
中图分类号 U671 文献标识码 A 文章编号 1673-9671-(2012)092-0180-02
随着中国经济的快速发展,作为现代工业技术的基础技术的造船焊接技术是评价造船质量的一个重要指标,焊接的工时和成本在船体建造中占整个船体建造工时和成本的30%至50%,焊接效率直接影响到造船周期和船舶建造成本。因此,充分认识到的发展和应用焊接技术的应用现状,深刻分析当前存在的主题要问题,并采用新技术,加快发展的步伐是摆在世人面前的重要课题。
1 船舶焊接技术的应用现状
经多年发展的动力积蓄,船舶焊接技术在国际船舶工业结构调整的浪潮中抓住机遇,在生产技术的生产数量,生产效率等方面得到了很大的提高,实现了跨越式发展,在国际航运业中占据越来越重要的位置。船舶焊接工艺实现发展和进步,在造船业的焊接工艺的应用水平不断提高,焊接材料,焊接设备和焊接方法,实现了不断更新,在造船行业的发展起着重要的作用。
1.1 焊接方法实现不断优化
随着焊接工艺以及焊接设备和焊接材料,先进的开发,焊接方法也进行了改进,得到了优化发展。现在被广泛应用的CO2气体保护角焊缝角焊自动或半自动的方法大大提高了焊接的效率,促进船舶工业的快速发展。
1.2 焊接材料更加优质化
船舶焊接工艺的逐步推进,更接近国际化的发展方向,焊接材料也将被更新。当前,国内造船过程中,主要使用的电极,CO2气体保护焊丝和埋弧焊焊接材料的焊接材料。其中,当建造的船体,普通的手动重力焊接杆和高效铁粉电极的电极。一般分为不同的实芯焊丝和药芯焊丝CO2气体保护电弧焊接制造工艺生产的目的,一般分为普通药芯焊丝,金属芯药芯焊丝气体保护焊和垂直通量芯线。金属芯药芯焊丝具有良好的性能,开发和利用国际先进船厂的竞争。此外,埋弧焊焊接材料是一种已经被下的青睐,造船业,焊接材料,它的工作环境,并确保在造船行业使用的焊材焊接缝隙的质量比。逐步优化国内焊接材料的发展正在迅速减少,国内各大船厂手工焊条,焊接材料生产和应用的不断更新和发展。双丝埋弧自动焊接,如国内焊材逐步替代进口焊材金属粉芯药芯焊丝本地化,药芯焊丝用量稳步增长,继续优化其性能。
1.3 焊接新工艺得到应用与推广
重要的国内船厂积极学习国外先进技术,引进外国飞机的子装配和焊接生产线,自动焊接单面焊双面成型的新技术,同时,使用半自动或全自动的平面焊接的船体分段的体系结构气渐渐保护角焊接工艺。CO2气电垂直自动焊工艺在船上台大折叠,焊接垂直的煤层已被广泛使用,可以使可达15 cm~30 cm的稳定接缝牢固地焊接在一起,使焊接效率大大提高,远远性能超过旧的技术。
1.4 焊接设备逐步机械化、自动化
焊接过程中,焊接设备更换的进展迅速,逐步淘汰原来的旋转式直流弧焊机,CO2气体保护焊机可广泛的应用,这是一个长期的经济价值的新设备。目前,国内各大船厂的应用SCR CO2气体保护焊,焊接技术的改进,逆变CO2气体保护焊应用程序的频率逐渐提高。 CO2气体保护焊机的应用和推广,可以减少焊接耗材,降低了焊工的数量,降低成本的焊接工艺,提高焊接效率的焊接工艺的发展,有着深远的影响。
2 焊接存在的问题及缺陷
2.1 气孔
焊接时熔池中的气泡在凝固时未能逸出而残留下来形成的空穴就是气孔。焊接中存在气孔,会降低焊缝的强度,破坏焊缝的密封性,焊缝的有效面积减小。一般在两种情况下生成并分为两类:一是在高温下溶解在液态金属中,气体的突然下降的溶解度,如氢气,氮气等,二是溶解在液态金属的气体,如CO等。主要是因为芯锈蚀或药皮变质,剥落;焊条或焊剂未烘烤;焊伞边缘不洁,存在水分、油脂和铁锈;保护湿气体污染或交通,焊接电流过大、电压太高、太长电极伸长率;焊接太快。
2.2 咬边
焊接时焊接参数选择不当或操作工艺不正确,当焊接金属没能填满母材焊趾或焊根的熔化凹槽时,使焊缝边缘留下的凹陷称为咬边。咬边使母材金属接头的有效工作界面减少,从而在咬边处造成应力集中,减弱了焊接接头的强度,承载后有可能在咬边处产生裂纹,甚至引起结构的破坏。造成咬边的主要原因有:焊接电流过大;焊接速度过快或运条不稳,以致没能加上足够的填充金属;在角焊时,造成咬边的主要原因是运条角度不准或电焊电弧拉得太长等。
2.3 夹渣
夹渣或夹杂物是由于炉渣不干净,在焊缝金属中的残余物。炉渣将焊接接头的延展性和韧性的降低;尖角渣,导致应力集中,特别是用于淬火倾向较大的焊接金属,容易产生焊接裂纹,在所说的熔渣风口浪尖上形成巨大的压力。形成的主要原因是焊件表面,焊接前清理不良(如油,锈等),焊料层之间的清理不彻底,覆盖潮湿和焊接材料选择不当,电极;焊缝边缘有氧切或碳弧气刨残留渣,焊接电流过小,焊接速度太快。另外,使用酸电极时,由于电流太小或所输送的物品和不当形成糊剂残余物。
2.4 裂纹
焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现称为焊缝裂纹。焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性变形,超过材料的强度极限则导致开裂。焊接裂纹可能发生在焊缝金属内部或外部,或者在焊缝附近的母材热影响区内,或者位于母材与焊缝交界处。裂纹的存在大大降低了焊接接头的强度,并且焊缝裂纹的尖端也成为承载后的应力集中点,成为结构断裂的起源。
2.5 未焊透、未熔合
未焊透是指焊接时接头根部未完全熔透,抑或是焊件边缘或者前一道焊层未能充分受热熔化,熔敷金属却已覆盖上了,造成熔敷金属未能很好和焊件边缘熔合在一起。未焊透常出现在单面焊的根部和双面焊的中部。运条速度太快;焊条角度不当或电弧发生偏吹;坡口角度或对口间隙太小;焊件散热太快;氧化物和熔渣等阻碍了金属间充分的熔合等是产生未焊透产生的原因。在焊件与焊缝金属或焊缝层间有局部未熔透现象称为未熔合。焊接线能量太低;电弧发生偏吹;坡口侧壁有锈垢和污物;焊层间清渣不彻底等是产生未熔合的原因。未焊透和未熔合不仅使焊接接头的机械性能降低,而且在未焊透处的缺口和端部形成应力集中点,承载后会引起裂纹。
3 船舶焊接三大主要方法及提高焊接质量的措施
船舶焊接工件巨大的,形状复杂,施工环境差。常见方法有:①自动埋弧焊焊接:普通的单核和双丝埋弧焊,FCB法,射频法,FAB法;②的CO气体保护焊:传统的CO半自动焊,双丝自动焊(MAG)、自动角焊,二氧化碳气体保护单面焊,二氧化碳气电垂直自动焊;③手工焊条焊接:焊接下游铁粉焊条电弧焊、深穿透焊、重力焊等等。为了提高焊接质量,需要做好以下工作。
3.1 焊缝的焊前检验
焊接缝钉焊接缝间隙、槽和所谓的焊缝错边了,定位焊和焊接质量的清洁状况做好检查焊前检查。焊接前检查内容、精度标准、试验方法,涉及多个项目,还应注意下面的问题:
1)清除焊缝坡口区域的铁锈,氧化皮,油污,杂物和车间底漆,并保持清洁和干燥。
2)焊接必须在潮湿,多风或过冷的开放空间进行,反应正确的屏蔽焊接作业区,一般强度船体结构钢,如焊接环境温度低于0,材料的碳当量大于0.41%,采取焊前预热措施。
3)高强度钢,铸钢和锻钢船体结构件的焊接,应咨询有关工艺文件对船舶进行检查,严格执行焊接电弧,定位焊,预热和焊后保温隔热或热处理等措施。
3.2 焊缝的焊接规格和表面质量检验
焊接的焊接规范对接焊缝类型和规模的要求。焊接型对接焊缝、角焊缝、搭接焊缝和塞焊。角焊缝类型分别角焊缝的单面,双面全熔透角焊、缝交错断续角焊、接链断续角焊、缝挖孔焊接。焊缝表面质量检验焊接质量的检验应首先检查的项目,即使检验和批准后,其内部最终焊缝气密性试验的质量抽查。
3.3 焊缝内部检验质量
焊缝质量检查中发现的焊接规格尺寸和表面质量的检查和修复缺损的完成,并重新检查和批准。内部品质的焊接,可用于测试射线,超声波,渗透,磁粉探伤,或其它适当的方法。另外,液压、气动、煤油(实际上渗透探伤试验)也可以被用作内部的焊缝质量检查装置。
4 船舶焊接工艺的发展展望
船舶焊接工艺随着信息技术的发展,仍呈现出较大的发展空间。焊接工艺更加趋向机械化、自动化发展方向,并注重节能、高效的发展模式。
1)焊接工艺的机械化、自动化发展方向焊接工艺机械化、自动化是船舶工业的一大发展趋势。
2)焊接材料的发展将不断促进焊接工艺进步。到2010年时,我国已经成为世界一流的造船大国,但不得不承认,在船舶制造中,焊接技术水平相比于日本和韩国等国家,还存在着一定的差距,焊接材料的使用上,还明显落后于这些先进国家。未来的发展中,应努力实现焊接材料的现代化,以推动焊接工艺的发展。
3)研究机械手、机器人焊接。科学技术的飞速发展,数字化信息技术的日新月异,都将对船舶焊接工艺产生重要影响。 在焊接工艺未来的发展中,相关技术人员也应充分意识到这一点,并大胆进行创新,尝试研发更高端的、具有引领性的焊接工艺。
参考文献
[1]通八达,沈建斌.船舶焊接中常见缺陷的形成机理及防止与修正措施研究与探讨[J].中国水运,2010,10(11):119-120.
