时间:2024-02-01 15:35:20
引言:寻求写作上的突破?我们特意为您精选了4篇重金属对土壤的污染范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
[中图分类号] S158.4 [文献标识码] A [文章编号] 1003-1650 (2014)03-0049-01
人类活动和自然因素产生的污染物通过不同途径进入土壤,当其数量超过其自身的净化能力,污染物就会在土壤中逐渐积累,当达到一定程度时,土壤质量就会恶化,正常功能失调至某些功能丧失,这就是土壤污染。虽然土壤具有一定的自净能力,但其自净能力远远小于进入土壤污染物的速度,所以土壤的污染越来越严重。
土壤污染物种类繁多,其中发生最普遍、很难降解的其中一种就是重金属,重金属污染的重要来源就是工业“三废”的排放。重金属在土壤中以不同形态存在,有水溶态、交换态、碳酸盐结合态、铁锰氧化物的结合态、有机结合态和残渣态,它们的活性和毒性也是不同的。重金属在土壤中形态及其转化也受土壤多种性质的综合影响,土壤条件不同,起到主导作用的因素也会不同。例如土壤的质地、有机质含量、PH值、氧化还原电位、阴离子和阳离子的组成等。
重金属在土壤中并不能被微生物所分解,当达到一定浓度时易于累积,影响植物生长,造成重金属在农产品的积累,使叶绿素遭到破坏,叶绿素含量降低,叶片发黄,褪绿,减产,抑制发芽等,通过食物裢,人吃了有污染的蔬菜和粮食后,重金属在人体内就会慢慢积累,产生很大危害,因此我们必须及时防治,具体措施如下:
一、预防
重金属污染的防治贯彻以防为主的方针,控制和消除土壤污染源,控制工业和“三废”的排放,合理使用农药化肥农用薄膜等化学物质。
二、治理
对已经污染的土壤采取治理的措施,比如消除土壤中的污染物或降低有效必,控制污染物的迁移转化,提高土壤的环境容量等。综合近年来国内外采用的土壤治理方法,概括如下:
1. 工程措施:就是依据物理学或物理化学原理,通过工程手段治理污染土壤。具体有(1)客土、换土、翻土,每种方法都有其适用范围和条件。(2)隔离法,利用防渗材料把污染土壤与未污染土壤或水体分开,阻止减少污染扩散的一种方法。(3)清洗法,用清水或在清水中加入能增加重金属水溶性的某种化学物质,清洗污染土壤,将污染物移出土体的一种方法。(4)电化学法,这种方法是在用水饱和后的土壤中插入若干个电极,接通低强度直流电的方法。从上述可以看出,工程措施治理效果较为可靠,也是一种治本措施,但工程量大,投资高,肥力引起下降,只适于小面积重度污染区。
2. 生物措施;就是利用某些特定的动物、植物和微生物,较快地吸收和移走、或降解污染物质而使土壤得到净化的一类方法,比如植物技术、微生物技术、动物途径等,具有成本低不造成生态破坏或二次污染、具有潜在或显在的经济效益。
3. 施用改良剂:通过降低土壤污染物的水溶性、扩散性和生物有效性,从而降低它们进入植物体、微生物体和水体的能力,减轻对生态环境的危害。通过沉淀作用、吸附作用、拮抗作用来达到治理效果,此种方法效果好,且费用适中,在中度污染地区值得推荐。
中图分类号:S565.1 文献标识码:A DOI编码:10.3969/j.issn.1006-6500.2013.10.005
当土壤受到重金属污染后,土壤中重金属元素会通过各种途径进入人体,危害人类的健康。土壤受重金属污染后很难在短时间内消除,并可在食物链中富集,已经成为威胁人类健康的重大问题。许多研究表明,重金属元素进入土壤后,会产生明显的生物效应,一定浓度的重金属可导致植物特别是其根部中毒、植株枯萎死亡、产量降低等,而且植物的不同部位对重金属的吸收有效性也不一样。土壤重金属污染治理方法,具有快速高效的去污效果,但由于其价格昂贵和对土壤扰动大,从而限制了它的大面积应用。与传统的物理和化学修复方法相比较,植物修复在重金属污染治理中具有不可替代的优势,并以其治理过程的原位性、治理成本的低廉性、管理与操作的简易性及环境美学的兼容性,日益受到人们的重视,并成为污染土壤修复研究的热点之一。通过盆栽大豆,研究农作物对土壤中镉的富集、修复以及农作物的各部位对镉的富集程度。
1 材料和方法
1.1 试 剂
镉标准储备液:100 mg·L-1;混合酸(硝酸∶高氯酸 5∶1);双氧水(30%);硝酸;氢氟酸;以上试剂均为分析纯;试验用水均为去离子水。
1.2 主要仪器及工作条件
