水循环简述范文

时间:2024-02-20 14:41:58

引言:寻求写作上的突破?我们特意为您精选了4篇水循环简述范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

篇1

前言

高炉软水密闭循环冷却系统是当前国内外较为广泛使用的一种高炉冷却设备,利用软水循环进行冷却可以有效清除结垢,冷却效果良好,可以有效满足提高高炉使用寿命和冷却设备的使用寿命。然而,如果该系统出现泄漏或者由于局部过热而出现气塞现象而发现得又不够及时的时候,通常容易造成冷却设施破损程度加大,同时会影响高炉的寿命和生产能力,造成经济损失和安全隐患。因此,人们进一步研究并发展出了高炉软水密闭循环系统的检漏技术。

1 冷却系统水流特征

高炉软水密闭循环系统在结构上可以看做是将一定数量的阻损条件相同的管道并联到两个等压位之间,在正常条件下,每个管道的入口流量相同,但是一旦某个管道出现泄漏或者气塞是就会出现异常现象。当某一管道发生气塞时,该管道入口流量将会大幅减少,而且流量大小和气塞程度成正比,气塞的阻力足够大时会出现管道断水显现,即该入口的流量降为零。如果不能及时检测到这种情况并且进行处理,就会造成设备损坏,发生泄漏事故,可以说,气塞故障是设备设备出现烧坏和泄漏的根本原因。而当管道发生泄漏故障时,管道入口的流量就会大幅增加,并且出口流量大幅降低。在漏阻一定的条件下,出、入口水流量的变化也会随着泄漏点位置的改变而不同。试验结果显示,泄漏点越往下游,入口流量增加越快,而出口流量减少越慢。泄漏点位置保持不变的条件下,烧坏情况越严重,漏阻越小,出、入口水流量的减小都会更加明显,相反,漏阻越大,出、入口水流量的变化越小。另外,高炉内的压力或者是热风压力也会对泄漏事故造成很大影响。炉压减小则泄漏量增大,炉压为零时泄漏量就会出现明显增加,并且泄漏量会随着泄漏位置的下移和炉压的降低变化幅度出现增大的趋势。因此,当系统出现泄漏并且需要进行休风处理时应当关闭泄漏管道或者是降低水压,减少泄漏到高炉内的水流量,否则会造成泄漏流量大幅增加,给高炉的生产和安全性带来极大威胁。

2 检测探头和显示仪器

专用的检测探头内设有一微型铂热电阻片用来测量温度。由于理论上尚且很难做到准确确定管道中的平均流速点,但是满流的管道中流速关于管周线对称,所以采取在同一截面直径上取两个平均流速点的方法,并将毕托管改为匀速毕托管,从而得到管道内流量的理论公式。这种探头称为复合式探头,其有几个明显优点,简单、高效、稳定,有比较高的测量精度和重现性,并且抗热和抗电磁干扰的能力很强,阻力好,环境适应性强。同时由探头检测出的信号为热电阻信号和压差信号,经过转换器转换成标准电信号后可以用显示仪显示出相关数据以表示出测定结果,这种显示仪器称为智能型数码显示流量温度仪,其显示结果一般每个三十秒进行一次循环显示。

3 便携式检漏

出于节省资金的目的,可以采用一种比较简便的测漏方法。在软水冷却系统的每根管道的入口和出口处各安装上便携式检漏仪的检测探头插入孔,在需要检漏的时候直接将探头插入插入孔,然后检测入口和出口的水流量,根据两端水流量的差值就可以确认相关的故障。经过逐段检测就可以确定管道泄漏的位置。通常情况下高炉炉身中上部的冷却壁并不容易发生破损,只是炉身下半部的冷却壁容易出现烧坏,所以仅需要对管道的入口水流量进行检测就可以找到故障管道。当管道的水流量出现明显的增加或者减少的情况就能认为是出现泄漏或者是气塞故障,需要及时进行处理。当管道的水流量与平均值相差不大时可以认为该管道运行正常,不需要再对出、入口处的水流量检测以简化操作。通常情况下大部分管道的入口水流量是基本相等,但是会有小部分管道的入口水流量稍小,这是正常情况,这是由于每根管道的阀门的开放程度是不同的。

这种便携式的检测方法简单实用,方法科学有效,能够很好地进行系统检漏的工作,是新技术开发的基础,也推动了增加高炉服役期限的技术的开发。然而,由于高炉规模比较大,冷却系统的管道数量比较多,这种便携式的检测方式就会显得效率低下,因此结合计算机技术进行大规模自动检测已经成为一种趋势。与计算机相结合既可以节省劳动力,而且自动化程度高,能够自动记录数据形成数据表、图表以及各种曲线图等,能够为更多的检测和预测方法提供可能。