高能束流(High Energy Density Beam)加工技术包含了以激光束、电子束和等离子弧为热源对材料或构件进行特种加工的各类工艺方法。高能束流焊(或高能密度焊)是指焊接功率密度比通常的氩弧焊(TIG、MIG)或CO2气体保护焊高的一类焊接方法。
1 高能束流焊接的应用领域
当前高能束流焊接被关注的主要领域是:
⑴高能束流设备的大型化 — 功率大型化及可加工零件(乃至零件集成)的大型化。
⑵新型设备的研制,诸如,脉冲工作方式以及短波长激光器等。
⑶设备的智能化以及加工的柔性化。
⑷束流品质的提高及诊断。
⑸束流、工件、工艺介质相互作用机制的研究。
⑹束流的复合。
⑺新材料的焊接
2 我国高能束流焊接现状
在国内,高能束流焊接越来越引起更多相关人士诸如焊接、物理、激光、材料、机床、计算机等工作者的关注。国内在设备水平上,与国外有一定差距,但在工艺研究上,水平则较为接近,甚至在某些方面还有自己的特色。
2.1 激光焊接
在设备生产与研究上,主要有华工的气体激光加工国家工程中心、电子部11所的固体激光加工国家工程中心、中国大恒激光工程公司、上海团结百超数控激光设备有限公司等,主要生产千瓦级的CO2激光设备和1千瓦以下的固体YAG激光设备。
国内对激光焊接研究主要集中在激光焊接等离子体形成机理、特性分析、检测、控制、深熔激光焊接模拟、激光—电弧复合热源的应用、激光堆焊、超级钢焊接、水下激光焊接、宽板激光拼焊(Tailored Blank Laser Welding)、填丝激光焊、铝合金激光焊、激光切割质量控制等。从事激光焊接研究比较多的主要有华中理工大学、国家产学研激光技术中心、清华大学、哈尔滨焊接研究所、北京航空工艺研究所、哈尔滨工业大学、西北工业大学等。清华大学从声和电的角度,分析了熔透状态的声信号,提出了激光焊接等离子体的等效电路及电特性数学模型;在抑制等离子体的负面效应方面,清华大学张旭东、陈武柱等提出了侧吸法;国家产学研激光技术中心的肖荣诗、左铁钏提出了双层内外圆管吹送异种气体法;西北工业大学的刘金合提出了外加磁场法。哈尔滨焊接研究所引进德国HAAS公司生产的2kW Nd:YAG激光发生器,建立了大功率固体激光加工中心,开展了材料为碳钢、不锈钢、铝合金、钛合金等多种材料的大功率固体激光焊接工艺研究以及激光—电弧复合热源焊接技术研究。
2.2 电子束焊接
我国自行研制电子束焊机始于60年代,至今已研制生产出不同类型和功能的电子束焊机上百台,并形成了一支研制生产的技术队伍,能为国内市场提供小功率的电子束焊机。
近年来,出现了关键部件(电子枪,高压电源等)引进、其它部件国内配套的引进方式,这种方式的优点是:设备既保持了较高的技术水平,又能大大降低成本,同时还能对用户提供较完善的售后服务。北京航空工艺研究所以此方式为某航空厂实施设备的总体设计和总成,实现了某重要构件的真空电子束焊接;桂林电器科学研究所也通过这种方式开发了HDG(Z)-6型双金属带材高压电子束连续自动焊接生产线,该机加速电压120kV、束流0~50mA、电子束功率6kW,带材运行速度0~15m/min,从而使我国挤身于世界上能生产这种生产线的几个国家之一。北京中科电气高技术公司近期为上海通用汽车公司研制成功自动变速车液力扭变器涡轮组件电子束焊机,70 s内可完成两条端面圆焊缝的焊接,并已投入商业化生产。
目前,以科学院电工所的EBW系列为代表的汽车齿轮专用电子束焊机占据了国内汽车齿轮电子束焊接的主要市场份额;我国的中小功率电子束焊机已接近或赶上国外同类产品的先进水平,而价格仅为国外同类产品的1/4左右,有明显的性能价格比优势。
在机理及工艺研究上,北京航空工艺研究所、北京航空航天大学、天津大学、上海交通大学、西北工业大学、中国科学电工所、桂林电器科学研究所、西安航空发动机公司、航天材料及工艺研究所、哈尔滨焊接研究所开展的工作涉及熔池小孔动力学、电子束钎焊、接头疲劳裂纹扩展行为、接头残余应力、填丝焊接、局部真空焊接时的焊缝轨迹示教等。
2.3 等离子弧焊接
在等离子弧焊设备方面,西北工业大学的李京龙、白钢等开展了脉动等离子喷焊技术研究,通过在工件和喷枪阳极(喷嘴)间接入高频的IGBT无触点开关,成功地实现了转移弧和非转移弧的高频交替工作,实现了单一电源下的等离子喷焊。西安交通大学的王雅生等开展了适宜于AI、Mg及其合金的变极性等离子弧焊设备的研究,主弧的正、负半波分别由两台直流电源供电,对工件(铝)实现了变极性焊接,它不仅使电弧稳定,而且还有可靠的阴极清理作用。北京航空工艺研究所开展了脉冲等离子弧焊的“一脉一孔”的工艺研究;在穿孔等离子弧焊小孔特征及行为检测方面,哈尔滨工业大学、北京航空工艺研究所以及清华大学分别通过光谱信息、电弧电压和电流的频谱分析,检测小孔的建立、闭合以及小孔尺寸;天津大学的王惜宝、张文钺分析了等离子弧粉末堆焊时粉末在转移弧中的输运行为及其主要影响因素,计算了铁基合金粉末和碳化硼粉末、不同参数下在弧柱中的输运速度分布及沿弧柱横截面上的粉通量分布。
3 关于电子束焊接和等离子弧焊接的最新进展
国外电子束焊接发展可归结为:超高能密度装置研制、设备智能化柔性化、电子束流特性诊断、束流与物质作用机制研究以及非真空电子束焊设备及工艺的研究.等。
在日本,加速电压600kV、功率300kW的超高压电子束焊机已问世,一次可焊200mm的不锈钢,深宽比达70∶1 。
日、俄、德开展了双枪及填丝电子束焊技术的研究。在对大厚度板第一次焊接的基础上,通过第二次填丝来弥补顶部下凹或咬边缺陷;日本采用双抢实现了薄板的超高速焊接,反面无飞溅,成形良好。
引言:焊接技术在各工程中有着广泛的应用,在实际工作中也有着特殊的要求,其定义是在高温或高压条件下,使用焊接材料(焊条或焊丝)将两块或两块以上的母材(待焊接的工件)连接成一个整体的操作方法。焊接技术作为制造业中传统的基础工艺和技术,虽然应用到工业中的历史并不长,但是发展却非常迅速。短短几十年间,焊接已被广泛应用于航空航天、汽车、桥梁、高层建筑、造船以及海洋钻探等许多重要的工业领域,并且为促进工业的经济发展做出了重要的贡献,使得焊接已经成为一个重要的制造技术和材料科学的重要专业学科。
1、工程机械行业焊接技术的现状
我国机械焊接技术有着飞速的发展,但与发达国家相比,还存在着诸多不足之处,有待进一步提高。1999 年中国焊接活动周期间,中国焊接协会工程机械委员会邀请工程机械行业的生产厂代表召开了焊接技术座谈会。各位代表介绍了当前各厂的焊接工艺及工艺装备情况,工程机械结构件焊接工艺中,采用自动(半自动)CO2气体保护焊工艺约占70%(以重量计),采用弧焊机器人完成的焊接工作量不足50%,其余为手工电弧焊,各位代表普遍反映以下两方面问题:(1)现在的工艺水平不能适合弧焊机器人的要求。工程机械行业虽然机器人的水平较高、数量较多,但由于焊接前零件的质量较低,弧焊机器人不能满足生产要求,以至造成大量昂贵的设备处于半闲置的状态。(2)70 年代初,工程机械行业的个别工厂开始尝试半自动CO2焊接工艺。随着CO2焊机质量的不断提高,尤其是几家合资公司推出高品质的 CO2焊机后,带动了国内焊丝及焊机零件配件等质量的普遍提高,有力地推动了CO2焊接工艺的发展。
2、工程机械焊接技术的发展趋势
2.1大型结构件拼点精度提升
随着工程机械产品质量的不断提升,结构件的拼箱精度和焊接质量逐渐成为焊接工艺研究重点之一。传统结构件的拼点方法一般为人工划线,此种方式简单易行,但划线工作量大,生产效率低、受制于划线人员的技能、熟练程度不同,导致结构件拼点误差较大、产品一致性较差,不利于后续工序自动化焊接的实施。针对这一问题,工程机械各企业都设计开发了适应自身结构件特点的拼点工装,但一般来说设计较为简单、精度较低,通用性较差。随着机器人自动化焊接的逐渐普及,高精度拼点工装已成为一种产品,由专业公司设计制造,既保证组对精度,又尽量做到操作简便、通用性强。取代划线拼点作业模式,以高精度等距销孔定位,克服了传统移动后重复定位精度不高的难题,同时配合模块化专用支耳,通过快速锁紧销进行连接,可以实现对不同尺寸结构件的高效、快速换模,进而达到高通用性的特点。虽然拼箱精度高、一致性好,有利于后续的机器人自动化焊接,但是该工装造价昂贵、安装精度高,在使用过程中需要定期维护保养。
2.2 自动化焊接技术的发展
焊接技术已经向自动化,智能化方向发展。伴随着科学技术的发展,焊接技术逐渐向自动化、智能化方向发展,自动焊接机器人应运而生,以机器人成套焊接工作站或焊接专机替代焊接工人进行自动化焊接作业,不但降低工人劳动强度、改善作业环境,同时可以获得稳定一致的焊缝质量。从长远来看,虽然机器人焊接一次性投入成本大,但一台焊接工作站的服役期至少为10年以上,相对不断增长的用工成本,采用机器人自动化焊接反而更加经济。焊接用机器人,严格来讲只是六轴集成的机械手,本身并不能独立工作,需搭配焊接系统、弧焊软件控制系统、工件装夹变位系统、高效除尘系统等设备才能组成焊接机器人工作站。对焊接变形要求高的结构件,需要在相应夹具上考虑增加反变形措施,大多采用在可能变形位置增加液压缸压紧进行预变形。对一些更大型的结构件焊接,则要求采用两套焊接机械手配合外部轴进行焊接,联动轴数量多达19轴以上在变位机方面,设置为双工位,一个工位用于机械手自动化焊接,另一个工位则针对机械手无法焊到的地方采用人工补焊。自动化焊接工作站的大量应用,对相应的操作人员也提出了更高的要求,需要操作人员不仅熟悉焊接知识,还需掌握机器人控制系统的编程语言、了解自动焊接过程中的电弧跟踪、焊前寻位原理。而目前,国内的大部分工程机械企业操作焊接机械手人员难以具备上述的技能素质,出现问题,仍然依赖设备供应商进厂解决。造价昂贵的焊接工作站,其强大的功能也仅仅开发不足60%。这也对一些专科、技校提出了新的要求,在技能人员培养方面,需要重视对机械手的控制系统、编程语言、弧焊软件系统以及其他的常见故障解决方法等方面进行培训。与机器人焊接工作站相比,焊接专机易操作、价格低、易保养、设备可靠性高,更受到焊接工艺人员的青睐。焊接专机多用于焊缝形式单一的长直焊缝,焊接过程中焊枪无需摆动。对于要求不高的焊缝结构,可以立足自制,将焊接系统与直线运动机构进行组合即可实现专机功能;对焊缝质量及工作环境要求高、焊接过程中需要旋转变位的工件,则可以借鉴机器人工作站的模式,搭配变位机、除尘系统、预热系统等。