主要仪器:AA-7000原子吸收分光光度计(日本岛津公司);FA1604型电子分析天平;马弗炉。测定元素镉工作条件:灯电流为2.0 mA,分析线波长228.8 nm,光谱带宽0.2 nm,燃气流量1 300 mL·min-1。
1.3 样品制备
在校园空地取土,去除大块石子后分为6组,每组土壤总质量为6 kg。加入相同的营养成分(化肥含量相同),且用硝酸溶液完全溶解0,0.4,0.8,
1.2,1.6,2.0 g镉粉分别均匀浇灌I~VI组土壤中,制成6组不同浓度的含镉的系列土壤(I组空白对照组),并将每组分别置于5个塑料花盆(直径0.3 m,高度0.3 m)。选取饱满的大豆种子,种植于花盆内。各组每隔1 d分别浇0.5 L自来水。除镉溶液浓度外,各处理其他生长环境条件保持相同。
1.4 试验方法
采用火焰原子吸收分光光度法分别对播种大豆前、收获大豆后土壤中的镉含量,以及对不同镉含量土壤中生长的大豆根、茎、叶、大豆中的镉含量进行测定,得出大豆植株不同部位对镉的富集结果。
1.5 分析方法
1.5.1 标准曲线的绘制 将2.0 g·L-1镉标准储备液稀释,得到10.0 μg·mL-1的标准使用液,然后分别配制0.00,0.05,0.25,0.50,0.80,2.40,4.00 mg·L-1标准系列溶液。按仪器工作条件分别测定各元素标准系列溶液的吸光度值。以浓度值C(μg·mL-1)为横坐标,吸光度值A为纵坐标绘制标准曲线,得出回归方程和相关系数,回归方程为A=0.129 4x +0.003 6,相关系数R2=0.999 7。
1.5.2 土壤样品测量 将风干土壤样品过0.25 mm筛后装于塑料袋内,准确称取0.500 0 g(精确至0.000 1 g)栽培前和收获后的干燥土壤样品于50 mL具盖聚四氟乙烯坩埚中,用盐酸-硝酸-氢氟酸-高氯酸全消解法,彻底破坏土壤的矿物晶格,使试样完全溶解,测定其吸光度。
1.5.3 植物样品的处理及测定 采集大豆的根(去除土壤)、茎、叶和果实用自来水冲洗干净,然后用蒸馏水冲洗一遍,将清洗后的植物样置于通风干燥处风干,用研磨机打碎过0.25 mm筛,以备消解用。称取1.000 0 g植物样品于瓷坩埚内,用马弗炉在3 000 ℃条件下烘烤8 h,再移到聚四氟乙烯坩埚内,加少量去离子水润湿。加入10 mL 浓硝酸,移至低温电热板上加热消解;若反应产生棕黄色烟,说明有机质较多,须反复补加适量硝酸,加热分解至平静,不再产生棕黄色烟为止,取下冷却。加入5 mL氢氟酸,煮沸10 min,冷却;加入高氯酸5 mL,蒸发至近干;然后再补加高氯酸3 mL(根据取样适量补加),再次蒸发产生大量白色烟雾至近干;冷却后加入1%的硝酸溶液25 mL,煮沸溶解后,移至50 mL容量瓶中;加入1%的硝酸溶液定容得到样品溶液,测量其吸光度值。
2 结果与分析
2.1 栽培前后土壤镉含量
在对土壤加镉标准系列溶液处理后,测定土壤在栽培大豆植株前后的镉含量变化,见表1。由表1可见,各处理栽培后土壤中的镉含量明显比栽培前降低。
2.2 大豆各部位对镉的吸收和蓄积
对成熟大豆各部位的测定结果见表2。可以看出,大豆植物各部位对镉的吸收程度是不同的,其含量分布为根部>秸秆>叶部>果实。用含镉的溶液浇灌大豆各部位的镉含量均高于空白组(Ⅰ)。镉不是植物生长的必需元素,镉进入植物的过程,主要是非代谢被动进入植物体内。重金属一旦进入根内,就通过木质部分转移到其他组织。
2.3 镉含量测定结果及精密度
在置信概率P=95%的条件下,VI组大豆植株中根茎的测量结果为(119.1±0.3) mg·kg-1,叶子的测量结果为(24.02±0.24) mg·kg-1,豆子的测量结果为(7.49±0.11) mg·kg-1,样品中含量值最大相对标准偏差(RSD)小于5.0% ,结果精密度较为满意。
3 结论与讨论
大豆的各部位对土壤中镉的吸收具有很强的特异性,对土壤中镉吸收由强及弱分别为根、茎、叶部及豆子。这一特征揭示,大豆根可以作为一种屏障或过滤器,来阻止镉进一步向植株叶子和果实中迁移,从而减少其毒害效应。大豆茎中镉含量比果实中的含量高,说明除根系外,秸秆也是阻碍镉进入果实的二次重要屏障。由于根系、茎和叶主要由植物纤维组成,而果实的主要成分是淀粉,吸收主要残留在纤维中,而淀粉对镉的蓄积作用较弱。空白试验表明,大豆植株根系、茎能够有效降低土壤中重金属的含量。因此,从另一角度来说,大豆植株对受重金属镉污染的土壤具有一定的生物修复作用。
参考文献:
[1] 曾祥峰,王祖伟.城市污泥中镉的去除试验研究[J].天津农业科学,2011,17(1):117-119.