4 高炉冷却壁的破损分析

通常高炉冷却壁有四种破损情况,侵蚀磨损:冷却壁被侵蚀或者镶嵌在冷却壁上的耐火材料出现侵蚀或者磨损而变薄;出、入管道剪切:由于管道和炉身之间采用刚性连接方式,因而容易在较大压力下被剪断;裂纹:冷却壁的热面出现纵横向的裂纹甚至是管道断裂;整体脱落。破损一般有以下几个方面的原因:

(1)金相组织发生改变和热应力的影响。当冷却壁长期出现热面温度高于铸铁工作温度允许范围以上时,铸铁的金相容易发生改变从而破坏铸铁的力学性能。而当铸铁两面温差较大时会在铸铁内部产生热应力,热应力超过铸铁的抗拉强度就会将受拉区拉出裂纹甚至是管道破裂而出现漏水事故。

(2)镶嵌方式不合理。通常在进行冷却壁铸造时会将耐火砖一起铸造进去,这样耐火砖和冷却中的铸铁之间会出现应力集中,因而不适宜采用一同铸造的方式,而应该先进行铸造然后再镶嵌耐火砖。

(3)管道早铸造过程中出现管壁渗碳,这是管道发生破坏的主因。渗入碳以后管道表面会生成碳化铁,熔化后和铸铁基体连在一起后使铸铁变脆,力学性能降低,容易使管道出现裂纹和变形,从而致使管道漏水。

(4)结构安装不合理。冷却壁的进水管和出水管与炉身的连接方式均为刚性连接,将保护套与炉皮之间焊接,而在冷却壁内来铸造保护套管。如果冷却壁的伸缩变形和挠度比较大,保护套管就会被拉开,从而进水管也会从根部被拉断掉。冷却水管的断裂会导致对冷却壁的供水不足或者是断水,从而造成冷却壁烧坏。

5 结束语

综上所述,造成高炉软水密闭循环系统气塞和泄漏的原因是多种多样的,当前其检测手段已经从传统的需要大量人工进行检测的方式发展为主要依靠计算机进行智能化的检测和预测、警报等一体化的检测系统,其具体检测方法和指标也越来越多样化。

参考文献:

篇2

循环水浓缩倍数是指循环冷却水系统在运行过程中,由于水分蒸发、风吹损失等情况使循环水不断浓缩的倍率(以补充水作基准进行比较),它是衡量水质控制好坏的一个重要综合指标。浓缩倍数低,耗水量、排污量均大且水处理药剂的效能得不到充分发挥;浓缩倍数高可以减少水量,节约水处理费用;可是浓缩倍数过高,水的结垢倾向会增大,结垢控制及腐蚀控制的难度会增加,水处理药剂会失效,不利于微生物的控制,故循环水的浓缩倍数要有一个合理的控制指标。

浓缩倍数的检测方法有很多,由于各厂补充水水质及循环水运行情况的差异,不同方法测出的结果都不同,所以对不同循环水浓缩倍数的检测方法进行比较是很有必要的。

1 循环水浓缩倍数的检测方法

循环水系统日常运行时,浓缩倍数的检测一般是根据循环水中某一种组分的浓度或某一性质与补充水中某一组分的浓度或某一性质之比来计算的。即:

K=C循/C补(1)

式中 C循--循环水中某一组分的浓度

C补--补充水中某一组分的浓度

但对于用来检测浓缩倍数的某一组分,要求不受运行中其他条件如加热、投加水处理剂、沉积、结垢等情况的干扰。因此,一般选用的组分有Cl-、Ca2+、SiO2、K+和电导率等。

1.1 Cl-、Ca2+法

虽然Cl-的测定比较简单,在循环水运行过程中既不挥发也不沉淀,但我厂因常用Cl2或NaClO、洁尔灭等药剂来控制水中的微生物及粘泥,这样会引入额外的Cl-,用该法测得的浓缩倍数会偏高;同时循环水系统在运行过程中或多或少地会结垢,尤其在高浓缩倍数时更为明显,故用Ca2+法测得的浓缩倍数会偏低。

1.2 电导率法

电导率的测定比较简单、快速、准确。从理论上来说,在循环水系统中常需要加入水处理剂和通入Cl2,这会使水的电导率增加,另外当系统设备有泄漏时也会使电导率明显增高,故用该法测出的电导率也会产生很大的误差。事实上,我厂于1996年3-7月用电导率法进行了测试,结果表明:用作基准的补充水--长江水的电导率是波动不稳的,其波动范围为154~291 μS/cm;循环水的电导率也是波动不稳的,一循、三循波动范围分别为330~613 μS/cm、308~618 μS/cm。因此,当循环水的电导率较高、补充水的电导率也较高时,得出的K值还是不高;当循环水电导率不高而补充水电导率较低时,K值也会高。