2.3高强钢焊接工艺进展
在工程机械的产品设计过程中,承载吨位与自身重量是一对矛盾体,为了降低自重,设计人员更青睐于选择高强,甚至超高强钢板,在结构设计方面,则采用薄厚板对接的形式,上述两个方面均对焊接提出了新的挑战。钢铁冶金技术的不断进步使低合金高强钢实现了洁净化、细晶化和力学性能上的强韧化,这就要求在焊接过程中与之匹配的焊接材料也必须实现洁净化和强韧化,否则接头性能将不能与母材匹配,进而成为焊接接头的薄弱部位。强度≥800MPa的高强钢,要实现焊缝金属与母材的强韧性匹配较为困难,一般强度等匹配的情况下,焊接接头韧性储备往往不够,在进行高强钢焊接工艺评定试验时,接头的强度和伸长率都是合格的,主要是韧性不足引起脆断,高强钢激光焊接工艺有无可比拟的优势,该技术摒弃传统的依托焊接材料过渡合金元素这一复杂过程,采用连续或脉冲激光束作为热源直接熔化待焊母材,其冶金过程类似于电子束焊,能量转换机制通过“激光束小孔”结构来完成,熔融金属填充小孔形成焊缝,激光焊接具有焊接熔深大、热影响区小、焊接速度快等优点,但是激光焊接设备造价高,对工件拼点间隙要求严格。国外工程机械企业已开始进行这一技术的研究,并取得了阶段性的进展。降低自重的另一手段是将焊缝设计为薄厚板对接的形式,关键受力处采用厚板,而受力较小、仅是起到增强刚性的部位尽量使用薄板,对于1mm的低合金钢板厚度减少4mm,重量降低可达31kg。但这对焊接技术提出了更高的要求,在保证焊透的情况下,薄板一侧变形量要明显大于厚板,焊缝两侧板厚不同也不利于焊后调平,而对于这种焊接结构较为有效的解决方法是对待焊接头进行预反变形,该方法需要精确的掌握不同板厚的焊接变形量,如果反变形量预留得当,可以基本消除焊后变形。
3、结语
焊接技术是工程机械制造中的关键技术,自诞生以来,一直受到很多学科最新发展的影响和引导,在新材料以及信息科学技术的影响下,出现了数十种焊接的新工艺,并且使得焊接工艺正从手工焊向自动焊以及智能化过渡。随着自动化焊接技术的发展和新焊接工艺的研究与应用,将进一步提高工程机械产业的制造水平。
参考文献:
中图分类号:P755文献标识码: A
引言
一、我国焊接技术的发展现状
1、较长焊缝和厚板焊缝的焊接技术落后
在对钢板进行焊接的过程中,长焊缝和厚板的焊接是不可避免的。焊接技术水平的高低、焊接的效率以及焊接质量深深影响着产品的质量以及产品的成本。除此之外,厚板的对缝焊接、箱形零构件的整体焊接以及T型焊缝的焊接等的工作量是非常巨大的,对焊接技术要求十分严格。在焊接的过程中,焊缝第一层采用的是埋弧焊(SAW)焊接技术。这种方法产生的垃圾废渣不易清理。所以,焊缝的第一层通常采用埋弧焊(SAW)盖面和熔化极气体保护焊(GMAW)打底相互结合的工艺来进行处理。使用这种方法的一个缺憾是焊接效率提高受限。在T型焊接和厚板相互对接的焊接过程中通常采用的是碳弧气刨清根工艺技术。这种技术能够使焊缝进行全熔透的焊接,但是增加了加工成本,也对焊接工艺人员的身体和焊缝质量造成影响。
2、焊接技术自动化水平不高
一个国家要想发展强盛,必须依托于工业现代化、加工自动化。只有这样生产的产品才能节约加工成本,给社会创造出更多的福利。通过调查显示国外的焊接自动化水平已经达到80%,而我国的焊接自动化水平最多只占30%。绝大多数的焊接依旧是采用手工焊接来实现的。若想取得工业的迅速发展,自动化的焊接发展方向是必然的选择。
3、焊接构件易产生冷热裂纹
冷裂纹指的是焊缝在冷却的过程中,如果温度下降到马氏体转变温度范围以下,焊缝就会在焊接后立即出现。这种焊缝通常也叫做延迟裂纹。这种冷焊缝形成的必要条件是:焊缝接头处存在扩散氢、具备淬硬组织、拉伸应力较大并且密集。而热焊缝是在高温状态下产生的,又称之为结晶裂纹或高温裂纹。这些裂缝容易出现在裂缝的内部,也易出现热影响区。热裂纹的形状主要有横向裂纹、弧坑裂纹、纵向裂纹、根部裂纹等等。热裂纹是由力学和冶金制造过程中的因素一起作用才产生的。它形成的主要原因是由于焊接池中的低熔点共晶和杂质共存致使晶体偏析。这样裂纹的强度就非常低,极易产生裂纹。
4、焊接人员的专业技术水平不足
焊缝技术直接影响产品的质量以及整体钢结构的业务流程。钢结构产品被应用到了几乎所有领域,了解焊接的相关技术是对技术操作人员的基本规定。要求操作人员熟练掌握自身业务水平是对其的最起码的要求。而我国的焊接技术人员对业务水平了解的太少,与对行业需求存在非常大的距离。
二、我国焊接技术主要应用领域
1、航空航天工业中的应用:焊接技术依其可靠的性能,被广泛应用于航空航天工业,焊接的工作量占全部工时的百分之十,焊接连接的部件在航空航天领域内占百分之五十以上。由于航空航天工业中对金属材料要求的特殊性,促成了特种焊接技术的应运而生。目前主要使用的是固态焊接技术和高能束流焊接技术。其中的激光焊、电子束焊、搅拌摩擦焊是在我国航空航天领域中最常用的三种先进焊接技术。
2、汽车制造领域中的应用:电子束焊接主要用于发动机增压器涡轮、后桥、行星齿轮框架、离合器、汽缸、变速箱齿轮等部件的焊接;激光焊技术主要用于框架结构、零部件的焊件和车身拼焊;搅拌摩擦焊主要用于发动机引擎、汽车轮毂、汽车地方车身支架、汽车车门预成型件和液压成型管附件。
3、船舶工业中的应用:高效焊接技术在船舶制造中占有重要的地位,是一项技术性、专业性很强的系统工程,尤其是CO2气体保护半自动焊接技术应用率达到60%-65%,成为我国现代造船模式中的关键技术之一。先进的造船高效焊接技术,在提高船舶的建造效率、降低船舶建造成本、缩短造船周期,提高船舶建造质量,推动船舶建造焊接机械化、自动化发展上的作用是不可小视的,也是企业提高经济效益的有效途径。
4、核电建造中的应用:焊接技术作为一种关键的特殊工艺,在中国核电建造中产生非常重要的作用,核电作为一种“高风险”的清洁领域,对焊接质量的要求非常严格。对于组成核电站的每条焊缝都要求100%的合格,并对每条焊缝实行可追朔性管理,对焊接技术的要求非常高,它直接关系着核电站核安全的状态。因此,不断提高我国焊接技术,可以有效推进核能行业的发展,确保核电站运行的安全可控,同时也为实现核电领域十二五规划的完成奠定基础。
三、我国焊接技术的发展前景
为了积极促进我国焊接技术的发展,使其满足我国市场发展的需求,通过分析我国焊接技术的发展现状,能够推断出我国焊接技术主要会从以下几个发展方向进行。
1、磁控焊接技术
磁控焊接技术属于新兴的焊接技术。它主要是通过磁场来实现焊接。它的投入成本非常低、装置也比较简单、耗能非常少、效益比较好。通过常年对磁控焊接技术的研究发现了磁控对电弧焊电弧状态的影响。外加磁场对焊接母材的熔化与焊缝的成形有非常大的影响。利用电磁搅拌技术能够改变金属结晶过程中的热量传递过程,进而使结晶方向发生变化。通过组织的细化作用,能够使焊缝的一些力学特点提升的更加明显。除此之外还能降低焊接过程中缺陷的敏感性。鉴于磁控焊接技术的优点,这必定是其中的发展方向之一。
2、低温焊接技术
由于我国地理环境的特殊位置,冬季寒冷时节持续时间相对较长,这就考验着低温环境下焊接技术的性能。近些年来,各个相关学术组织都在积极的解决应对冬季低温焊接的问题以及施工的临界温度的取值问题。
例如,我国在冬季完成了“鸟巢”万吨级以上的刚结构件的焊接工作。冬季进行焊接作业时影响焊接的因素主要有操作员的工艺水平、焊机的效率、材料的性能、焊法的熟练程度以及环境的作用。仅仅考虑这些因素中的某一项或某两项是不全面的,是无法做出正确评价的。综合考虑这些因素的影响“,鸟巢”在低温作业环境下取得了显著成果,并以此确定了低温焊接的临界温度为150°C。低温焊接能够缩短工期,为企业带来巨大的经济效益。由“鸟巢”焊接任务中获得的低温焊接经验技术必将应用于实践。
3、电子焊接技术将被激光焊接取代
激光束经过聚焦后,激光焦点处的能量密度高达10-100W/cm并且加热的范围甚至小于1mm。如果将此技术应用于焊接方面,那将会给焊接工业带来巨大的变革。一方面可以提高焊接的速度,另一方面还可以减小接头处的变形以及减小应力集中。激光焊接术达到的焊接精度比较高,是比较理想的焊接技术。激光焊接的一个显著特点是可以进行长距离的焊接,因为激光具有直线传播的特点。除此之外与电子束相比较而言,激光束的优势显而易见。第一,激光焊接不需要真空环境,节约了设备上的成本投入;第二,激光束不会产生X射线,对人体不会造成伤害,不需要专门的防护用具;第三,激光焊接的生产效率比较高。因此,激光束在不久的将来应该会取代电子束成为焊接主流技术。
结束语
我国焊接技术水平同国外发达国家相比差距仍然比较巨大。这就要求我国焊接技术人员积极探索、总结经验,积极加强焊接技术的学习与创新。一方面要提高焊接的质量,另一方面更要加强焊接自动化水平技术的提高。只有这样我国的焊接技术才能领超世界强国,排于前列。在新时期我们要坦然面对我们自身的不足,寻找自身的发展特点和方向。我们要积极沿着磁控焊接、高温焊接等先进焊接工艺的目标发展。争取焊接技术的更大进步,为我国的现代化建设贡献力量。
参考文献
1.锅炉压力容器和管道焊接技术的概述