[2] 张欣.3种微生物制剂对轻度镉污染土壤中菠菜生长的影响[J].天津农业科学,2011,17(1):81-83.
[3] 文晓慧,蔡昆争,葛少彬,等.硅对镉和锌复合胁迫下水稻幼苗生长及重金属吸收的影响[J].华北农学报,2011,26(5):153-158.
[4] 华珞,刘秀珍,夏立江,等.土壤对铜、镉、铅、氟的吸附及改良剂对土壤-植物系统中养分元素有效性的影响[J].华北农学报,1994,9(1):57-62.
[5] 孙光闻,朱祝军,方学智.镉污染土壤对小白菜生长及镉和养分含量的影响[J].华北农学报,2011,26(Z1):60-63.
[6] 宋玉芳,许华夏,任丽萍,等.土壤重金属污染对蔬菜生长的抑制作用及其生态毒性[J].农业环境科学学报,2003,2(1):13-15.
[7] 陈燕,刘晚苟,郑小林,等.大豆植株对重金属的富集与分布[J].大豆科学,2006,14(6):93-95.
中图分类号:X825
文献标识码:A文章编号:16749944(2017)12001203
1引言
随着金属及化工行业快速发展,农药及化肥的广泛使用,土壤重金属污染日趋严峻[1]。重金属易通过食物链在动植物和人体内富集,对环境和人体健康构成威胁。同时,重金属会直接影响土壤动植物的生长,进而影响土壤物质循环和能量转化[2]。对土壤生态毒理诊断过去更多是利用土壤基础呼吸强度及酶活性、微生物数量和种群、大中型土壤动物、蚯蚓等指标[3],但由于不同地区的土壤类型各异、土地利用方式不同,且污染物种类和污染程度不同,现有的理化和生物指标在反映重金属污染方面存在着片面性和不确定性。因此,准确、全面评价土壤质量还需要不断完善评价指标。
土壤动物群落是土壤的重要组成部分,也是食物网稳定的关键因素,同时,作为土壤质量的潜在指示者,其重要性得到越来越多的关注[4,5]。其中,土壤线虫作为土壤动物的一部分,是生态系统重要的分解者,也是食物网流通的关键环节。线虫以多种方式改变着土壤的理化性质和生物学特性[6],而土壤健康状况与线虫的数量和群落多样性直接相关。土壤线虫通过共生、竞争或捕食等方式相互依存,构成土壤群落的动态平衡,一旦土壤环境发生改变,线虫作为敏感的指示动物会快速响应,并导致其它级联反应,甚至破坏动物种群间的平衡,降低其土壤功能而影响整个土壤生态系统稳定性[7]。因此,利用土壤线虫作为土壤重金属污染的指示生物具有重要的理论和现实意义。
2线虫在土壤生态系统中的作用
2.1土壤线虫的分类
线虫主要栖息在土壤毛细管水中,按其取食习性和食道特征可分为四个主要类群[8]:植食线虫(Plant feeders)、食细菌线虫(Bacterial feeders)、食真菌线虫(Fungal feeders)和捕食/杂食线虫(Omnivorous & Carnivorous)。植食线虫主要取食植物根系,可直接或间接地影响菌根、根瘤的形成和固氮等作用;食细菌类线虫主要取食细菌,可指示细菌活性,对土壤氮素矿化的贡献为8%[3];食真菌类线虫以多种真菌为食,与真菌的相互作用可促进土壤氮素矿化[9]。食细菌线虫和食真菌线虫共称为食微线虫,是初级分解过程中最为丰富多样的消费者。食微线虫可通过取食细菌、真菌等微小生物,影响微生物的生长和新陈代谢活动,改变微生物群落结构,从而调节有机物的分解速度与养分的周转速率[10];捕食/杂食类线虫主要以线虫、线虫卵和原生动物为食,对调控土壤植物寄生线虫的数量和中小动物的危害有一定的积极作用[11]。食细菌线虫、食真菌线虫和捕食/杂食线虫统称为自由生活线虫,这类线虫能够促进土壤有机质分解,增强营养物质的矿化,提高土壤肥力,改善土壤理化形状、疏松土壤。
2.2土壤线虫在土壤食物网中的功能
土壤线虫在食物网中占据多级生态位,对于维持土壤生态系统的稳定、促进物质循环和能量流动具有重要意义[12]。线虫可以通过代谢活动改善土壤微环境,例如,促进有机质的分解和改善周围土壤的理化性质及生物学特性,改变土壤孔隙空间和团聚体大小,提高微域的稳定性,对整个土壤生物体系起到功能性的调控作用,有效提高养分利用率。其中,食微线虫还可以通过取食细菌和真菌影响微生物群落的组成,增加微生物活性,促进养分流通[13],进而促进土壤中碳、氮的周转。有些食微线虫还可以通过调控土壤细菌和真菌群落达到抑制病害的目的[14];Fu等[10]研究认为线虫能够携带并传播土壤微生物,调节有机复合物转化为无机物的比例;Neher[15]认为线虫排泄物可贡献土壤中19%的可溶性氮。
3土壤线虫作为环境指示生物的优势
线虫是农田土壤中多样性最为丰富的土壤动物[4, 16],与其它土壤生物相比,线虫作为土壤生态系统健康状况的指示生物有以下几方面优势:①线虫是土壤的优势生物类群,在所有农田土壤中普遍存在,无论土壤健康或污染,均有线虫的分布,且不同种线虫可以反映土壤环境的细微变化[17];②线虫从土壤中分离方法相对简单,且分离方法成熟、分离效率高;③其科、属鉴定相比其它土壤动物而言更为简单,且其科、属水平的群落结构分析可用于土壤健康状况的评估[18];④线虫是典型的水膜动物,与土壤环境直接接触且移动速度慢,可反映小尺度土壤微域的变化;⑤世代周期短,一般为数天或几个月,可在短时间内对环境变化作出响应[9];⑥形态特征与趋势特性相对应,食性丰富多样,在土壤食物网中扮演重要角色,其营养类群结构的变化与土壤生态系统过程联系紧密[5, 19]。因此,线虫作为土壤健康指示生物受到广泛关注,并在农田、草地、森林等生态系统中得到应用。
目前关于线虫指示生态毒理学的研究,包括利用单一模式线虫秀丽隐杆线虫(Caenorhabditis elegans, C. elegans)和线虫群落展开。C. elegans作为线虫的代表,是生态毒理学室内实验和现场研究中应用较多的线虫种类[20]。2002年,美国材料与试验协会标准(American Society for Testing and Materials, ASTM)颁布了将C. elegans用于土壤毒性评价的标准化指南,表明利用单一线虫进行标准化毒性测试以评估环境污染物的影响已得到初步肯定[21]。同时,线虫群落作为土壤食物网的一部分,占据多个营养级,更能反映土壤生物群落数量、组成及多样性的变化,对指示土壤环境污染更具优势[17, 19, 22]。将线虫划分为不同的营养类群并计算相关群落指数,可直接反映土壤食物网结构的变化及土壤健康状态。自20世纪80年代起,线虫群落组成结构就被作为指示生态系统变化的生物指标,最常用的线虫群落指标包括:线虫群落总数、各营养类群数量、富集指数(EI)、结指数(SI)、成熟度指数(MI)、多样性指数(H’)、线虫通路比值等(NCR)[3]。
4.1模式线虫C .elegans对土壤重金属污染的指示作用
C. elegans使生命科学及毒理学等领域许多复杂问题得以简化[23]。与其它模式生物相比,C. elegans具有易于培养、繁殖速度快、试验周期短的优点。目前,C. elegans对重金属污染具有一定的指示作用,主要集中于对种群繁殖和死亡的影响,包括致死率(Lethality)、最长寿命(Maximum lifespan)、半数致死天数(Mean lifespan)、细胞凋亡(Apoptosis)、个体发育(Development)和生殖(Reproduction)等指标,其中,致死率已成功用于评估重金属的急性毒性和致死效应[24]。杨慧敏等[25]对多代筛选的耐铜型C. elegans进行了生物学指标的研究,以期阐明铜(Cu)对C. elegans长期作用的毒性效应。结果表明耐铜型与野生型C. elegans相比,其寿命缩短、衰老提前、个体发育受到抑制,且出现繁殖率降低、生殖能力减弱、运动行为存在障碍等一系列生理变化。王大勇等[26]利用C. elegans对铬(Cr)暴露导致的多重毒性及其在世代间的可传递性进行了研究,发现Cr能够导致线虫出现多种表型和行为缺陷,低浓度Cr暴露可影响线虫发育、生殖与寿命,而高浓度Cr暴露会影响运动行为与行为可塑性。
4.2线虫群落对土壤重金属污染的指示作用
根据线虫不同的生活史策略,可将线虫划分为不同c-p(colonizer persister)类群:k策略者体型较大,可适应稳定的环境;而r策略者能够快速增长,可适应多变的环境[27]。Shao等认为线虫c-p类群能反映环境压力,c-p较高的类群能很好地指示重金属污染[28]。为研究土壤线虫群落结构对电子垃圾污染区重金属的响应,王赢利等[29]采集了8块稻田的土壤样品,结果显示,土壤线虫c-p2类群的比例随着重金属污染程度的增加而增加,而c-p3类群与之相反,认为线虫群落数量和结构可作为评价电子垃圾重金属污染的生物指标。Nagy等[30]利用石灰质的农田黑钙土壤,研究了镉、铬、铜、硒和锌污染对土壤线虫的长期影响,发现当重金属污染物浓度达到90和270 mg/kg时,线虫密度显著减少。白义等[31]发现重金属严重污染区土壤动物的数量和类群数量稀少,而轻度污染区土壤动物的密度大、群落多样性高,稀有类群大量出现。表明土壤线虫多样性构成能够准确响应重金属污染,同时对污染物浓度有一定的指示作用。
4.3群落生态指标对土壤重金属污染的指示作用
土壤线虫的富集指数(Enrichment Index, EI)和结构指数(Structure Index, SI)可直观反映土壤线虫与土壤肥力的关系以及环境干扰程度[20]。EI主要用于评估食物网对可利用资源的响应,SI可以指示土壤在受到干扰及恢复过程中食物网结构的变化[32]。土壤线虫的成熟度指数(Maturity Index, MI)是土壤重金属污染的有效指标,随着土壤受干扰程度的增加而降低[8]。线虫通路比值(Nematode Channel Ratio, NCR)为食细菌线虫与食微线虫数量之比,可用于指示土壤有机质的分解途径,NCR值为0表示土壤有机质分解完全依靠真菌分解途径;若值为1,则完全依靠细菌分解途径[17]。香农-威纳尔多样性指数(Shannon-Wiener index, H’)可响应环境变动,能为土壤受扰动提供有效的关键信息。Gyedu-Ababio等[33]研究发现,线虫丰度、H’和群落结构可响应重金属金属污染(Zn、Cu、Pb、Fe)。华建峰等[34]对矿区不同砷(As)污染程度土壤线虫群落结构特征进行了研究,发现低浓度As和中浓度As土壤的自由生活线虫成熟度指数(IM)显著高于高浓度As土壤,但植物寄生线虫成熟度指数(IPP)和IPP/IM比值则表现出相反的趋势,认为高As土壤的食物网受到As污染的干扰较大,群落环境质量较差。Nagy等[31]认为硒还会使线虫在属水平上的H’降低,SI随土壤中重金属浓度的升高而降低;研究还指出,MI和SI的同步使用是应用线虫群落指示土壤重金属污染的值得推广的方法。
5结论和展望
综上所述,线虫作为指示生物具有生命周期短、分离、计数和鉴定简单等优点,对环境质量及重金属污染状况具有重要的指示作用。自20世纪后期,越来越多的研究开始使用线虫群落组成结构作为陆地生态系统环境变化的生物指标,且随着多种群落指数和方法的不断更新,这些方法在反映土壤环境受扰动和外界因素影响方面起到重要作用。然而,不同地区由于其土壤结构、污染物类型以及当地土壤线虫的特殊习性不同,现有的指标仍存在片面性,其指示作用也具有一定局限性。因此,综合模式线虫以及线虫群落结构的各项指标共同指示土壤健康状况,同时建立和完善新方法是一项亟待解决的任务。进一步开发和深入研究线虫的生物指示作用,用于土壤污染的检测,使之成为环境生态毒理诊断中最为有效的检测方法之一。
2017年6月绿色科技第12期
参考文献:
[1]
毛雪飞, 吴羽晨, 张家洋. 重金属污染对土壤微生物及土壤酶活性影响的研究进展[J].江苏农业科学, 2015, 43(5):7~12.
[2]梁文举, 闻大中. 土壤生物及其对土壤生态学发展的影响[J]. 应用生态学报, 2001, 12(1):137~140.
[3]张薇, 宋玉芳, 孙铁珩, 等. 土壤线虫对环境污染的指示作用[J]. 应用生态学报, 2004, 15(10):1973~1978.
[4]邵元虎, 傅声雷. 试论土壤线虫多样性在生态系统中的作用[J]. 生物多样性, 2007, 15(2):116~123.
[5]小云, 刘满强, 胡锋, 等. 根际微型土壤动物――原生动物和线虫的生态功能[J]. 生态学报, 2007, 27(8):3132~3143.
[6]戈峰. 现代生态学[M]. 北京:科学出版社, 2008.
[7]戚琳, 刘满强, 蒋林惠, 等. 基于根际与凋落物际评价转Bt水稻对土壤线虫群落的影响[J]. 生态学报, 2015, 35(5):1434~1444.
[8]Bongers T, Ferris H. Nematode community structure as a bioindicator in environmental monitoring[J]. Trends in Ecology and Evolution, 1999, 14(6):224~228.
[9]李辉信, 毛小芳, 胡锋, 等. 食真菌线虫与真菌的相互作用及其对土壤氮素矿化的影响[J]. 应用生态学报, 2004, 15(12):2304~ 2308.
[10]Fu SL, Ferris H, Brown D, et al. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size[J]. Soil Biology and Biochemistry, 2005, 37(11), 1979C1987.
[11]尹文英. 中国土壤动物[M]. 北京:科学出版社, 2000:180~182.
[12]凌斌, 肖启明. 土壤线虫在食物网中的作用[J]. 安徽农学通报,2008, 14(11):39~40.
[13]李琪, 王朋. 开放式空气CO2浓度增高对土壤线虫影响的研究现状与展望[J].应用生态学报, 2002, 13(10):1349~1351.
[14]Kimpinski J, Sturz A. Managing crop root zone ecosystems for prevention of harmful and encouragement of beneficial nematodes [J]. Soil and Tillage Research, 2003, 72(2):213~221.
[15]Neher D A. Role of nematodes in soil health and their use as indicators [J]. Journal of Nematology, 2001, 33(4):161~168.
[16]李琪, 梁文举, 姜勇. 农田土壤线虫多样性研究现状及展望[J]. 生物多样性, 2007, 15(2):134~141.
[17]Yeates G W. Nematodes as soil indicators: Functional and biodiversity aspects [J]. Biology and Fertility of Soil, 2003, 37(4):199~210.
[18] Ritz K, Trudgill D L. Utility of nematode community analysis as an integrated measure of functional state of soils:Perspectives and challenges [J]. Plant Soil, 1999, 212(1):1~11.
[19]Ferris H, Bongers T, de Goede RGM. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept [J]. Applied Soil Ecology, 2001, 18(1):13~29.
[20]R丽娟, 李国君, 马玲, 等. 秀丽隐杆线虫在生态毒理学评价中应用研究进展[J]. 毒理学杂志, 2015, 29(1):60~65.
[21]张靖楠, 李琪, 梁文举. 土壤线虫生态毒理学研究现状及展望[J]. 生态毒理学报, 2009, 4(3):305~314.
[22]戚琳, 陈法军, 刘满强, 等. 三种转Bt水稻短期种植对土壤微生物生物量和线虫群落的影响[J]. 生态学杂志,2013, 32(4):975~980.
[23]张燕芬, 王大勇. 利用模式动物秀丽线虫建立环境毒物毒性的评估研究体系[J]. 生态毒理学报, 2008, 3(4):313~ 322.
[24]Roh J Y, Lee J, Choi J. Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: A potential biomarker for metal- induced toxicity monitoring and environmental risk assessment[J]. Environmental Toxicology and Chemistry, 2006(25):2946~2956.
[25]杨慧敏, 韩焱, 宋少娟,等. 铜对秀丽隐杆线虫毒性效应的研究[J]. 四川动物, 2012, 31(2):236~239.
[26]王大勇, 胡亚欧, 许雪梅. 铬暴露导致的秀丽线虫多重毒性的世代间比较[J]. 生态毒理学报,2007, 2(3):297~303.
[27]Bongers T, Bongers M. Functional diversity of nematodes[J]. Applied Soil Ecology, 1998, 10(3):239~251.
[28]Shao Y H, Zhang W X, Shen J C, et al. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine [J]. Soil Biology and Biochemistry, 2008, 40(8):2040~2046.
[29]王赢利, 王宏洪, 廖金铃, 等.电子垃圾拆解地重金属污染对稻田土壤线虫群落结构的影响[J]. 农业环境科学学报, 2015, 34 (5):874~881.
[30]Nagy P, Bakonyi G, Bongers T. Effects of microelements on soil nematode assemblages seven years after contaminating an agricultural field[J]. Science of the Total Environment, 2004, 320(2-3):131~143.
[31]白义, 施时迪, 齐鑫, 等. 台州市路桥区重金属污染对土壤动物群落结构的影响[J]. 生态学报, 2011,31(2):421~430.
[32]李玉娟, 吴纪华, 陈慧丽, 等. 线虫作为土壤健康指示生物的方法及应用[J]. 应用生态学报, 2005 ,16 (8):1541~1546.
[33]Gyedu-Ababio T K, Baird D. Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment[J]. Ecotoxicology and Environmental Safety,2006, 63(3):443~450.
[34]A建峰, 林先贵, 尹睿, 等. 矿区砷污染对土壤线虫群落结构特征的影响[J]. 生态与农村环境学报, 2009, 25(1):79~84.
Advances in Biological Instructions of Nematode on Soil Heavy Metal Pollution
Qi Lin1, Han Chenghui1, Song Xiuchao2, Zhang Ruimin1, Guan Ying1
(1.School of Environment and Ecology, Jiangsu Vocational College of Cities, Nanjing 210019, China;
随着工业飞速发展,人口剧增以及城市化进程的加快,人类活动导致土壤环境中重金属污染日益严重。土壤环境中重金属污染不仅抑制农作物生长发育降低产量,而且降低其卫生品质。土壤中重金属经农作物如蔬菜吸收通过食物链最终危害人体健康。目前,修复土壤重金属污染具体措施主要有化学固定、土壤淋洗、热脱附、蒸汽萃取、动电修复,生物修复和农艺措施等。化学固定常用有无机和有机改良剂,因其成本低,实施容易常被利用。本文以蔬菜作为研究对象,就不同改良剂对土壤重金属污染的原位修复效果进行探讨,期望明确不同改良剂对土壤环境中重金属污染的钝化效应,选择生产上适用的改良剂品种。
1 材料与方法
供试土壤重金属改良剂(处理):试验一是硫磺(0.167g•盆-1)、钙镁磷(20g•盆-1),试验二是石灰(750k g•hm-2)、厩肥(29500 kg•hm-2)、硫化钠(15 kg•hm-2),试验三和四硫磺(30 kg•hm-2)、二硫化碳(30kg•hm-2)、十二硫醇(120kg•hm-2),以上试验均以不施改良剂为对照。
供试重金属试剂:试验一盆栽每盆添加6.1mgCdCl2•2.5H2O,600mgAs2O3,1597.44mgPb(NO3)2。
供试蔬菜:按试验一至四(表1至3)顺序依次是上海青、芥蓝菜、空心菜、白萝卜。
供试土壤:试验一土壤为菜园土,基础肥力是pH7.0,有机质17.9g•kg-1,全N1.0g•kg-1,碱解N94. 0mg•kg-1,速效P109.9 mg•kg-1,速效K139mg•kg-1,每盆装风干土10kg。试验二土壤为菜园土,基础肥力pH6.6,有机质22.6 g•kg-1。试验三土壤为灰红黄泥土,基础肥力pH4.4,有机质40.2 g•kg-1,全N 2.36g•kg-1,全P 3.48g•kg-1,全K 20.4g•kg-1,碱解N 295mg•kg-1,速效P 517.8mg•kg-1,速效K 332mg•kg-1。试验四为灰红黄泥土,基础肥力pH5.61,有机质20.7 g•kg-1,碱解N 131mg•kg-1,速效P 111.6 mg•kg-1,速效K 198mg•kg-1。
试验一为盆栽,塑料盆直径38cm,高14cm,试验二至四为田间试验,小区面积依次为28m2、12 m2、20 m2,均设3次重复,随机排列。改良剂全做基肥施用,同一个试验管理措施基本保持一致。在蔬菜收成时测产,分别取土样,菜样送检。土壤有效态重金属,用pH7.3的DTPA-CaCl2-TEA浸提剂浸提,并经离心过滤。As分析用二乙基二硫代氨基甲酸银分光光度法,Cu、Pb、Cd分析用原子吸收分光光度法,Hg采用冷原子吸收分光光度法。
2 结果与分析
2.1不同改良剂对蔬菜经济产量与农艺性状的影响
在四个试验中除一个盆栽试验(见表1)加改良剂硫磺和钙镁磷后上海青蔬菜的株重分别提高了27.5%、42.6%,经方差分析差异达显著与极显著水平外,其余三个田间试验(见表2一3)蔬菜产量增减产经方差分析差异均未达到显著水平。盆载上海青蔬菜农艺性状考察结果(见表1)表明,施硫磺和钙镁磷后上海青蔬菜的株高,开展度,最大叶面积均有提高趋势。可见,在网室盆栽,人工可控条件下,添加两种改良剂明显促进蔬菜生长,显著提高蔬菜产量。但在田间条件下,可能由于其他不确定条件的冲淡作用,施加改良剂后蔬菜产量基本保持平产水平。
2.2不同改良剂对土壤环境―蔬菜植株系统中重金属迁移、转化、累积的影响
施石灰、厩肥、硫化钠三种改良剂(见表2)促进土壤环境中Cu、Pb、Cd、As等四种重金属的形态向无效态转化,有效态含量均有明显下降,每公顷施750Kg石灰后土壤有效态Cu、Pb、Cd、As浓度分别下降21.1%、48.6%、11.6%、27.7%;每公顷施29500kg厩肥后土壤有效态Cu、Pb、Cd、As浓度分别下降11.0%、2.9%、4.3%、3.8%;每公顷施15Kg硫化钠后土壤有效态Cu、Pb、Cd、As浓度分别下降12.6%、34.3%、14.5%、3.0%。由此可见上述三种改良剂有明显钝化土壤环境中Cu、Pb、Cd、As等重金属的作用。
一般认为,作物受害程度与体内重金属含量不与土壤中该元素总浓度相关,而与该元素在土壤中有效态的浓度相关性甚佳。生物迁移是通过植物根系从土壤中吸收有效态重金属,并在植物体内累积起来的过程。由于施改良剂后土壤环境中有效态重金属含量下降,放缓了其在土壤――蔬菜系统中扩散、迁移,蔬菜可利用性降低。因此,加施改良剂后蔬菜中As、Pb、Cd、Hg等重金属含量普遍下降或有下降趋势(见表1-3)。每盆施20g钙镁磷后上海青蔬菜的As、Pb、Cd含量分别比对照下降52.5%、42.2%、32.0%,经方差分析差异达显著或极显著水平;每公顷施750kg石灰后芥蓝菜的Cu、Pb、Cd、As含量分别下降22.3%、50.0%、23.1%、44.0%;每公顷施29500kg厩肥后芥蓝菜的Cu、Pb、Cd、As、Hg含量分别下降14.9%、40.3%、7.7%、32.0%、6.3%;每盆施0.179g硫磺后上海青蔬菜的As、Pb、Cd含量分别下降42.5%、40.2%、52.0%,经方差分析差异均达到极显著水平;每公顷施30Kg硫磺后空心菜Pb含量下降32.1%,白萝卜As、Pb、Cd含量分别下降29.1%、67.4%、14.0%,其中As、Pb含量差异经方差分析达极显著,Cd含量差异不显著;每公顷施15kg硫化钠后芥蓝菜Cu、Pb、Cd、As含量分别下降31.0%、35.5%、23.4%、48.0%;每公顷施30kg二硫化碳后菜体中As、Cd、Pb元素含量,空心菜分别下降20.0%、16.7%、21.4%;白萝卜分别下降17.0%、20.5%、5.4%,Cd含量经方差分析差异达显著水平;每公顷施120kg十二硫醇空心菜Pb含量下降32.1%、白萝卜As、Pb、Cd含量分别下降44.7%、75.5%、20.5%,经方差分析As、Pb含量差异达极显著水平,Cd含量差异达显著水平。