1.3 SiO2法

由于我厂循环水系统未投用硅酸盐系列水处理剂,因此原来一直沿用该法。用该法检测时,循环水浓缩倍数数据出现了异常波动且严重失真的现象:用以前沿用的室内新鲜水作基准进行比较时,浓缩倍数普遍偏高,一循曾高达8.5;后改用装置补充水作基准进行比较时,浓缩倍数又普遍偏低,有时甚至出现<1的情况。

1.4 K+法

从理论上来说,循环水系统中K+来源较少,一般在某个阶段内K+是相对稳定的,但在不同时期,也会受土壤、地面水等外界环境的影响而有一定的变化。K+的溶解度较大,在运行过程中也不会从水中析出,故用K+法检测循环水浓缩倍数K时,受到的干扰相对较少。

为此,进行了如下考察。

① 现场检测结果的考察,见表1。

表1 1995年4——7月K+法规场数据 采样日期 补充水K+含量(mg/L) 一循K+含量(mg/L) 浓缩倍数 4月1日 1.25 3.40 2.72 4月5日 1.25 3.65 0.92 4月10日 1.40 4.40 3.14 4月15日 1.60 4.70 2.94 4月20日 1.50 4.80 3.20 4月27日 1.45 3.30 2.23 5月15日 1.38 3.10 2.25 5月19日 1.45 3.40 2.34 5月23日 1.40 3.70 2.64 5月27日 1.45 3.00 2.07 5月31日 1.50 2.60 1.73 6月4日 1.39 3.39 2.44 6月12日 1.30 3.70 2.31 6月18日 1.52 3.65 2.40 7月3日 1.12 3.10 2.77 7月9日 1.58 3.22 2.04 7月15日 1.10 2.35 2.14 7月18日 1.35 3.50 2.59

从表1可以看出,补充水K+的变化不大,其变化范围为1.10~1.60 mg/L;一循水K+的变化范围为2.35~4.80 mg/L。

同样以一循为例,将一循数据分成两段(4—5月/6—7月)进行数理统计结果表明:两段检测结果之间不存在系统误差,因此用K+法测出的结果是可靠的。

② 方法精密度的考察,其结果见表2。

表2 K+标液及样品的重复检测结果 样品名称 八次重复检测结果K+(mg/L) 平均结果x(mg/L) 标准偏差s 变异系数s/x(%) 标液6mg/L 5.88

5.82 5.94

6.12 5.94

5.88 5.82

6.12 5.94 0.12 2.02 装置补充水* 1.98

1.98 1.92

2.04 1.92

1.98 1.92

1.92 1.96 0.045 2.30 一循水样 3.66

3.60 3.72

3.84 3.66

3.72 3.90

3.60 3.71 0.11 2.96 三循水样 5.64

5.70 5.58

5.46 5.58

5.40 5.34

5.70 5.55 0.14 2.52 注 *该装置补充水中K+浓度数据为1999年11月8日所测。

从表2可见:该方法精密度高,其变异系数<3%。

③ 不同实验室间的结果对照见表3。

表3 1996年3-5 月浓缩倍数的对照分析结果(K+法) 采样日期 研究室测得K值 供水室测得K值 两室K值之差的绝对值 两室K值之差的绝对值/平均值×100% 一循 三循 一循 三循 一循 三循 一循 三循 3月18日 2.25 2.33 2.21 2.26 0.04 0.07 1.8 3.0 3月12日 2.16 2.20 2.16 2.10 0.0 0.10 0.0 4.5 3月25日 1.97 2.57 1.92 2.55 0.05 0.02 2.6 0.8 4月1日 1.85 2.85 1.85 2.65 0.0 0.20 0.0 7.3 4月8日 2.26 3.26 2.19 3.17 0.07 0.09 3.2 2.8 4月16日 2.12 3.04 1.93 2.79 0.19 0.25 9.4 8.6 4月22日 2.04 3.14 2.06 3.16 0.02 0.02 1.0 0.6 4月29日 2.62 2.21 2.75 2.23 0.13 0.02 4.8 0.9 5月6日 2.42 2.12 2.40 2.08 0.02 0.04 0.8 1.9 5月13日 2.31 停工 2.19 停工 0.12 停工 5.3 停工 5月27日 2.48 停工 2.36 停工 0.12 停工 5.0 停工 注 该对照结果为不同实验室的不同人员对同一天的不同样品用不同仪器进行分析的结果。