鉴于锅炉、压力容器和管道涉及到许多重要的工业部门,其中包括火力、水力、风力,核能发电设备,石油化工装置,煤液化装置、输油、输气管线,饮料、乳品加工设备,制药机械,饮用水处理设备和液化气储藏和运输设备等,焊接技术的内容是相当广泛的。目前国内外锅炉、压力容器和管道的焊接技术取得了引人注目的新发展。随着锅炉、压力容器和管道工作参数的大幅度提高及应用领域的不断扩展,对焊接技术提出了愈来愈高的要求。所选用的焊接方法、焊接工艺、焊接材料和焊接设备首先应保证焊接接头的高质量,同时必须满足高效、低耗、低污染的要求。因此,在这一领域内,焊接工作者始终面临复杂而艰巨的技术难题,要求不断寻求最佳的解决方案。通过不懈的努力已在许多关键技术上取得重大突破,并在实际生产中得到成功的应用,取得了可观的经济效益,使锅炉、压力容器和管道的焊接技术达到了新的发展水平。
2.锅炉、压力容器和管道焊接方法的新发展
锅炉、压力容器和管道均为全焊结构,焊接工作量相当大,质量要求十分高。焊接工作者总是在不断探索优质、高效、经济的焊接方法,并取得了引人注目的进步。以下重点介绍在国内外锅炉、压力容器与管道制造业中已得到成功应用的先进高效焊接方法。
2.1锅炉膜式水冷壁管屏双面脉冲MAG自动焊接生产线
上世纪80年代后期,日本三菱重工率先开发膜式水冷壁管屏双面脉冲MAG自动焊新焊接方法及焊接设备,并成功地应用于焊接生产。其特点是多个MAG焊焊头从管屏的正反两面同时进行焊接。焊接过程中,正反两面焊缝的焊接变形相互抵消。管屏焊接后基本上无挠曲变形。这是一项重大的技术突破。经济效益显著。我国如今已有十多条MPM焊接生产线正常投运。管屏MPM焊接的主要技术关键是必须保证正反两面的焊缝质量,包括焊缝熔深,成形和外形尺寸基本相同。这就要求在仰焊位置的焊接采用特殊的焊接工艺―脉冲电弧MAG焊。焊接电源和送丝系统应在管屏全长的焊接过程中产生稳定的脉冲喷射过渡。因此必须配用高性能和高质量的脉冲焊接电源和恒速送丝机。这些焊接设备的性能和质量愈高,管屏反面焊缝的质量愈稳定,合格率愈高。为进一步改进膜式壁管屏MPM焊机的性能,最近国产的管屏MPM焊机配用了第三代微要控制逆变脉冲焊接电源和测速反馈的恒速送丝机,明显提高了反面焊缝的合格率。
2.2锅炉受热面管对接高效焊接法
热丝TIG焊的原理是将填充丝在送入焊接熔池之前由独立的恒压交流电源供电。电阻加热至650~800℃高温,这就大大加速了焊丝的熔化速度,其熔敷率接近于相同直径的MTG焊熔敷率。热丝TIG焊不失为小直径壁厚管对接焊优先选择的一种焊接方法。改用当代最先进的全数字控制逆变脉冲焊接电源或波形控制脉冲焊接电源,则可容易地按焊接工艺要求,对焊接电弧的功率作精确的控制,确保接头的焊接质量。对现有的管子对接自动焊MIG焊机组织二次开发,将原有的晶闸管焊接电源更换成全数字控制逆变脉冲焊接电源,并采用PLC和人机界面改造控制系统,充分发挥MIG焊的高效优势。
2.3厚壁容器纵环缝的窄间隙埋弧焊
厚壁容器对接缝的窄间隙埋弧焊是一种优质、高效、低耗的焊接方法。自1985年哈锅从瑞典ESAB公司引进第一台窄间隙埋弧焊系统以来,窄间隙埋弧焊已在我国各大锅炉、化工机械和重型机械等制造厂推广使用,近20年的实际生产经验表明,窄间隙埋弧焊确实是厚壁容器对接焊的最佳选择。
最近,美国林肯(Lincoln)公司向中国市场推出交流波形参数可任意控制的AC/DC1000型埋弧焊电源。采用这种新一代的计算机控制埋弧焊电源,可使串列电弧双丝埋弧焊的工艺参数达到最佳的组合。不但可以获得窄间隙埋弧焊所要求的焊道形成,而且还可进一步提高交流电弧焊丝的熔敷率。可以预期,波形控制AC/DC埋弧焊电源的问世必将对串列电弧双丝窄间隙埋弧焊的推广应用作出积级的贡献。
2.4大直径厚壁管生产中的高效焊接法
随着输送管线工作参数不断提升,大直径厚壁管的需求量急剧增加,制造这类管材量经济的方法是将钢板压制成形,并以1条或2条纵缝组焊而成。由于厚壁管焊接工作量相当大,为提高钢管的产量,通常采用3丝,4丝或5丝串列电弧高速埋弧焊。5丝埋弧焊焊接16mm厚壁管外纵缝的最高焊接速度可达156m/h,焊接38mm厚壁管外纵缝的最高焊接速度可达100mm/h。
3.锅炉、压力容器和管道焊接自动化的新发展
焊接机械化是指焊接机头的运动和焊丝的给送由机械完成,焊接过程中焊头相对于接缝中心位置和焊丝离焊缝表面的距离仍须由焊接操作工监视和手工调整。焊接自动化是指焊接过程自启动至结束全部由焊机的执行自动完成。无需操作工作任何调整,即焊接过程中焊头的位置的修正和各焊接参数的调整是通过焊机的自适应控制系统实现的。而自适应控制系统通常由高灵敏传感器,人工智能软件、信息处理器和快速反应的精密执行机构等组成。为加速本行业焊接生产现代化的进程,增强企业的核心竞争力,应尽快提高焊接自动化的程度。
3.1厚壁压力容器对接接头的全自动焊接装备
德国Babcock-Borsig公司与瑞典ESAB公司合作于1997年开发了一台大型龙门式全自动自适应控制埋弧装备。专用于、厚壁容器筒体纵缝和环缝的焊接。该装备配置了串列电弧双丝埋弧焊焊头,由计算机软件控制的ABW系统和激光图像传感器。
在焊接过程中激光图像传感器连续测定接头的外形尺寸,测量数据通过计算机由智能软件快速处理,并确定所要求的焊接参数和焊头位置。系统软件可调整每一填充焊道的4个焊接参数:焊接速度,焊接电流,焊道的排列和各填充层和盖面层的焊道数。因此,该系统可使实时焊接参数自动适应接头整个长度上横截面和几何尺寸的偏差。该装备不仅大大提高厚壁容器的焊接生产率,而且确保形成无缺陷的厚壁焊缝,同时显著降低了焊工劳动强度,改善了工作环境。
3.2厚壁管件全自动多站焊接装置
火力和核电站的主蒸汽管道,其壁厚已超过100mm,焊接工作量相当大,迫切需要实现焊接生产的全自动化,以提高生产率。每个焊接工作站由焊接操作机,翻转机构,滚轮架,夹紧装置和焊接机头及焊接电源等组成。所有的焊接工作站由中央控制器集成控制。适用的管径范围为139~558 mm,壁厚18~100 mm.管件长度大于1800 mm.可全自动焊接直管对接,直管与弯管接头,直管与法兰以及直管与端盖对接接头。焊接方法采用窄坡口热丝TIG焊。
在该自适应控制系统中,采用黑白摄像机检测坡口边缘的位置。采用彩色摄像机监控电弧和填充丝的位置。通过检则焊丝加热电流控制填充丝的垂直方向的位置。这种控制方法是利用黑白摄像机的图像,经过计算机图像处理,确定内外边缘的照度差。当焊接条件变化时,系统将自动调整摄相机快门的曝光时间。以达到给定的照度,使焊枪始终保持在焊接开始时调整好的位置。壁厚管件全自动多站焊接装置基本上实现了焊接作业无人操作。只需要一名操作人员在主控制室内设置管件的原始条件并在焊接过程中进行监控。
锅炉压力容器和管道用钢的新发展
1 锅炉用钢的新发展
在锅炉、压力容器和管道用钢这三类钢中,锅炉用钢的发展最为迅速。这主要是近10年来,火力发电站用燃料—煤炭的供应日趋紧张,降低燃料的消耗已成为世界性的迫切需要。为此,必须提高锅炉的效率。通常锅炉效率每提高5%,燃料的消耗可降低15%.而锅炉的效率基本上取决于其运行参数—蒸汽压力和蒸汽温度。最近,上海锅炉厂生产600~670MW超临界锅炉的蒸汽压力为254bar,过热蒸汽温度为569℃,锅炉的热效率约为43%.如果锅炉的运行参数提高到特超临界级,即蒸汽压力为280 bar蒸汽温度为620℃,锅炉的热效率可提高到47%.目前世界上特超临界锅炉的最高工作参数为350 bar/700℃/720℃,锅炉的热效率达到了50% .
这里应当强调指出,随着锅炉效率的提高,锅炉烟气中的SO2、NOX和CO2的排放量逐渐下降。因此从减少大气污染的角度出发,设计制造高工作参数的特超临界锅炉也是必然的发展趋势。
锅炉蒸汽参数的提高直接影响到锅炉受压部件的强度性能。在超临界和特超临界工作条件下,锅炉的主要部件,如膜式水冷壁,过热器,再热器、高压出口集箱和主蒸汽管道的工作温度均已达到钢材蠕变温度范围以内。制作这些部件的钢材在规定的工作温度下,除了具有足够的蠕变强度 (或105h高温持久强度)外,还应具有高的耐蚀性和抗氧化性以及良好的焊接性和成形性能。
从锅炉主要部件用钢的发展阶段来看,即便是工作温度相对较底的水冷壁部件,也必须采用铬含量大于2%的Cr-Mo钢或多组元的CrMoVTiB钢。按现行的锅炉制造规程,这类低合金钢,当管壁厚度超过规定的界限时,焊后必须进行热处理。由于膜式水冷壁的外形尺寸相当大,工件长度一般超过30m,焊后热处理不仅延长了生产周期,而且大大提高了制造成本。为解决这一问题,国外研制了一种专用于膜式水冷壁的新钢种7CrMoVTiB1010.最近,该钢种已得到美国ASME的认可,并已列入美国ASME材料标准,钢号为A213-T24.这种钢的特点是含碳量控制在0.10%以下,硫含量不超过0.010%,因此具有相当好的焊接性。焊前无需预热。当管壁厚度不大于10 m m,焊后亦可不作热处理。
在特超临界的蒸气参数下,当蒸气温度达到700℃,蒸气压力超过370 bar时,水冷壁的壁温可能超过600℃。在这种条件下,必须采用9%Cr或12%Cr马氏体耐热钢。这些钢种对焊接工艺和焊后热处理提出了严格的要求,必须采取特殊的工艺措施,才能确保接头的焊接质量。
对于锅炉过热器和再热器高温部件,在超临界和特超临界蒸汽参数下,其工作温度范围为560~650℃。在低温段通常采用9~12%Cr钢,从高温耐蚀性角度考虑,最好选用12%Cr钢。在600℃以上的高温段,则必须采用奥氏体铬镍高合金耐热钢。根据近期的研究成果,对于高温段过热器和再热器管件,为保证足够高的高温耐蚀性和抗氧化性,应当选用铬含量大于20%的奥氏体钢,例如25Cr-20NiNbN(HR3C),23Cr-18NiCuWNbN(SAVE25),22Cr-15NiNbN(Tempaloy A-3),和20Cr-25NiMoNbTi(NF709)等。
在相当高的蒸汽参数下(375 bar/700℃)下,在过热器出口段,由于奥氏体钢蠕变强度不足,不能满足要求,而必须采用镍基合金,如Alloy617.
现代奥氏体耐热钢与传统的奥氏体耐热钢相比,其最大特点是含有多组元的碳化物强化元素,从而在很大程度上提高了钢材的蠕变强度。
对于超临界锅炉机组的高压出口集箱和主蒸汽管道等厚壁部件主要采用改进型的9-12%Cr马氏体铬钢。
9~12%马氏体铬钢的发展规律与前述的奥氏体耐热钢相似,即从最原始的Cr-Mo二元合金向多组元合金演变,其主攻方向是尽可能提高钢材的高温蠕变强度,减薄厚壁部件的壁 厚,以简化制造工艺和降低制造成本。上述钢种由于 严格控制了碳、硫、磷含量,焊接性明显改善。在国外超临界和特临界锅炉已逐步推广应用,取得了可观的经济效益。
2 压力容器用钢的新发展
近年来,压力容器用钢的发展与锅炉用钢不同,其主攻方向是提高钢的纯净度,即采用各种先进的冶炼技术,最大限度地降低钢中的有害杂质元素,如硫、磷、氧、氢和氮等的含量。这些冶金技术的革新,不仅明显地提高了钢的冲击韧性,特别是低温冲击韧性,抗应变时效性、抗回火脆性、抗中子幅照脆化性和耐蚀性,而且可大大改善其加工性能,包括焊接性和热加工性能。
对比采用常规冶炼方法和现代熔炼方法轧制的16MnR钢板的化学成分和不同温度下的缺口冲击韧度和应变时效后的冲击韧性,数据表明,超低级的硫、磷、氮含量显著地提高了普通低合金钢的低温冲击韧度和抗应变时效性。
高纯净化对深低温用9%Ni钢的极限工作温度(-196℃)下的缺口冲击韧度也起到相当良好的作用,按美国ASTM A353和A553(9%Ni)钢标准,该钢种在-196℃冲击功的保证值为27J.但按大型液化天然气(LNG)储罐的制造技术条件,9% Ni钢壳体-196℃的冲击功应 70J,相差2.6倍之多。这一问题也是通过9% Ni钢的纯净化处理而得到完满的解决。同时还大大改善了9% Ni钢的焊接性。焊接不必预热,焊后亦无须热处理。对于厚度30mm以下的9%Ni钢,焊前不必预热,焊后亦无需热处理。这对于大型(10万m3以上)LNG储罐的建造,具有十分重要的意义。
把9% Ni钢标准的化学成分和力学性能并与高纯度9% Ni钢相应的性能进行对比,它们之间的明显差异。
在高压加氢裂化反应容器中,由于工作温度高于450℃,壳体材料必须采用2.25CrlMo或3CrlMo低合金抗氧钢。但这类钢在450℃以上温度下长期使用时,会产生回火脆性,使钢的韧性明显下降,给加氢反应的安全运行造成隐患。
近期的大量研究证明,上列铬钼钢的回火脆性主要起因于钢中P、Sn、Sb和As等微量杂质。合金元素Si和Mn也对钢的回火脆性起一定的促进作用。因此必须通过现代的冶金技术,把钢中的这些杂质降低到最低的水平。目前,许多国外钢厂已提出严格控制钢中杂质含量的供货技术条件。现代炼钢技术能够达到了最低杂质含量的上限,可大大降低2.25CrlMo和3CrlMo钢的回火脆性敏感性,其回火脆性指数J低于100,而普通的2.25Cr-lMo钢的J 指数高达300.
由此可见,压力容器用钢的纯净化是一种必然的发展趋势。
近几年来,各类不锈钢在金属结构制造业中应用急速增长,其年增长率为5.5%,2003年世界不锈钢消耗量为2150万吨,其中我国不锈钢的用量占54.2%极大部分用于各种压力容器和管道,包括部分输油输气管线。
为满足各种不同的运行条件下的耐蚀性要求,并改善不同施工条件下的加工性能,近期开发了多种性能优异的不锈钢,其中包括超级马氏体不锈钢、超级铁素体不锈钢,铁素体—奥氏体双相不锈钢和超级铁素体—奥氏体不锈钢。这些新型不锈钢的共同特点是超低碳、超低杂质含量、合金元素的匹配更趋优化,不仅显著提高了其在各种腐蚀介质下的耐蚀性,而且大大改善了焊接性和热加工性能。在一定的厚度范围,超级马氏体不锈钢焊前可不必预热,焊后亦无需作热处理。这对于大型储罐和跨国海底输油输气管线的建设具有重要的经济意义。
目前已在压力容器和管道制造中得到实际应用的马氏体不锈钢、铁素体—奥氏体双相不锈钢和超级双相不锈钢,这些不锈钢合金系列与常规不锈钢之间存在较大的差异。
3 管道用钢的新发展
管道用钢的发展在很多方面与前述的锅炉与压力容器用钢相似。实际上很多钢种和钢号都是相同的,其中只有输气管线用钢可以认为是独立的分支。近10年来,输送管线的工作应力已从40bar提高到100bar,甚至更高。最近台湾省建造了一座1600MW抽水蓄能电站,其压水管道采用了X100型(屈服强度690Mpa)高强度钢。
目前在世界范围内,输送管线中采用的最高强度级别的钢种为X80型,相当于我国标准钢号L555,其最低屈服强度为555Mpa.国外已计划将X100型高强度钢用于输送管线。
鉴于管线的焊接都在野外作业,要求钢材具有良好的焊接性,因此管线用钢多采用低碳,低硫磷的微合金钢,并经热力学处理。
锅炉、压力容器和管道焊接方法的新发展
锅炉、压力容器和管道均为全焊结构,焊接工作量相当大,质量要求十分高。焊接工作者总是在不断探索优质、高效、经济的焊接方法,并取得了引人注目的进步。以下重点介绍在国内外锅炉、压力容器与管道制造业中已得到成功应用的先进高效焊接方法。
1 锅炉膜式水冷壁管屏双面脉冲MAG自动焊接生产线
为提高锅炉热效率,节省材料费用,大型电站锅炉式水冷壁管屏均采用光管+扁钢组焊而成。这种部件的外形尺寸与锅炉的容量成正比。一台600MW电站锅炉膜式水冷壁管屏的拼接缝总长已超过万米。因此必须采用高效的焊接方法。在上世纪90年代以前,国内外锅炉炉制造厂大多数采用多头(6~8头)埋弧自动焊。在多年的实际生产中发现,这种埋弧焊方法存在一致命的缺点,即埋弧焊只能从单面焊接,管屏焊后不可避免会产生严重的挠曲变形。管屏长度愈长,变形愈大,必须经费工的校正工序。不仅提高了生产成本,而且延长了成产周期。因此必须寻求一种更合理的焊接方法。
上世纪80年代后期,日本三菱重工率先开发膜式水冷壁管屏双面脉冲MAG自动焊新焊接方法及焊接设备,并成功地应用于焊接生产。这种焊接方法在日本俗称MPM法,其特点是多个MAG焊焊头从管屏的正反两面同时进行焊接。焊接过程中,正反两面焊缝的焊接变形相互抵消。管屏焊接后基本上无挠曲变形。这是一项重大的技术突破。经济效益显著。数年后哈尔滨锅炉厂最先从日本三菱公司引进了这项先进技术和装备,并在锅炉膜式壁管屏拼焊生产中得到成功的应用。之后,逐步在我国各大锅炉制造厂推广应用,至今已有十多条MPM焊接生产线正常投运。管屏MPM焊接的主要技术关键是必须保证正反两面的焊缝质量,包括焊缝熔深,成形和外形尺寸基本相同。这就要求在仰焊位置的焊接采用特殊的焊接工艺—脉冲电弧MAG焊(富氩混合气体)。焊接电源和送丝系统应在管屏全长的焊接过程中产生稳定的脉冲喷射过渡。因此必须配用高性能和高质量的脉冲焊接电源和恒速送丝机。这些焊接设备的性能和质量愈高,管屏反面焊缝的质量愈稳定,合格率愈高。实际上,哈锅厂从日本三菱重工引进的原装机只配用了晶闸管控制的第二代脉冲MIG/MAG焊电源,送丝机也只是传统的等速送丝机,管屏反面焊缝的合格率达不到100%,总有一定的返修量,为进一步改进膜式壁管屏MPM焊机的性能,最近国产的管屏MPM焊机配用了第三代微要控制逆变脉冲焊接电源和测速反馈的恒速送丝机,明显提高了反面焊缝的合格率。
2 锅炉受热面管对接高效焊接法
锅炉受热面过热器和再热器部件管件接头的数量和壁厚,随着锅炉容量的提高而成倍增加,600MW电站锅炉热器的最大壁厚已达13mm,接头总数超过数千个。传统的填充冷丝TIG焊的效率以远远不能满足实际生产进展的要求,必须采用效率较高的且保接头质量的溶焊方法。为此,哈锅和上锅相继从日本引进了厚壁管细丝脉冲MIG自动焊管机,其效率比传统的TIG焊提高3~5倍。后因经常出现根部未焊透和弧坑下垂等缺陷而改用TIG焊封底MIG焊填充和盖面工艺,改进的焊接工艺虽然基本上解决了根部未焊透的问题,但降低了焊接效率,增加了设备的投资,同时也使操作程序复杂化。最近,上锅,哈锅又从国外引进了热丝TIG自动焊管机。热丝TIG焊的原理是将填充丝在送入焊接熔池之前由独立的恒压交流电源供电。电阻加热至650~800℃高温,这就大大加速了焊丝的熔化速度,其熔敷率接近于相同直径的MTG焊熔敷率。另外,TIG方法良好的封底特性确保了封底焊道的熔质量,因此,热丝TIG焊不失为小直径壁厚管对接焊优先选择的一种焊接方法。然而不应当由此全面否定脉冲MIG焊在小直径壁厚管对接中应用的可行性。曾通过大量的试验查明,在厚壁管MIG焊对接接头中,根部末焊透90%以上位于超弧段,而弧坑下垂起因于连续多层焊时熔池金属热量积聚导致过热。如将焊接电源电弧的功率作精确的控制,则完全可以消除上述缺陷的形成。但由于引进的MIG焊自动焊管机原配的焊接电源为晶闸管脉冲电源,无法实现电弧功率的程序控制如改用当代最先进的全数字控制逆变脉冲焊接电源或波形控制脉冲焊接电源(计算机软件控制小),则可容易地按焊接工艺要求,对焊接电弧的功率作精确的控制,确保接头的焊接质量。
我们建议对现有的管子对接自动焊MIG焊机组织二次开发,将原有的晶闸管焊接电源更换成全数字控制逆变脉冲焊接电源,并采用PLC和人机界面改造控制系统,充分发挥MIG焊的高效优势。
3 厚壁容器纵环缝的窄间隙埋弧焊
厚壁容器对接缝的窄间隙埋弧焊是一种优质、高效、低耗的焊接方法。自1985年哈锅从瑞典ESAB公司引进第一台窄间隙埋弧焊系统以来,窄间隙埋弧焊已在我国各大锅炉、化工机械和重型机械等制造厂推广使用,近20年的实际生产经验表明,窄间隙埋弧焊确实是厚壁容器对接焊的最佳选择。
为进一步提高窄间隙埋弧焊的效率,国内外推出串列电弧双丝窄隙埋弧焊工艺与设备,但至今未得到普遍推广应用。这不仅是因为增加了操作的难度,更主要的是交流电弧的焊道成形欠佳,不利于脱渣,容易引起焊缝夹渣。
最近,美国林肯(Lincoln)公司向中国市场推出交流波形参数(脉冲宽度、正半波电流值、脉冲频率,脉冲波形斜率)可任意控制的AC/DC1000型埋弧焊电源。采用这种新一代的计算机控制埋弧焊电源,可使串列电弧双丝埋弧焊的工艺参数达到最佳的组合。不但可以获得窄间隙埋弧焊所要求的焊道形成,而且还可进一步提高交流电弧焊丝的熔敷率。可以预期,波形控制AC/DC埋弧焊电源的问世必将对串列电弧双丝窄间隙埋弧焊的推广应用作出积级的贡献。
4 大直径厚壁管生产中的高效焊接法
随着输送管线工作参数不断提升,大直径厚壁管的需求量急剧增加,制造这类管材量经济的方法是将钢板压制成形,并以1条或2条纵缝组焊而成。由于厚壁管焊接工作量相当大,为提高钢管的产量,通常采用3丝,4丝或5丝串列电弧高速埋弧焊。5丝埋弧焊焊接16mm厚壁管外纵缝的最高焊接速度可达156m/h,焊接38mm厚壁管外纵缝的最高焊接速度可达100mm/h.