从表3可以看出,现场应用情况也较好,两室K值之差的绝对值与平均值之比值≤9.4%。

由此可见,用K+法测出的K值误差较小,可作为循环水系统的实际K值。

转贴于  2 循环水浓缩倍数的控制指标

一般浓缩倍数低,耗水量就大,排污量也大;浓缩倍数高可以减少水量,节约水处理费用。但浓缩倍数过高会使循环冷却水中的硬度、碱度和浊度升得太高,水的结垢倾向增大很多,从而使结垢、腐蚀控制的难度变大,使水处理药剂(如聚磷酸盐)在冷却水系统内的停留时间增长而水解。因此,循环冷却水的K值并不是愈高愈好。

我厂现有四套循环水系统,其中一循最大,故以一循为例加以说明。一循系统容量为1.2×104m3/h,循环水量R为1.1×104m3/h,根据:

M补水量=[K·α/(K-1+α)]×R

D排水量=[α/(K-1+α)]×R

α=T/600

式中 ΔT--我厂循环水进出口水温之差(≈8 ℃)

K--循环水系统的K

α--蒸发因子

据此可计算出α=0.013和K=1~10时系统所需补水量M、排污量D、(M/R)%、(D/R)%及节水率(ΔM/R)/ΔK,计算结果见表4。

表4 一循在不同K下冷却水系统的参数计算值 项目 浓缩倍数K 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 D(m3) 11000 141.2 71.0 47.5 35.6 28.5 23.8 20.4 17.8 15.9 M(m3) 11000 282.3 213.1 189.8 178.2 171.2 166.5 163.1 160.6 158.7 D/R(%) 100 1.28 0.65 0.43 0.32 0.26 0.22 0.19 0.16 0.14 M/R(%) 100 2.57 1.94 1.73 1.62 1.56 1.51 1.48 1.46 1.44 (M/R)/K(%) 97.4 0.63 0.21 0.11 0.06 0.04 0.03 0.02 0.02

从表4可以看出:

① 随着浓缩倍数的增加,冷却水系统的补充水量M和排污水量D都不断减少。因此,提高循环水的浓缩倍数,可以节约水资源。

② 每提高一个浓缩倍数单位所降低的补充水量的百分比[(ΔM/R)/ΔK]随浓缩倍数的增加而降低,且在低浓缩倍数时,提高K值的节水效果比较明显;但当K提高到4.0以上时再进一步提高浓缩倍数的节水效果就不太明显了,如一循由4.0提高到5.0时,节水量仅占循环水量的0.11%,因此我厂循环冷却水系统的浓缩倍数控制在2.0~4.0为好。

3 结论

① 我厂循环水浓缩倍数的检测采用Cl-、Ca2+、SiO2和电导率等法误差较大。

② 数理统计结果及现场应用情况表明用K+法具有准确度高、精密度好等特点。

篇3

Abstract: in order to give full play to the efficiency of water treatment agent, improve water quality management level, increase the economic efficiency, in the circulating cooling water system of multiple concentrated data in the investigation, this paper analyzes the different concentration ratio detection and practical, the feasibility of the method, and the concentration ratio control index put forward the reasonable scope.

Keywords: circulating water, concentration ratio, cooling, detecting methods, control index

中图分类号:V448.15+1 文献标识码:A文章编号:

循环水浓缩倍数是指在开式循环冷却水系统中,由于蒸发使循环冷却水中的盐类不断累积浓缩,水的含盐量大大高于补充水的含盐量,两者的比值称为浓缩倍数,也可以说浓缩倍数是循环冷却水的浓缩度。浓缩倍数是反映和控制循环水系统运行的一个重要综合性指标。

我单位生产给水取自嫩江岸边的自建给水泵站,取水能力为12008000T/H,用二根DN800的混凝土管送至厂区,每根管线长度约为一公里,供水能力为8000T/H。随着经济的发展、生产规模的扩大,目前我厂需要的新鲜生产用水量为9800T/H,从而使生产用水的供求矛盾日渐突出,曾出现供水困难,压力不足的现象。我集团公司焦化分厂原有一套循环水系统,98年中氮肥改造项目建成后又投入了二套循环水系统,其中一循六座冷却塔,循环水量为18900T/H,是我集团公司规模最大的循环水系统。要想解决生产用水的供需矛盾只能从循环冷却水入手,其大有潜力可挖。浓缩倍数是判定循环冷却水利用率的一个重要指标,一般浓缩倍数低,耗水量、排污量均大且水处理药剂的效能得不到充分发挥;该数越高,说明循环水被利用的次数越多.提高循环水浓缩倍数不仅可以降低补充水量、节约水资源、降低排污水量,减少对环境的污染和废水处理量,还可减少水处理剂和杀生剂的消耗量,从而降低水处理成本。提高浓缩倍数运行是目前公认的有效节水方法。但随着浓缩倍数的提高,循环水系统结垢和腐蚀因子也随着成倍上升。这就需要把浓缩倍数控制在一个合理的范围,同时选择一个合适的检测方法也至关重要。

1、循环水浓缩倍数的检测方法

浓缩倍数的检测方法很多,循环水系统日常运行时,浓缩倍数的检测一般是根据循环水中某一种组分的浓度或某一性质与补充水中某一组分的浓度或某一性质之比来计算的,

即:K=C循/C补

式中 C循―循环水中某一组分的浓度

C补―补充水中某一组分的浓度

对于用来检测浓缩倍数的某一组分,要求不受运行中其他条件如加热、投加水处理剂、沉积、结垢等情况的干扰。因此,一般选用的组分有CI-、Ca2+、SiO2、K+等。

1.1 CI-、Ca2+等

虽然CI-的测定比较简单,在循环水运行过程中既不挥发也不沉淀,但我厂因常用CI2或NaCIO、洁尔灭等药剂来控制水中的微生物及粘泥,这样会引入额外的CI-,用该法测得的浓缩倍数会偏高;同时循环水系统在运行过程中或多或少地结垢,尤其在高浓缩倍数时更为明显,故用Ca2+法测得的浓缩倍数也会偏低。

1.2 SiO2法

此法我公司10年前曾利用SiO2法,用该法检测时循环水浓缩倍数数据有时会出现异常波动且严重失真的现象:用室内新鲜水作基准进行比较时,浓缩位数普遍偏高,一循曾高达7.2,二循曾高达8.3,焦化循环水曾高达8.5;后来改成装置补充水作基准进行比较时,浓缩位数又普遍偏低,有时甚至出现小于1的情况。目前此检测方法已不再使用。

1.3 电导率法

电导率的测定比较简单、快速、准确。从理论上来说,在循环水系统中常需要加入水处理剂和通入CI2,这会使水的电导率增加,另外当系统设备有泄漏时也会使电导率明显增高,故用该法测出的电导率也会产生很大的误差。我单位曾于2000年4―8月用电导率法进行了测试。结果表明:当循环水的电导率较高,补充水的电导率也较高时,得出的K值还是不高;当补充水电导率不高而循环水电导率又较低时,K值也会高。故此法误差也较大。

1.4 K+法

理论上来说,以K+作为浓缩倍数的标准物最佳。因为钾盐的溶解度较大,在循环冷却水运行中不会析出,一般药剂中均不含 K+,故用此法检测循环水浓缩倍数时,受到的干扰相对较少。循环水系统中K+来源较少,一般在某个阶段内K+是相对稳定的,但在不同时期也会受土壤、地面水等外界环境的影响而有一定的变化。

我们还进行了不同实验室(中心化验室和动力分厂化验室)的不同化验人员用不同仪器对一循和装置补充水的同一水样的进行了化验分析,测得的K值偏差也较小,两室K值之差的绝对值与平均值之比小于8.6%,由此可见,用该法测得的K值误差较小,可作为循环水系统的实际值。

循环水浓缩位数的控制指标

一般情况下浓缩倍数低,耗水量就大,排污量也大;浓缩倍数高也可以减少水量,节约水处理费用。但是浓缩倍数过高可以使循环冷却水中的硬度、碱度和浊度升提得太高,水的结垢倾向出会增大很多,从而使防结垢、防腐蚀控制的难度变大,进而使水处理药剂在冷却水系统内的停留时间增长而水解,因此,循环冷却水的K值并不是愈高愈好,必须把浓缩倍数控制在一个合理的范围内。

结论

⑴我单位采用CI-、Ca2+、SiO2及电导率法检测循环水浓缩倍数的误差较大。而根据数理统计结果和现场应用情况表明用K+法准确度高、精密度好。

⑵我单位循环冷却水系统的浓缩倍数控制在2―4最为理想。

篇4

中图分类号:TU201.5 文献标识号:A 文章编号:2306-1499(2013)08-(页码)-页数

1.问题的提出

在规模宏大的城市化进程中,一栋栋建筑拔地而起,一个个大型地下室、停车场、地下商场等地下空间结构应运而生,设施、设备齐全的城市在带给人方便快捷的现代生活的同时,也带来了一些问题:城市绿地大量减少,城市绿化覆盖率降低,市民住宅区附近缺少可供乘凉、游憩的场所,并加剧了城市热岛效应,从而危害着人的健康甚至生命。

结合“十二五”规划明确提出“绿色发展”的理念,笔者采用系统工程的思想,将建筑工程、园林绿化、市政公用工程等方面的设计与施工统筹考虑、有效衔接、发挥优势、弥补不足,形成了建筑节能种植屋面生态雨水综合循环利用技术。该技术在满足建筑工程使用功能的同时,通过优化设计方案、施工方法,改善城市区域小环境,可增加城市绿化覆盖率,绿化、美化、净化城市环境,为市民就近提供乘凉、休憩的场所,并减轻城市热岛效应;通过“渗、蓄、滞、排、用”结合的方法,可有效吸纳储存雨水,减轻局部内涝和城市排水压力,实现生态雨水的循环利用,节约大量的水资源。

2.设计思路与原理

在大型地下室、停车场、商场等城市地下空间结构屋面设计方案中采用倒置式屋面、种植式屋面与园林景观设计相结合的方法,发挥各自的优势,通过改变城市区域小环境,把这些城市地下空间结构上方变成一块块城市绿地公园,增加城市绿化覆盖率,绿化、美化、净化城市环境,即为市民就近提供乘凉、休憩、游乐的场所,又能吸附灰尘、降低噪音、吸收二氧化碳、产生氧气、遮蔽烈日、调节温度湿度,减轻城市热岛效应。

城市地下空间结构屋面构造设置由下往上分别为:结构顶板、找平层、防水层、保温层、找坡层、隔根层、排(蓄)水层、聚酯无纺布隔土层、种植土和植被。这种构造设置充分发挥各构造层的特性优势、弥补各自不足,在满足城市地下空间的使用功能要求的同时,一方面由保温层、找坡层、隔根层等做防水层的保护层,使防水层处于稳定的环境中,免受外界气温等因素的破坏影响,极大提高了其使用寿命,另一方面聚苯板保温层、种植土等提高了地下空间结构屋面的保温隔热效果,地下空间结构内冬暖夏凉,建筑节能效果达到节能65%的要求。

配合园林设计合理堆筑种植土,形成浅盆地形态,人行通道等需要硬化的部位采用填砂基层、有孔面砖等措施方便雨水渗透,种植土下设置排(蓄)水板,将排(蓄)水板与集水沟通过专用排水篦子连通,集水沟再与集水池相连,并将种植层表面设置的排水沟也与集水沟、集水池相连,集水池与市政排水系统相连。这种系统设计在赋予种植层快速的水、气流动循环系统的同时,将雨水分散储存在种植土壤、排(蓄)水板、集水池里,待需要绿化用水时,通过抽水泵等自动滴灌系统,将集(蓄)水池中的水输送到需水处,集水池储满后,多余的水通过管道排入市政排水管道,通过“渗、蓄、滞、排、用”结合的方法,将建筑设计、园林设计与市政设计统筹考虑、有效衔接,有效吸纳储存雨水,减轻局部内涝和城市排水压力,实现生态雨水的循环利用,节约大量的水资源。

3、关键施工技术要点

3.1基层处理

该系统砼结构顶板需全隐蔽,防水质量要求高,对防水薄弱环节应加强基层处理,确保。如侧墙和顶板上的预留孔洞、埋件、电器和给排水管道等,都应在浇筑混凝土前预埋,不得在结构和防水层施工完毕后再打洞凿槽;给排水系统的管道应在防水层施工前安装完毕并试压检验合格,各种管道节点的密封处理应符合防水施工要求;混凝土结构顶板面完成后,应及时进行蓄水、淋水试验和雨后检查,修补发现的渗漏点,对结构的局部缺陷位置做好记录,以便局部增加附加防水层;穿过车库顶板的管道与结构间应嵌填密封胶,在管道根部浇筑高度不小于100mm,直径比管道大100mm的混凝土坎台固定管道,并作为密封胶的保护层和防水层的基层。

3.2 防水层施工

该系统可选用SPU涂膜防水和复合铜胎基的SBS改性沥青根阻防水卷材复合防水层,即满足屋面规定防水性能要求,又具有根阻、耐穿刺性能,有效保证防水层的施工质量和使用寿命。SPU涂膜防水层应分两次涂刷,在薄弱部位附加涂膜层固化、干燥、无气孔或气泡时,可涂刷第一层涂膜;否则,应用橡胶刮板将混合料用力压入气孔,再补刷涂膜后,才能涂刷第一层涂膜。第一道涂膜固化不粘手时,即可在其上均匀的涂刷第二道涂膜,涂刷方向应与第一道的涂刮方向相垂直。SPU涂膜涂刷不得在淋雨、低于5℃的环境条件下施工。SPU涂膜防水层施工完毕并完全固化后(20大约24小时),采用冷粘法铺贴复合铜胎基SBS改性沥青防水卷材,并做48h蓄水试验,检查确认无渗漏后应尽快铺贴聚苯板保温层,避免防水层被破坏。

3.3聚苯板保温层施工

聚苯板保温构造层在体系中不但充分起到工程保温作用,对防水体系起到了有效的隔根、缓冲、保护防水的作用;所以设计、施工过程中要充分考虑各地气候原因和植物根系情况。综合考虑沈阳气候条件和园林种植物后,保温层材料选用100mm厚,容重18Kg/m?的聚苯板。

3.4 炉渣找坡层施工

找坡材料选择1:6水泥焦渣,找坡层坡度选取2%,坡向以车库中心线向两侧找坡。

3.5隔根层

隔根层兼做找平层采用强度等级不小于C20、厚度不小于40mm的细石混凝土,宜配置双向φ5 @200的钢筋网片。

3.6 疏排水板层施工

疏排水板选用YF四代排(蓄)水板,土工无纺布选用宽幅2米,容重400g/m2。

在细石混凝土隔根层(找平层)上松散杂物清扫干净后,采用纯人工进行滤水板安装。根据测量线,顺着坡向放置第一块滤水板,通过滤水板上的扣环,连接第二块滤水板……直至第一排、第二排……至滤水板安装完成,铺设时保持每片排水板扣接好,过程中根据测量线对滤水板进行调整,保证滤水板排放整齐,排水通道形成直线。

在运输过程中土工布卷必须避免受到损坏;受到物理损坏的土工布卷必须要修复,受严重磨损的土工布不能使用。铺设时采用人工滚铺,土工布在滤水板铺好以后顺着坡向满铺于板上,边缘相互搭接不小于100mm,局部涂胶水粘接固定,与滤水板形成一个整体中空层,可以保证排水通道的通畅并阻止泥土流入其中,布面要平整,并适当留有变形余量;土工布收口时上翻,至少高出出水孔10cm(起到挡土滤水的作用),顶部用粘胶或钢钉固定。

3.7积排水管网系统施工

积排水管网主要分集水沟、排水沟、集水井,种植层表面设置的排水沟也与集水沟、集水池相连,集水池与市政排水系统相连,集排水沟负责解决种植屋面区域内雨水及浇灌用水的疏导,集水坑负责汇集管沟里的水流。并将这种系统设计在赋予种植层快速的水、气流动循环系统的同时,雨水分散储存在种植土壤、排(蓄)水板、集水池里,待需要绿化用水时,通过抽水泵等自动滴灌系统,将蓄水池中的水输送到需水处,集水池储满后,多余的水通过管道排入市政排水管道,通过“渗、蓄、滞、排、用”结合的方法,将建筑设计、园林设计与市政设计统筹考虑、有效衔接,有效吸纳储存雨水,减轻局部内涝和城市排水压力,实现生态雨水的循环利用,节约大量的水资源。

集排水沟施工:根据疏排水层高度确定管沟底标高,将侧墙四周回填土分层夯实,回填土的密实度要求≥93%。回填至距离管沟底标高后300mm处,采用中砂回填垫层底,夯实后浇筑C20垫层。

垫层浇筑完毕,绑扎钢筋,支模模现浇混凝土积水管沟,管沟尺寸为300mm(宽)×400mm(高),管沟外侧壁厚100mm,内墙壁厚200mm。

管沟施工完毕拆模验收后,安装专用排水篦子,浇筑铺设引水坡。安装完毕后,铺设排水沟盖板。

集水池施工:首先(1)开挖前根据施工图和放线控制桩测量确定集水池中心线和附属构筑物位置,根据图纸要求定位放线,按照积排水沟高度和集水坑高度确定管沟底标高,测放挖掘坑边线,再根据确定后的基坑上口开挖宽度,用石灰线标明开挖边线;(2)测量完毕后,机械配合人工进行开挖土方、浇筑垫层,垫层采用100㎜厚C15混凝土,砼垫层浇筑完后1—2天(应视施工时的温度而定),在垫层面测定底板中心,根据设计尺寸进行放线,放出墙体定位轴线及操作控制线。(3)绑扎集水坑钢筋,在绑扎钢筋时,应详细检查钢筋的直径、间距、位置、搭接长度、上下层钢筋的间距、保护层及预埋件的位置和数量,均应与标准图一致。砼应一次性浇筑完毕,不留施工缝。砼浇筑后,其强度未达到1.2/m2时禁止振动,不得在底板上搭设脚手架、安装模板和搬运工具,并做好砼的养护工作。

3.8回填种植土介质层

在回填时先行铺设无纺布,无纺布铺设完毕后验收合格随后回填土。在回填土上行走车辆,要注意回填土的厚度,回填土厚度≥500mm后方可在上面行走车辆,防止运土车辆对排(蓄)水系统的破坏,回填需要由周边向内回填。

3.9园林种植浇灌系统施工

管道安装:积水坑施工完毕后,在回填种植土之前,在集水坑上安装抽水管和排污管,管道安装应对管材和管件进行外观检查,排除有破损、裂纹和变形的产品;在盖板和管道接触的细节部位做好混凝土墩加固。

浇灌加压抽水设备及滴灌系统安装:绿地喷灌系统常用的加压设备是各类水泵和恒压供水装置。水泵安装应考虑其在工作状态下的稳定性,水泵基础应能承受整个泵体充满水时的重量和可能的动荷载,并能经得住和防止任何过度的震动。混凝土结构是理想的水泵基础。在靠近水泵入口处安装真空表和在出口处安装压力表是必要的。这些仪表有利于检查水泵的实际运行状况。电机必须与水泵配套。电机应该用带有热敏线圈的并联式电磁启动器加以保护。从电力干线到喷灌泵电机,应当使用规格合适的电缆。

3.10园林、绿化施工

平整场地:用机械、工具对不符合设计要求的坡地进行平整、高坡削平、低塘填平。对特殊场地,如草坪地,应具备适宜的排水坡度,以2.5%—3%为宜,边缘应低于路道牙3—5㎝。对场地翻挖、松土厚度不低于50㎝,且将泥块击碎。

定点放线工序:对照图纸,在整形好的工程场地上,采用方格法对乔灌木、地被、草皮、小品等进行定点放线。对于规则式灌木图案花坛,做到放线准确,压线种植,图案清晰明了。

种植绿化:根据定点放样的标线,将树木土球的大小确定植穴的规格,对于花坛、绿篱的植穴按设计要求确定放线范围,或植穴的形状,绿篱以带状为主,花坛以几何形状为主,在花坛、绿篱周边须留3—5㎝宽、3—5㎝深的保水沟,翻挖、松土的深度为15—30㎝。依次进行苗木施肥、修剪、整枝等工序。

4.施工注意事项

建筑节能种植屋面生态雨水综合循环利用系统的防水等级和设防标准应符合设计和规范要求,采用刚柔相济、多道设防、节点密封的可靠措施,建筑节能种植屋面生态雨水综合循环利用系统的防水等级宜选用Ⅰ级且不得低于Ⅱ级标准;防水层应采用耐腐蚀、耐霉烂、耐穿刺、无浸出有害物质的环保型防水材料。

疏(蓄)水板安装直接在已经完工的细石混凝土保护层上铺设,板材采用扣合的搭接方式, 疏(蓄)水层厚度和泄水口高度应根据所种植物的耐旱和耐水要求确定。铺设完毕后做好滤水板的成品保护工作,防止大风吹乱滤水板,影响铺设质量;同时避免泥土、水泥、黄沙等垃圾进入滤水板的正面空间,确保滤水板的空间畅通。

工程需要单独选用隔根层材料时,应采用耐腐蚀 、防霉烂 、耐穿刺等坚韧性的如聚氯乙烯 ( PVC) 卷材 、低密度聚乙烯 (LDPE) 、高密度聚乙烯 ( HDPE) 土工膜等均为理想的防穿刺层材料

建筑节能种植屋面生态雨水综合循环利用系统上的行人通道、排水沟和挡土墙,若未能与结构混凝土同时浇筑或设计采用砖砌体时,应在防水层施工前完成,以保证屋面防水层的整体性和连续性。

建筑节能种植屋面生态雨水综合循环利用系统上所设置的排水管口、泄水管口、溢水管口及反梁过水口等各种管道的排水口,应设置反滤层,反滤层做法为用钢丝网片或采用不锈钢的钢丝网做成凸球状包住管口,管口内侧应堆设砂石、砂卵石的粗细骨料滤水层,以防止种植土和有机介质的流失,避免杂质、杂物阻塞管道和污染环境。

各种植区域内填放种植介质的厚度、质(重)量应符合设计要求,种植介质宜选用保水性好的粘性土壤,种植土表面宜平整并应设1%-3%的坡度,且宜比四周挡土墙低30-100mm。

建筑节能种植屋面生态雨水综合循环利用系统四周的排水沟、泄水孔、溢水孔和种植面,所汇集的渗水、雨水应集中排放,防止污染环境。雨水口设置数量和排水管直径大小,应满足雨季单位时间内最大降水量的排放要求。

建筑节能种植屋面生态雨水综合循环利用系统上露天的草坪灯、反光照明、指示灯和草坪音箱等设备,所有的金属外壳都应有良好的防雷接地装置。在种植土中暗敷的电器管道和露天设备的节口都应有防水、防渗的密封措施。应充分考虑到所种树木高度的防雷要求

埋在种植介质土内的草坪灯、草坪音乐设备和水、电管道应设置明显标识,以便检修和维护。

建筑节能种植屋面生态雨水综合循环利用系统应选择适应性强、耐干旱、耐瘠薄、喜光的花、草、藤本和小乔木等观赏植物,不宜选用根系穿透性强和抗风能力弱小的乔、灌木、大叶榕、雪松等树种。

植物的种植时间,应根据各类植物对气候条件的要求确定。

5.成品保护

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页