最近,我国某钢铁公司将投资数十亿建设一条大直径厚管生产线,其中内外纵缝焊接机拟采用5丝串列电弧高速埋弧焊工艺。为确保达到最高焊缝质量标准,最好配用高性能的PowerwaveAC/DC1000数字控制焊接电源。
5 风力发电站生产中的高效焊接方法
众所周知,我国当前正面临电力十分紧张的状况,而且火力发电厂烟气大量排放对大气的污染也令人担忧。因此发展绿色能源已成为世人关注的焦点。在世界范围内风力发电作为一种可再生的清洁能源因运而生,产并以相当高的速度发展,年增长率约为20%.近来,我国也开始重视风力发电的建设,制定相应的规划,可望在今后5年内将有较快的发展。
风力发电站主要由基础、底座、立柱、风力涡轮发电机和馈电系统等组成,其中底座和立柱为焊接结构,采用不同厚度的低碳钢或低合金钢板卷制而成。锥形立柱总长可达100m,底部最大直径为4.8m,壁厚40~70 m m,项部直径约1.7 m,壁厚12~35 m.总重量约80T.每根立柱熔敷金属的重量约700—1500Kg.可见焊接工作量相当可观而且必须采用高效焊接法。最近瑞典ESAB公司专为风力发电站立柱焊接推出两对双丝串列电弧埋弧焊接法(Tandem-Twin)。如采用4根¢时2.5mm的焊丝,最高熔敷率可达38Kg/h,而普通的单弧双丝焊(TwinArc)的熔敷率仅为15 Kg//h.锥体简身纵缝采用两对双丝串列电弧焊,配用的焊接电源型号相应为LAF1250和TAF1250.
立柱环缝采用焊接操作机与头尾架翻转机组合的专用焊接装置,头架转盘由交流伺服电机驱动,可精确控制工件旋转速度,以确保焊缝的高质量。
锅炉、压力容器和管道焊接自动化的新发展
在我国锅炉、压力容器和管道制造行业中,各大中型企业的焊接机械化和自动化程度相对较高,像哈锅,上锅这样的企业已达到80%以上。不过,在国际上对焊接机械化和自动化作了重新定义。焊接机械化是指焊接机头的运动和焊丝的给送由机械完成,焊接过程中焊头相对于接缝中心位置和焊丝离焊缝表面的距离仍须由焊接操作工监视和手工调整。焊接自动化是指焊接过程自启动至结束全部由焊机的执行自动完成。无需操作工作任何调整,即焊接过程中焊头的位置的修正和各焊接参数的调整是通过焊机的自适应控制系统实现的。而自适应控制系统通常由高灵敏传感器,人工智能软件、信息处理器和快速反应的精密执行机构等组成。按照上述标准来衡量,我国锅炉,压力容器和管道焊接的自动化率是相当低的。极大多数仅实现了焊接生产的机械化。因此,为加速本行业焊接生产现代化的进程,增强企业的核心竞争力,应尽快提高焊接自动化的程度。按照当前中央提出的“以人为本”的理念。焊接自动化具有更深刻的意义。它不仅仅是提高了焊接生产率和稳定了焊接质量,而更重要的是使焊工远离了有害的工作环境,减轻或消除了职业病的危害。
以下列举几个在压力容器和管道制造中已得到实际应用现代化自动焊接装备实例。以说明其基本结构和功能以及在焊接生产中所发挥的作用。
1 厚壁压力容器对接接头的全自动焊接装备
德国Babcock-Borsig公司与瑞典ESAB公司合作于1997年开发了一台大型龙门式全自动自适应控制埋弧装备。专用于、厚壁容器筒体纵缝和环缝的焊接。自1998年正式投运至今使用状况良好,为了型厚壁容器对接缝的自动埋弧焊开创了成功的先例。
该装备配置了串列电弧双丝埋弧焊焊头,由计算机软件控制的ABW系统(Adaptive Batt Welding)和激光图像传感器。
在焊接过程中激光图像传感器连续测定接头的外形尺寸,测量数据通过计算机由智能软件快速处理,并确定所要求的焊接参数和焊头位置。也就是说每焊道的尺寸和焊道的排列是由系统的软件以自适应的方式控制的。
系统软件可调整每一填充焊道的4个焊接参数:焊接速度,焊接电流,焊道的排列和各填充层和盖面层的焊道数。因此,该系统可使实时焊接参数自动适应接头整个长度上横截面和几何尺寸的偏差。焊接速度是控制不同区域内的熔敷金属量,而焊接电流是控制焊道的高度和熔敷金属量。焊道的排列是决定每层焊道间的搭接量。每层的焊道数则取决于每层的坡口宽度。该设备的主控制器和监视器以PC机为基础。
多年的使用经验表明,该装备不仅大大提高厚壁容器的焊接生产率,而且确保形成无缺陷的厚壁焊缝,同时显著降低了焊工劳动强度,改善了工作环境。
2 厚壁管件全自动多站焊接装置
火力和核电站的主蒸汽管道,其壁厚已超过100mm,焊接工作量相当大,迫切需要实现焊接生产的全自动化,以提高生产率。每个焊接工作站由焊接操作机,翻转机构,滚轮架,夹紧装置和焊接机头及焊接电源等组成。所有的焊接工作站由中央控制器集成控制。适用的管径范围为139~558 mm,壁厚18~100 mm.管件长度大于1800 mm.可全自动焊接直管对接,直管与弯管接头,直管与法兰以及直管与端盖对接接头。焊接方法采用窄坡口热丝TIG焊。
在该自适应控制系统中,采用黑白摄像机检测坡口边缘的位置。采用彩色摄像机监控电弧和填充丝的位置。通过检则焊丝加热电流控制填充丝的垂直方向的位置。这种控制方法是利用黑白摄像机的图像,经过计算机图像处理,确定内外边缘的照度差。当焊接条件变化时,系统将自动调整摄相机快门的曝光时间。以达到给定的照度,使焊枪始终保持在焊接开始时调整好的位置。
壁厚管件全自动多站焊接装置基本上实现了焊接作业无人操作。只需要一名操作人员在主控制室内设置管件的原始条件并在焊接过程中进行监控。这种全自动焊接装置已在日本三菱重工公司投入生产试用。
3 大直径管对接全位置自TIG焊机
大直径管对接的全位置TIG焊是一项难度很大的焊接作业,培养一名技能高度熟练的焊工需要耗费大量的人力和物力,而且产品的焊接质量还取决于焊工自身多年积累的生产经验。为了克服对焊工技能的依赖性,消除人为因素对产品焊接质量的不利影响,产生了开发模拟高级熟练焊工的智能和操作要领的全自动焊管机的想法。
该自动焊管机可用于直径165—1000mm,壁厚7.0—35.0 mm的不锈钢管环缝的全位置焊,并采用窄间隙填丝TIG焊(单层单道焊工艺)。焊机的自动控制系统采用了视觉和听觉传感器,由计算机程序控制执行机构,模仿熟练焊工的反应和动作。
自适应控制和质量监控系统的作用原理为,自适应控制主要是通过视觉传感器实时检测的信息和计算机图像处理,按模糊逻辑规则,实时控制钨极相对于坡口边缘的位置,填充焊丝相对于钨极的位置以及决定焊接熔池尺寸的焊接参数。而焊缝质量的监控系统则按照激光视频传感器,听觉传感器和电流传感器的信息实时修正焊接熔池尺寸,焊道形状,钨极尖端的形状,电弧燃烧的稳定性和焊接电流,以保证焊缝质量的一致性。
在自适应控制系统中,安装在焊枪前侧的视觉传感器(摄像机)起主要作用,将所摄取的对接区图像输入到计算机,根据计算机软件图像处理结果,可以定量检测钨极相对于坡口边缘的位置,填充焊丝相对于钨极的横向位移,以及焊接熔池的尺寸及钨极的损耗。
激光视频传感器是由摄像机和激光聚光灯组成,安装在焊枪的后侧。所形成的图像可用来测定焊道边缘的润温角,即焊道表面与坡口侧壁之间的角度。控制系统根据这些信息,对焊接参数进行自适应控制。
中图分类号: TU391 文献标识码: A
引言:随着我国经济和科学技术的快速发展,我国的建筑行业已逐渐达到世界先进水平,在建筑钢结构的很多技术方面甚至已达到世界领先,然而建筑钢结构的焊接技术上仍然存在着一些不足和问题需要我们的探索与解决,同时也要对建筑钢结构焊接技术的发展趋势进行研究。
一、建筑钢结构概述
结构是建筑物的受力骨架,由基本构件和连接构成,工程应用中常见的梁、板、柱属于结构构件。钢结构 (steeltructure)是以钢材为主要材料构成建筑物的受力骨架,大型库房或者工业厂房中的变截面门式刚架 (portal fram e),多、高层建筑 (m ulti―storey and tall buildings)中的多跨多层框架,都属于平面结构体系。平面结构体系构造简单,传力明确,易于实现标准化、定型化,制作简单,安装方便,施工进度较快。大跨度房屋中的平板网架、网壳、高层建筑中钢框架 -支承结构、核心筒钢框架结构、钢管混凝土结构、型钢混凝土结构等均属于空间结构体系,空间结构体系形式多样,易满足使用功能和建筑造型要求,缺点是难于实现标准化、定型化,制作和安装难度大。建筑行业中建筑钢结构的应用有着基础性的作用,而建筑钢结构又是以钢结构的焊接技术为中心进行的,所以建筑钢结构的焊接技术和焊接材料关系着建筑行业的质量和发展水平。
.
二、建筑钢结构焊接技术现状
2.1 建筑钢结构焊接技术和焊接材料
在 20 世纪后,建筑钢结构的焊接技术经历了多个技术过度,由之前的焊条电弧焊的焊接到埋弧焊接,再由 70 年代出现的实芯焊丝以及药芯焊丝为材料的气体保护焊接技术和螺旋焊接技术,在这些焊接技术的基础上逐步发展出了现代化的建筑钢结构的焊接技术,使现代钢结构的焊接技术大大缩短了工期,提高了生产效率,为企业创造了更多的经济效益。但有时,建筑钢结构焊接不是仅仅采用一种焊接技术就能够完成,需要根据钢结构所采用的钢铁原料和焊接技术所需的原料相结合,采用多种焊接技术和工艺。
2.2 建筑钢结构焊接技术中焊接设备的应用
建筑钢结构的焊接还需要考虑焊接设备的应用,虽然我国钢结构的很多技术都已处于世界领先水平,但现阶段我国的钢结构焊接所采用的设备大都是由国外生产制造的,国内的建筑钢结构焊接设备相比,在技术性和自动化程度上远远低于国外的焊接设备,我国的建筑钢结构企业在努力学习国外的先进建筑钢结构焊接技术的同时,也在积极努力的研究探寻属于自己的更为先进的钢结构焊接技术设备。
2.3 焊接技术工作者的培养
在我国建筑行业蓬勃发展的今天,建筑钢结构所需要的焊接技术工作者也在与日俱增,也就难免会出现鱼龙混杂的情况。建筑钢结构的焊接技术有很强的专业性和复杂性,要求焊接人员有很强的技术性。虽然我国的焊接工作者很多,相应的焊接工作也能够得以顺利完成,但缺少真正优秀的焊接技术人员。因为建筑行业在我国的发展时间有限,所以与其他发达国家比起来,我国的焊接技术人员的培养、考核、认证制度还不够完善,管理和认证方式比较混乱,不能准确保持焊接人员的技术水平,也就使钢结构焊接存在着安全隐患和质量没有保证,不利于我国建筑钢结构焊接水平的整体提高。
三、 建筑钢结构焊接技术发展趋势分析
传统意义上的建筑钢结构焊接企业处于对自身发展的保障需求,势必需要在剧烈的市场竞争环境下,通过恰当且合理的技术改造与技术升级方式,谋求稳定的生存与发展。而实现这一要求的关键,即在于对建筑钢结构焊接技术的发展与推广。在此过程当中,需要重点关注以下几个方面的问题。
(1)需要逐步加大对高效焊接方法及建筑钢结构焊接工程实践的应用:
首先,需要相关工作人员不断针对焊接方法及焊接方式进行研究与完善,以提高焊接熔敷率为目的,加大对于15 k g/ h 单位以上,高效焊接技术方法的研究。与此同时,还可以通过对国外成功焊接方法(包括旋转喷射电弧高效焊接技术以及多丝焊接技术等在内)的引入方式,为自主技术的研制与成功应用提供一定的借鉴与经验;其次,可以通过适当控制接头焊接填充量的方式,一方面提高建筑钢结构焊接的工作质量,另一方面可提高工程应用中的经济效益。从当前技术发展趋势的角度上来看,应当将研究重点集中在对激光焊接技术以及氩弧激光焊接技术的应用方面;最后,需要从技术装备的角度上入手,在合理提升建筑钢结构持续焊接时间的基础之上,降低辅助操作时间。同样从现阶段的技术发展趋势上来看,需要重点关注的发展方向是:一方面,是以连续送丝为中心的自动焊接技术装备;另一方面是以成套性为主的高效焊接技术装备。
(2)需要逐步加大对于高效且优质焊接材料的开发与应用:
对于焊接材料的发展重点在于,研发与高效焊接技术相适应的,具备优越综合性能的自动焊丝、保护焊丝以及气电焊丝等。与此同时,结合我国现阶段建筑结构的用钢型号特点,需要将建筑钢结构用钢向着高强度、高耐火性、高纯净性以及高抗震性等多个方面发展。而高性能建筑钢结构焊接材料的规模性开发与应用也势必会在一定程度上推动建筑钢结构焊接技术的蓬勃发展。特别需要注意的一点是:伴随着建筑钢结构的进一步发展与完善,实芯C O2焊丝、药芯C O2焊丝、特种电渣焊材料以及气电焊焊接材料的使用总量势必会不断扩大的推升,由此也带动着上述建筑钢结构焊接材料的国产化发展与升级。
3)需要逐步加大对于焊接设备生产商的发展与进步:
独立的单纯性焊接设备生产商受到整个建筑钢结构焊接市场覆盖面较窄、在工作人员、作业资金以及应用技术等多个方面存在的缺陷问题影响,导致整个行业的发展前景不容乐观。为更好的建筑钢结构焊接技术的发展趋势相适应,需要在充分联合焊接材料以及焊接设备的基础之上,通过对现代化焊接技术工艺以及操作方式的有效综合,提高焊接设备生产商的综合性优势,为焊接技术的发展提供可靠驱动动力。
四、 完善建筑钢焊接工作人员考核制度
完善的制度和规范是对行业持续健康发展的保障,钢结构焊接工作者作为一种高技术工种,其资格认证的体系不严格,全国性统一的资格考试所包括的行业和领域较窄,缺乏统一专业的划分,不能很好的适用于现如今的建筑钢结构焊接行业,所以应建立完善的焊接工作者的考试资格认证系统。
五、结语
我国建筑行业虽然起点较低,相应的科学技术和专业的设备技能不够完善,但在近半个世纪的发展与学习中,不断的缩小与发达国家之间的差距,在某些技术上甚至已处于世界领先水平。但也需要清醒的认识到,我国建筑行业的基础和技术能力方面存在的不足,健全和完善焊接技术工作人员的培养考核制度,努力学习发达国家先进的焊接技术和理念,同时研究和发展具有自主知识产权的先进焊接技术,提高我国建筑行业的整体水平。
参考文献
中图分类号:TG434 文章编号:1009-2374(2015)21-0076-02 DOI:10.13535/ki.11-4406/n.2015.21.038
就我国现阶段的工业化发展情况来说,焊接广泛应用于多种材料的连接,而随着高新技术的不断发展,原来的传统焊接方式也转化为激光、电子束焊等先进的焊接技术。可以说,无论是在建筑行业,还是车辆、机械、医疗设备等方面,离开焊接技术是根本无法运转的。而随着与国外交流的增多,现代焊接技术已经有了异种材料的非金属材料的连接技术,而在产品表面设计方面也有了更好的创新制作方法,可以说,焊接技术的发展前景是非常光明的,焊接技术的未来充满了希望。
1 现代焊接技术的发展现状
近年来,经济带动了制造业的发展,焊接技术也随之有了极大的进步,焊接产品的效率也越来越高,而现在如何在保证产品质量的前提之下实现焊接生产自动化和智能化已经成为焊接行业的重要任务。现代高新技术比如说智能控制技术、图像处理与传感器技术等融入焊接技术,使得现代焊接技术有了更为切合时代潮流的
发展。
1.1 焊接生产自动化和智能化发展
焊接行业的智能化发展主要是体现在焊接智能机器人的发展,焊接自动化水平在一定程度上可以理解为焊接智能机器人的发展水平。目前使用最为广泛的焊接机器人是示教再现型,即由人工引导机器人末端执行器(安装于机器人关节结构末端的夹持器、工具、焊枪、喷枪等),或由人工操作导引机械模拟装置,或用示教盒(与控制系统相连接的一种手持装置,用以对机器人进行编程或使之运动)来使机器人完成预期的动作,由于此类机器人的编程通过实时在线示教程序来实现,而机器人本身凭记忆操作,故能不断重复出现。这就形成了焊接智能机器人的自动化焊接过程。
1.2 焊接工艺高速高效化
为实现焊接行业的进一步发展,需要优化现今的焊接工艺,将传统的焊接工艺转化为高速、高效、高质量的焊接工艺。而国内外也在焊接工艺的优化上投入了较多的精力,现今已经在活性化焊接工艺、多元气体保护焊接工艺上取得了不错的成效。而在焊接速度的研究也有了长足的进步,现今已经可以达到1.8m/min,大大提升了焊接产品的效率。而随着国外在数字化焊接电源和高新信息处理技术上的关注,中国市场也逐渐引入相关先进产品和技术。数字化焊接电源解决了原先较为刻板的刚性化控制,能够实现对焊接过程的柔性化控制以及多功能集成,而对焊接的精度、焊接过程系统的稳定性、产品的一致性、产品升级流程等方面都有更高的要求,能够对现代焊接技术的发展有更好的帮助,使得焊接工艺实现高速和高效化。
1.3 焊接质量的优化保证
对于焊接产品来说,最为重要的就是焊接质量,若是焊接质量不尽如人意,对于产品日后的使用寿命是非常有限制的,而焊缝跟踪技术对于控制焊接质量是非常关键的。在焊缝跟踪技术方面,焊接行业投入的比较多,也已经有了较为成熟的技术。比如说较为先进的熔滴过渡控制现今由于引入了数字化焊接电源,并且在系统上使用了先进的电子元件,使得对熔淌控制上更为得心应手,在这方面的应用上也丝毫不输于国外先进水平,这在焊接行业是非常重要的部分,是保证焊接产品质量的重要技术。
1.4 焊接技术现代先进发展
现代焊接技术随着与国外先进技术的不断交流与分享,已经达到一个较高的水准,以下笔者将以激光焊接为例阐述其优点与新进展。激光焊接技术属于熔融焊接的部分,它是以激光束为能源,直接冲击在焊件接头上,这种焊接方式对于确定焊件位置的要求是非常高的,需要极为精确,需要保证焊件位置在激光束的聚焦范围内。激光焊接的最大可焊厚度是有限制的,一般渗透厚度超过19mm的工件是不建议激光焊接的,不仅对于焊接技术有较大的困难,对于焊件产品本身也不容易有较好的焊接质量。此外,激光焊接具有高反射性及高导热性,焊接性很容易受激光所改变,当使用极高能量的激光束进行焊接时,需要使用等离子控制器将熔池周围的离子化气体驱除,以确保焊道的再出现,如此才能完成焊接过程。激光焊接在焊接技术上属于能量转换效率十分低,一般最高也只有10%左右,而且焊道在快速凝固的状态下,可能会有气孔及脆化的问题,特别是进行激光焊接所需的设备是较为昂贵的。为了消除或减少激光焊接的缺陷,使得焊接效率和焊接质量更高,焊接领域内先进工作者提出了一些较有建设性的意见,就是用其他热源与激光进行复合焊接,复合焊接的方式主要有激光与电弧、激光与等离子弧、激光与感应热源等,这种复合焊接的方式使得焊接能量转换效率更高,使得焊接质量更好,对于焊接技术的发展是极其有帮助的。
2 现代焊接技术的未来发展展望
现代焊接技术虽已经处于一个较为先进的发展水平,但仍是有发展之处的,展望未来,针对现代焊接技术面临的困难与任务,笔者有以下三点建议:
2.1 寻求解决焊接制约新材料的途径
焊接技术发展到一定水平后,开发新材料也逐渐进入了焊接领域工作者的视线,主要是从材料研制和焊接科技两方面来入手。先进的新材料对于焊接技术来说不一定是好的,它的可焊接性、材料的性能都是需要重新估量的,而往往材料的高性能和其可焊接性都是相互矛盾的。鉴于此种情况,为解决此矛盾,焊接行业工程师需要和材料研究工程师密切联系与合作,将新型材料纳入到焊接材料中去,使得焊接产品质量更好,焊接效率更高,焊接领域整体发展水平更上一层楼。
2.2 着力提高焊接产品质量
焊接产品的质量和焊接的质量是息息相关的,为了提高焊接产品的质量,需要从思想上消除焊接是制造焊接产品的薄弱环节的错误思想,在此基础上,焊接工艺工程师需要研究更好的焊接工艺,改善焊接工艺中的漏洞,进一步提高焊接质量,改善焊接产品的性能。
2.3 改善焊接领域整体环境
在大众的视野里,焊接领域一直是较为“脏乱差”的代表,这也阻止了更多的高素质人才迈入焊接行业发光发热,贡献自己的才华。而焊接行业需要注重自己的行业形象,尽可能减少烟尘、噪音、辐射等的影响,创造感觉整洁的整体焊接环境,这样的工作环境才能更具吸引力。而现代焊接行业对于焊接自动化的重视,及其焊接机器人的进一步投入研究,相信对于改变传统焊接行业的形象是十分有帮助的,也会有更多的年轻科技工作者愿意踏入焊接行业领域,让焊接行业有更好的
发展。
3 结语
在我国仍处于工业占主导行业的状况下,现代焊接技术对于工业的推动发展作用是不言而喻的。随着经济技术的发展,越来越多的研究者和科学家将重点放在了探究焊接新材料的角度上,这对于我们现今焊接行业的现状来说是非常值得期待的,是尚未深入接触过的领域,若是能在新材料上取得让国内外瞩目的研究成果,这将是焊接领域几十年来的一场革命。
参考文献
[1] 刘强.现代焊接技术发展的现状及前景[J].科技致富向导,2012,(2).
[2] 姚河清,陈亚政,孟庆芹.现代焊接技术发展的现状及展望[J].河海大学常州分校学报,2004,18(3).
引言:
压力容器在石油化工、能源工业、科研和军工领域等各个方面都有着重要的作用。压力容器的内部或者外部要承受来自气体或者液体的压力,需要较高的密封性来保证其使用安全,这样就对压力容器的焊接技术提出了高水平的需求。压力容器焊接自动化技术不仅可以提高焊接质量、减少事故发生,还可以提高人员利用率、改善劳动条件,在压力容器焊接工作中的应用有着十分重要的意义。
一、压力容器以及焊接自动化技术的简介
()一压力容器
压力容器一般泛指在工业生产中用于完成反应、传质、传热、分离和储存等生产工艺过程,并能承受压力载荷(内力、外力)的密闭容器,主要有圆柱形,也有球形或其他形状。随着化工和石油化工等工业的发展,压力容器的工作温度范围越来越宽,容量不断增大,有些还要求耐介质腐蚀。为了保证压力容器在使用过程中的安全性,根据压力容器的不同分类做出了等级划分,对于危险程度较大的压力容器提出了特殊要求。
压力容器在制造过程中要经历很多工序,其中焊接是非常重要的工序之一。对于不同的焊接工艺有不同的焊接方法,要根据材质、牌号、化学成分等具体情况来确定,之后再根据焊接方法制定相应的工艺参数。由于压力容器造成事故后危害十分严重,所以要有严格的安装检验要求,在制造、修理、安装和改造时,需要加强焊接管理,提高焊接质量并按规范要求进行热处理和探伤,同时加强材料管理,避免采用有缺陷的材料或用错钢材、焊接材料。
(二)焊接自动化技术
焊接是通过加热、加压,或两者并用,使两工件产生原子间结合的加工工艺和联接方式。焊接技术的自动化程度已经成为了衡量现代国家科学技术和工业发展水平的重要标志之一。焊接自动化是采用具有自动控制,能自动调节、检测、加工的机器设备、仪表,按照规定的程序或指令自动进行作业的技术措施。其目的在于增加产量、提高质量、降低成本和劳动强度、保障生产安全等。应用于现代的自动化技术主要是依靠计算机控制技术来实现的。焊接自动化技术是焊接结构生产技术未来发展的一个重要方向。现代焊接自动化技术将在高性能的微机波控焊接电源基础上发展智能化焊接设备,在现有的基础上发展柔性焊接工作站和焊接生产线,最终实现焊接计算机集成制造系统。焊接自动化系统主要分为电弧焊自动化系统、电阻点焊自动化系统、微型计算机控制的焊接自动化系统和焊接机器人。
二、压力容器焊接自动化技术的现状
压力容器焊接自动化技术主要受到硬件因素和软件因素两方面的影响。硬件因素是指压力容器自动焊接的相关设备;软件因素除了技术人员的素质外还包括将计算机技术、电子技术、自动控制技术以及信息技术等和压力容器焊接领域有机结合而形成的焊接技术、人工智能技术及专家系统等.。
(一)当前压力容器焊接自动化的设备
(1)逆变焊机
逆变焊机是目前国内外公认的最先进的焊机,是一种具有优良的焊接性能和电气性能的新技术和新工艺机具,可对压力容器的多位置使用不同的焊接方法进行焊接。逆变焊机在国外的应用程度较高,美国、日本已达到接近三分之一的程度。我国经过对逆变焊机的研究,目前已形成了三代产品,逆变频率最高在20~30kHz之间。由于逆变焊机的独特优势,发展前景十分良好。
(2)全位置自动焊机
我国曾经从瑞典等国家引进过全位置自动焊机,在国内一些锅炉厂进行使用。经过近年来的研究发展,我国自行研制出了多头埋弧自动焊机和多头MAG自动专用焊机,国内的许多锅炉厂已经使用上了国产的专用成套焊接设备。
(3)现代焊接机器人
现代焊接机器人具有效率高、质量稳定等优点,在压力容器焊接领域受到高度重视。焊接机器人采用离线CAD仿真编程,用计算机进行控制,大多是柔性自动化工作站或焊接生产线。随着科技的进步,焊接机器人在我国逐步的广泛应用,成为了未来焊接设备的发展方向。
(二)当前压力容器焊接自动化的技术
(2)焊接方法
对不同材质和不同厚度的压力容器进行焊接需要用到不同的焊接方法,常用的方法主要有气体保护焊、埋弧焊、堆焊和窄间隙焊:
气体保护焊电弧在保护气流的压缩下热量集中,焊接速度较快,熔池较小,热影响区窄,焊件焊后变形小,操作方便,有利于焊接过程的机械化和自动化;埋弧焊有焊接质量稳定、焊接生产率高、无弧光及烟尘很少等优点,使其成为压力容器、管段制造、箱型梁柱等重要钢结构制作中的主要焊接方法;堆焊技术有效的发挥了对焊层的作用,是一种优质、高效、低稀释率的堆焊技术;窄间隙焊接技术已成为现代工业生产中厚板结构焊接的首选技术,其巨大的技术和经济优势决定了它是今后厚板焊接技术发展的主要方向之一。
(2)焊接控制
焊接自动控制技术在国际范围内发展迅速,成为了现代焊接自动化的主要标志之一。已出现的一些现代高精度的自动控制系统,如最优控制系统、自适应控制系统及自学习控制系统等,在工业生产中得到了一定程度的应用。其中焊缝跟踪是焊接自动化控制系统的一个重要组成部分,对实现压力容器生产过程的焊接自动化意义深远。
三、压力容器焊接自动化技术的未来发展
我国压力容器焊自动化接技术正在逐步的广泛使用,总体技术水平相比于国际最高水平仍有一定的差距,在此方面的研究还有待深化。对压力容器焊接自动化技术未来的发展依然分为硬件和软件两方面来进行分析。
(一)硬件
大多数焊接过程都需要一种特定静态和动态性能的电源。未来的新型电源应具备高频化、智能化和网络化的特点,供能稳定,绿色环保。研制可用于自动化焊接过程新型电源是目前焊接设备的未来发展方向之一。
激光焊接是激光材料加工技术应用的重要方面之一。由于激光焊接设备价格昂贵,在压力容器方面应用很少。但激光焊接自动化程度高,功率大,应用范围广以及无污染的等优点仍然不可忽略,有待于进一步研究。
此外,对传统的焊接工艺设备进行智能改造,提高机械化和自动化水平,要加大焊接材料的研究力度,也亟需引进先进的科学技术,尽快与国际一流水平接轨。
(二)软件
将人工智能技术引入到焊接设备形成了焊接设备的智能控制系统,这一领域具有代表性的焊接过程是模糊控制系统、神径网络控制系统和焊接专家系统。未来的具有智能性的模糊控制和神经网络等手段可以渗透到焊缝跟踪控制中,以增强非线性系统控制的准确性。焊接工程中专家系统的建立成为了智能化焊接设备的研究基础。以焊接机器人为核心的柔性智能焊接自动化技术在将来也会得到广泛应用,焊接专家系统的普及已是国内外公认的发展方向。
总结:
压力容器焊接自动化技术涉及到了诸多领域,想要进一步的提高需要多门学科的密切合作综合利用。压力容器的制造材料在不断更新,焊接技术的自动化也需要随之进步,要充分的利用计算机技术、电子技术、自动控制技术以及信息技术实现焊接过程的高度自动化。对现有的焊接设备智能改造,提高技术人员素质,引进研发先进焊接技术,让压力容器焊接自动化技术迈入更高的层次。
参考文献: