精准农业的技术体系范文

时间:2024-03-11 14:34:43

引言:寻求写作上的突破?我们特意为您精选了12篇精准农业的技术体系范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

精准农业的技术体系

篇1

近年来,我国数字化农业技术取得了一些进展,主要表现在:农业传感器微型化、农业灌溉智能化、实时监控农作物生长、农业信息可移动化、农产品质量追溯化等已成为主流。这得益于农业生产信息化技术的成熟和发展,尤其是农产品种植、加工智能化技术的应用。

国内关于农业园区应用物联网技术的相关研究主要涉及温度监控、光温智能控制、精准灌溉等方面。如,浙江大学等单位对农业物联网信息感知、传输和应用等方面进行研究,主要涉及智能化程度、肥水利用率及农产品安全等问题。取得了一系列成果。但总体来看,数字化技术在农业生产中的集成应用研究还比较少。本文提出构建完全数字化的生鲜农产品产业基地,该基地基于总线技术集成,由统一的信息系统进行集中管理和统一调度,充分运用物联网和现代信息技术,加强数据处理及控制,合理布局传感器(温度传感器、湿度传感器、养分传感器、土壤成分传感器等),实现完全数字化。

一、生鲜农产品产业园区数字一体化精准管控系统的实施意义

1.加速信息化。农业发展越来越受到信息技术的影响,信息化成为我国加快实现农业现代化的必然选择。随着物联网技术和农业信息技术的广泛应用,现代农业高速发展,新的农业科技革命即将到来。

2.提高数字化。数字化有利于发展我国自主产权的农业高技术体系,对于我国在世界范围内新的农业科技革命中占有一席之地,以及提升我国农业科技在国际上的整体竞争力,具有战略意义。

3.提高生产效率。传统的手工劳作、粗放型、分散型农业产业模式已不适应时展,我国经济进入规模经济时代,设施的效率决定了生产的效率,也体现了生产力的发展水平。

4.节能减排。精准农业在高新技术的基础上,充分利用现代信息技术,成为现代农业的一种先进生产形式和管理模式。为能自动感知、获取并分析作物生产的环境因素实际存在的时间和空间差异信息以及实现自动诊断和监测,确立起按需投入,在技术上和经济上可实施的应对方案,对物联网技术提出了系统化的理念和技术要求。

二、生鲜农产品产业园区数字一体化精准管控系统的构成

如图1所示,基于物联网技术的生鲜农产品产业园区的数字一体化精准管控系统,主要包括设备执行层、通讯层、调度监控层和信息管理层等四个层级。整个管控系统由计算机管理调度系统(中央控制系统)、水肥一体自动控制系统、自动通风控制系统、无线传感器系统、卷帘控制系统、诊断与监测预警系统等六个子系统组成。

1.计算机管理调度系统(中央控制系统)

生鲜农产品产业园区数字一体化精准管控系统,是在系统总体规划的原则下,为实现农产品种植基地的智能化、数字化、精准化管控而进行的计算机软、硬件系统设计,在信息自动化统一软件平台的基础上,结合农作物生产经验,开发农产品种植系统,采用面向对象的分析、设计和开发手段。充分考虑系统的柔性,并为系统的全面集成留有接口。

系统由管理层信息系统集中管理和统一调度,在监测与预警系统的监控下获取数据采集层下各类型传感器所提供的作物成长环境的物理参数,如:空气温湿度、土壤水分含量、PH值、CO2浓度等,再经通讯层传输到管理层中央控制器,农产品种植系统对感知的信息进行融合处理,智能对比适宜农作物生长的最佳环境变量,并形成完整的按需配给策略,由通讯层到达发出控制指令的具体分管控制器,完成对农作物的按需供给,保障农作物的健康成长环境。

整个管控系统形成了一整套完全智能化、数字化和精准化的管理理论和实践方法,对智能并联调度系统、诊断与监测预警系统、水肥一体化精准管控系统等新技术模块进行了研究应用。

系统结构分为四个层次,即:信息管理层、通讯层、调度监控层和设备执行层。其中,计算机系统始终贯彻整个系统的运行中,从整体调度到具体信息的收集与传输、指令信息的下达,涵盖信息管理层、通讯层、调度监控层的所有业务以及设备执行层的大部分业务,上联中央控制系统,下联设备执行层。

系统硬件模型,如图2。

2.水肥一体自动控制系统

水肥一体自动控制系统是一项现代农业新技术,该技术可以精确控制灌溉和施肥的数量与时间,以微灌系统为基础,根据农作物的需水需肥规律及土壤状况,运用计算机技术自动对水和肥料进行调配和供给。

在滴灌、渗灌、微喷灌等工程节水的基础上,通过布置在田间的水分传感器、养分传感器、土壤成分传感器等多种类别传感器,测得土壤各指标的基本状况,经传感器将信号传到电脑,再由程序智能指导灌水施肥。

由于系统没有非常复杂的运算,需要低功耗和具有较强抗干扰性,因此采用单片机作为自动控制中心模块,用来处理灌溉区的信号输入等工作。由于水灌溉自动控制系统对水位的控制精度要求不高,将自制水位传感器安装到要求的液位,直接感知液位信息。由液位信息控制电磁阀,从而实现精准施灌。系统中的很多资料需要长期保存,同时需要在系统断电时仍能保存信息,根据自动控制系统以及用户信息存储大小需求,选用双备份磁盘阵列为该系统的存储设备。

水肥一体自动控制系统包括两大类。即叶面施灌和根系施灌,前者采用喷雾头施灌,后者采用滴灌。

系统将各种农作物的特征需求数据、种植历史经验数据、专家知识等集成、组构、融合,编制成生鲜农产品种植专家系统,将测定的实时信息与生鲜农产品种植专家系统的参数对比后,可计算出灌溉时长、施加肥液时长和肥液配比等值。控制程序得到开始工作指令后立即运行,系统运行过程的数据均可查阅。系统主程序流程,如图3。

3.自动通风控制系统

自动通风控制系统综合性能优于传统通风系统,可以自动调控风机转速与风量,感应空气品质,从而改善空气质量,提高通风安全,实现运行管理智能化。该系统主要由智能中央控制子系统及空气品质感应子系统等组成,还包括通风管道、可调节的风口末端及数字化节能风机等。

4.无线传感器子系统

WSN(WirelessSensorNetwork,无线传感器网络)由多个部分组成,其主要构成:无线传感网络基础设施、网络应用支撑层和基于该网络应用业务层的一部5y.等,参见图4。将WSN应用于培养种植农作物,可提高农业数字化水平。其工作原理为:在监察区域设置大量廉价的微型传感器,通过传感器感知并收集所需监察对象的信息,这些信息经过处理后发送给观察者。

5.卷帘控制系统

当前使用的温室大棚卷帘机大部分存在安全隐患,其主要原因是动力源为现场人工送电,不论温室中是否有劳动任务,管理人员都必须到现场操控设备,造成了时间和人力资源的浪费。

为解决上述问题,可以通过自动远程控制,实现卷帘机的升降,不仅可以减少安全隐患,而且降低劳动强度,提高效率。其主要做法为.在设备中嵌入一个模块,利用处理器的指令控制来实现GSM系统的短信息服务。该方法实施方便、操控简单、成本低,有较高的应用率。

6.诊断与监测预警系统

在农作物种植基地采用诊断与监测预警系统,主要针对系统中关键设备的开关和运行情况进行监测,发现异常情况并及时处理,从而尽量避免损失的发生。

为了加强监测和预警,该系统设计并充分应用无线结构健康监测试验仪器。基于成本和便捷性,该仪器主要应用ISM(IndustrialScientificMedical)频段,这是因为:ISM频段耗能低、成本少,组网方便且无需授权申请,非常适合无线结构的健康监测使用。其覆盖范围,如图5。

篇2

一、农业保险精准扶贫

农业保险也被简称为“农险”,这是一种特别针对农业突发状况而为农业生产者设置的特殊类型保险,比如农业生产过程中发生天灾、疫病等意外状况,给农业生产者造成了严重的经济损失,农业保险就可以对此给予经济上的补偿和补助。农业保险所保障的范围很广,日常所提到的畜牧业、养殖业、种植业等等一些基本的农业都被包含在内,但其中最主要的还是种植业和养殖业。农业保险精准扶贫具体来讲,就是要通过农业保险这一举措,来帮助贫困地区的重点扶贫居民实现脱贫致富,同时还要对农业生产生活的可持续作用做出保障。以往的扶贫模式比较看重扶贫的“输血”功能,却没有对扶贫的“造血”功能引起重视,也就是没有发掘出可持续脱贫的能力。于是在农业保险精准扶贫的模式下,选择的扶贫对象基本都是贫困地区的贫困农户们,首先给予他们一定的保险费用补助,让这些贫困农户都能顺利的获得农业保险对于意外事故的保障。对所选区域范围内的贫困农户进行科学、合理和精确的审核,然后将贫困农户进行分类,因地制宜的对它们进行扶贫,这种管理模式具有较高的精准度。具体应用起来就是根据贫困农户的实际情况,给予他们援助,将区域内部的扶贫信息整合到一起,合理分配扶贫资源,进一步落实精准扶贫,让扶贫工作真正进行到每一家贫困农户当中去。

二、农业保险精准扶贫效率的评价指标

根据有关部门提出的系统、全面、相关、可操作性的原则,针对农业保险精准扶贫效率的评价指标问题,可以从投入效率还有产出效率这两个方面做出分析。投入效率指标,从投入角度入手,可以选择农户投保率、理赔额赔付率财政资金补贴支出还有农险承保覆盖率等作为评价指标,用这些评价指标来反映精准扶贫政策的落实情况,实际掌握农户参与农业保险的比重、保险公司农业保险赔付率和农险风险发生率的水平和政府对农业保险进行财政补贴的力度。产出效率指标,从产出角度入手,可以选择保障农作物产值占比、农作物单位产量、农险风险损失率等作为评价指标,这些指标可以良好的反映出农业保险在保障农民生产生活、提高农作物收成还有降低农业风险问题上发挥的作用。

三、农业保险精准扶贫效率评价指标体系建造工作

(一)围绕精准扶贫效率指标体系构建的原则

1.系统性原则。也可说是整体性原则,这个原则要求在选择用于构建体系结构的指标时,一定要从整体出发,然后所选指标同时满足能在构建体系结构时发挥关键作用,有标志性;能符合体系结构构建的大方向;选择的指标最好保证拥有一种既相互独立又相互关联的逻辑结构三项原则。只有同时满足了这三项原则,构建出来的体系结构才能达到预期的效果,体系结构才能体现出精准扶贫政策的重要内涵和精神。2.相关性原则。这项原则要求我国在构建体系结构时,一定不能偏离体系构建发展的大方向,思想上一定要有一致性。同时在选择指标时,应该对指标的外部环境做出实地考察,因为政府在进行绩效评价时都是遵照绩效评估理论的,都是从多个维度和层次出发,几乎将所有的相关指标都列入了评价范围。所以类似于农户人均农业保险保费支出占农户年收入比重和政府给予农业保险的资金补贴支出之类的指标都应该纳入的体系范围当中来。3.全面性原则。在构建指标体系的过程当中,围绕农业保险扶贫效率做出的选择,不仅仅需要考虑每个指标对体系产生的影响和带来的意义,还要把选取而来的各个指标进行结合后带来的整体影响,把这些情况都考虑全面,所构建出的指标体系就可以把国家制定出的扶贫政策的主要目标和发展方向全面化的展现出来。同时还对在选取构建指标的工作中提出了新要求,选择的指标应该尽可能做到覆盖面广阔,还应该能够从多个角度,全面的对精准扶贫效率做出评价,比如可以从政府、保险公司和农户三方面同时入手。4.可操作性原则。这一原则是构建绩效评价体系时,必不可少的关键性原则。无论构建出来的体系有多么周密、程序多么具有科学性、逻辑结构多么合理,不具有可操作性,整个体系都是不能使用的,即便不顾操作性强行运用到实践当中去,也是可以发现它根本不能帮助处理实际问题的,先前做的努力都将付之东流。在收集绩效评价指标体系所反馈回来的数据时,要挑选出那些具有代表性、能够明显对精准扶贫中农险效率做出反映的关键数据,重复多余的指标过滤掉就可以了。另外,在进行指标选取的时候,要考虑收集数据和获取渠道的高效性和低成本性,一般而言,指标数据的获取渠道都来源于各个财政和保险汇总年鉴的具有权威性的官网。在收集到这些数据以后,就需要对这些数据做出高效的利用,这要求需要对整个指标数值统计和分析的过程做出严格规范,还要保证统计口径和测算数据保持一致。做好这些工作以后,评价者就可以通过对评价指标体系做出的效率分析,来明确安徽省精准扶贫中农业保险的实际效率,以此来找出其中存在的绩效问题,及时解决,从而更好地改进安徽省农业保险精准扶贫工作存在的不足。

(二)精准扶贫效率指标体系构建的具体内容

篇3

2现代农业信息技术创新

2.1发展特征及趋势

现代农业信息化科技创新的主要特征有:①以高科技为依托,具有高投入性;②相互渗透,具有开放性;③促进规模经营,具有高效性;④需求与要求矛盾多,极具差异性;⑤引进竞争机制,具有挑战性[7]。同时,智能化、移动互联特征鲜明,农业信息化呈现出集成化、专业化、网络化、多媒体化、综合化、全程化。当前,全国农业信息化科技创新呈现出新的趋势:①从注重基础建设向注重资源整合转变;②终端开发应用开始由传统终端向高效便捷的智能化终端转变;③产业信息化开始由单一环节的信息化科技创新向全产业链信息化科技创新转变;④由单一信息化技术创新向集成技术创新转变;⑤农业信息服务科技手段开始由传统单一方式向协同化、精准化、个性化、可视化、智能化方向转变;⑥创新机制开始由高校科研机构为主体、国家无偿投入为主,向以企业为主体、产学研结合、国家有偿投入转变。

2.2发展策略

依据前述发展阶段,在发展策略上,第一阶段为政府主导型,农业信息技术基础设施的研究、开发,实验的人力、物力主要由政府投入;第二阶段是双轨协调型。即综合运用政府和市场两种力量,农业信息技术的发展建设由政府、科研院校和企业共同参与;第三阶段为市场主导型。政府主要承担发展战略制订和政策环境构建,引导技术创新和产业发展,受技术创新利益驱动,企业是信息技术发展的主要推动力量[8]。“十三五”期间,我国大部分省份应该采取第二阶段战略,即双轨协调型,政府做好规划,引导企业发挥创新主体地位的作用。

3现代农业信息化关键技术

从信息利用过程来看,农业信息化技术创新的重点任务可归纳为:①信息自动获取技术,主要包括传感、遥测、遥感及摄像扫描技术;②信息传输技术,包括光纤通信卫星、通信激光等;③信息利用技术,包括数据库技术管理、系统人工智能与专家系统、遥感技术RS、地理信息系统GIS、全球定位系统GPS、模拟与仿真技术和计算机网络技术等[9];④信息控制技术,包括生产自动化技术,如农业生产领域的自动灌溉、自动施肥、温度自动调节等技术。同时,农业信息网络平台建设、农业信息资源数据库建设、农业信息监测与速报系统、虚拟农业和精确农业等已成为农业信息化建设的重点。其中,农业数据库产业是信息部门重点开发的领域,农业应用软件开发将成为农业信息产业化的重要组成部分[10]。在农业信息智能分析方面,需要突破智能化数据采集与挖掘、海量数据管理、生产风险因子早期识别、农产品市场价格短期预测等关键技术[11]。其中,精准农业、数字农业、农业电子商务、农产品质量安全追溯、农业技术集成、低成本便捷性农业软件和终端技术等将成为“十三五”期间农业发展研究的重点。

4现代农业信息化关键技术创新

4.1精准农业:农业生产过程信息化

针对农业生产环节精细化程度不高、农业污染、资源浪费大等突出问题,面向良种繁育、作物栽培、畜禽饲养等农业生产,以精准农业“3S”等关键技术集成开发与应用为代表,研究农田水、土、肥、气、温度等生长信息的智能感知与快速获取技术;研究土壤养分与墒情变化、耕地质量动态、气候变化等监测与处理技术;研发农田精准作业导航与变量作业控制、精准作业数字化管理与智能决策等管理系统;建设动植物防病治病、病虫草鼠害发生、重大疫情快速反应与预警体系。整合建设北斗导航、全球定位系统GPS、农田地理信息系统GIS、农田遥感监测系统、农业专家系统、网络化管理系统等,构建省级主要作物精准作业体系。推广测土配方施肥等一批共性关键技术和重大系统产品,提升省级以精准农业为代表的农业精细化生产水平。

4.2数字农业:农产品加工储运领域信息化

针对农产品加工储运领域自动化控制水平不高、管理薄弱等问题,加强农产品加工储运信息科技创新,重点开展农产品加工智能化装备、生产自动化控制、农产品储藏环境远程监控、鲜活农产品冷链运输控制、农产品物流管控等信息技术研发。攻克农业信息智能处理与知识发现技术,探索农业信息大数据应用建设。构建农产品加工数字模型和虚拟加工储运技术平台。研究农产品加工过程模拟模型,开发便捷性生产加工管理系统。利用工业化数字控制技术已有研究和应用成果,改造、改良传统农业产品加工领域的技术和设备,实现农产品加工储运优先向数字化迈进。

4.3农产品电子商务:农产品交易信息化

针对农产品信息流通、交易不畅等问题,顺应电子商务发展趋势,通过引进与开发,依靠信息科技创新,形成易用、好用的生态地理标志农产品电子商务平台及系统,降低农产品交易成本,提高科技信息服务含量,提升农产品交易的快捷性和便捷性。建设新型农产品交易平台、大型农产品数据库;加强支付、认证、配送等环节创新信息技术研发与应用;创新生产、流通、交易、竞价、网上超市等体验式服务。引导电信运营商、电信增值业务服务商、内容服务提供商和金融服务机构相互协作,开发电视、手机、电脑、公共服务等多种接入终端,建设并创新完善移动农业电子商务服务平台,研发信用积分管理系统,加强交易双方的信用管理。积极研发以电子商务为导向的配送物流配套体系,完善农业电子商务创新体系。

4.4产品质量安全追溯:农产品质量安全控制信息化

针对当前农产品质量安全问题,重点研究及应用农产品电子标识以及物流网络构建技术。研发质量监控、追溯技术及设备,推广便携式快速检验终端。通过农产品信息采集、质量检测监控、质量安全追溯信息读取等新型信息技术研发,实现农产品质量全程控制,保证质量。重点综合应用推广农产品电子标签及条码标识、信息采集与传输、无线移动数据采集与可靠传输技术,降低RFID设备和标签的成本,提高RFID技术普及率。针对猪肉、牛肉、鸡肉、蔬菜、水产品以及茶叶等农产品开展质量安全监管与质量追溯信息化示范,提高农产品质量及其安全水平。

4.5共性关键技术:创新现代农业信息服务共性关键技术

针对不同类型企业和经济组织急需的共性关键技术,主要进行信息化关键技术集成与应用,开发个性化信息服务软件和设备,探索农业信息资源挖掘与便捷传送技术,通过大型智能农业综合信息服务平台建设,实现硬件云平台化、软件超市化,形成农业信息共性关键技术创新体系。面向大田作物、设施蔬菜、集约化畜禽与水产等生产经营全产业链,集成数字农业、精准作业、农产品质量安全追溯等关键技术,推进农业物联网信息融合与云计算等核心技术,开发性能可靠、成本低廉、操作简便的现代农业软硬件技术产品和系统,推进农业生产经营的信息化、数字化、精准化[12]。面向农业合作社、家庭农场等中小经济组织,进行移动互联网设备及软件的研发与创新,开发特色软件,提高软件稳定性,满足特定用户的使用体验,解决农业人口普遍存在的文化程度总体相对偏低问题,提升信息化水平。

5现代农业信息化关键技术创新保障

信息服务业作为新兴行业,需要依靠政府大力推动,这是我国农业信息服务业发展的关键[13]。为实现我国现代农业信息化科技创新的战略目标,政府需通过重大专项的形式支持农业企业等相关经济组织和科研院所积极开展农业信息化技术研发与应用示范,引导农业信息化创新,保障各项工作顺利实施(见图1)。

5.1关键技术创新思路

根据农业信息化发展阶段,结合农村信息化“十二五”发展情况,针对现代农业发展过程中的瓶颈问题,解决农业产业化发展中农业信息服务共性关键技术集成应用的具体问题,保障现代农业在信息采集、加工处理、信息传播、信息接收利用等环节的畅通,提升农业信息化水平,为现代农业快速发展提供保障,实现农业现代化、信息化协调发展。

5.2关键技术创新布局

(1)农业信息体系创新布局。重点完善以科研院所、重点企业为主体的关键技术集成技术创新体系;构建以农业综合信息服务平台建设、信息服务资源整合、信息传输以建设及信息服务终端研发为主要内容的服务体系;形成以试验、示范为主要手段的推广应用体系。

篇4

2 发展精准农业

篇5

农业发展过程中的某种形态或农业生产形式由农业生产技术(农业生产力水平)和农业生产组织形式(农业生产关系)所决定。影响农业生产形式的主要外界因素有农业自然资源保障系统、农业及农村劳动力资源、农业自然条件和农村经济条件及社会生产力水平4个方面。

传统农业劳动生产率较低,大量劳动力被束缚在农业上。通过大量高能耗工业产品(机械、化肥、农药、燃油、电力等)的投入来维持系统的产出。机械化农业的主要优势是大幅度地提高了农业生产率,但也遇到了许多问题:如土地压实、水土流失、地下水及地表水污染,农药的使用导致了严重的公共卫生和环境方面的问题,品种基因单一化的危害、农产品品质的下降,水土资源及能源制约等。这种农业资源与环境的压力促使科学家和农民努力寻求一种在继续维持并提高农业产量的同时,又能有效利用有限资源、保护农业生态环境的新的可持续发展农业生产方式,并进行了多种探索,提出了多种解决途径,如自然农业、有机农业、生态农业,等等。90年代以来,随着全球定位系统(GPS)、地理信息系统(GIS)、农业应用电子技术和作物栽培有关模拟模型以及生产管理决策支持系统(DDS)技术研究的发展,"精准农业"已成为合理利用农业资源、提高农业作物产量、降低生产成本、改善生态环境的一种重要的现代农业生产形式。

2、精准农业的技术体系

精准农业是现代信息技术、生物技术、工程技术等一系列高新技术最新成就的基础上发展起来的一种重要的现代农业生产形式,其核心技术是地理信息系统、全球定位系统、遥感技术和计算机自动控制技术。精准农业系统是一个综合性很强的复杂系统,是实现农业低耗、高效、优质、安全的重要途径。精准农业技术体系的构成见表1。

2.1现代信息技术

精准农业从90年代开始在发达国家兴起,目前已成为一种普遍趋势,英美法德等国家纷纷采用先进的生物、化工乃至航天技术使精准农业更加"精准"。美国把曾在海湾战争中运用过的卫星定位系统应用于农业,这项技术被称为"精准种植",即通过装有卫星定位系统的装置,在农户地里采集土壤样品,取得的资料通过计算机处理,得到不同地块的养分含量,精准度可达1-3m2。技术人员据此制定配方,并输入施肥播种机械的电脑中。这种机械同样装有定位系统,操作人员进行施肥和播种可以完全做到定位、定量。还可将卫星定位系统安装在联合收割机上,并配置相连的电子传感器和计算机,收割机工作时可自动记录每平方米农作物产量、土壤湿度和养分等的精数据。

现代信息技术的特点是应用地理信息系统将土壤和作物信息资料整理分析,制成具有时效性和可操作性的田间管理信息系统,在此基础上,利用全球卫星定位系统、遥感技术以及计算机自动控制技术,根据空间每一操作单元的具体条件,通过调整资源投入量,达到增加产量、减少投入、保护农业资源和环境质量的目的。同时在农田经营管理决策的环节上,可根据不同情况选择"单纯获取高产","以适量投入,获取较好经营利润"或"减少资源消耗、保护生态环境"等多种不同优化目标。这项技术的构成包括空间定位的农作物产量信息采集技术和土壤信息定时采集技术、农田地理信息系统定时更新技术及空间定位的农业投入控制系统等。

2.2生物技术

现代生物技术从广义上讲主要包括基因工程、细胞工程和微生物工程等,最富有生命力的核心技术是基因工程。现代生物技术最显著的特点是打破了远缘物种不能杂交的,即用新的生物技术方法开辟一个世界性的新基因库源泉,用新方法把需要的基因组合起来,培育出抗病性更强、产量更高、品质更好、营养更丰富,且生产成本更低的新作物、新品种;另外还具有节约能源、连续生产、简化生产步骤、缩短生产周期、降低生产成本、减少环境污染等功效。如美国把血红蛋白转移到玉米中,不仅保持了玉米的高产性能,而且提高了它的蛋白含量。抗转基因水稻、玉米、土豆、棉花和南瓜等已在美国、阿根廷、加拿大数百万公顷土地上试种。1998年,全世界利用原生质体培养技术已成功地开发了100多种再生植物,转基因牛、羊、猪和鱼也培育成功。美国是采用转基因技术最多的国家,1998年转基因作物播种面积达2050万hm2,是1997年的2.5倍;目前其转基因种子播种面积已占大豆播种面积的36%,占玉米播种面积的45%。阿根廷是继美国之后大量采用转基因技术的国家,1998年转基因作物播种面积达550万hm2,是1997年的4倍,其中75%的大豆播种面积采用经过改变基因的豆种。加拿大转基因作物播种面积从1997年的130万hm2,增加到1998年的280万hm2;50%的大豆和玉米播种面积采用了经过基因处理的种子。

微生物农业是以微生物为主体的农业。微生物在合成蛋白质、氨基酸、维生素、各种酶方面的能力比动物、植物高上百倍;微生物还可利用有机废弃物,变废为宝、保护生态环境。利用有益微生物,不仅可获得大量生物量,用于制作食用蛋白质以及脂肪、糖类等专门食品,而且在生物防治、土壤改良方面也有突出表现。日本研制的EM(含80余种微生物的生物制剂),被称为可以挽救地球的有效微生物群。施用EM可少用或不用化肥、农药和抗生素药物,净化环境,。

2.3工程装备技术

现代工程装备技术是精准农业技术体系的重要组成部分,是"硬件",其核心技术是"机电一体化技术";在现代精准农业中,应用于农作物播种、施肥、灌溉和收获等各个环节。

精准播种。将精准种子工程与精准播种技术有机结合,要求精准播种机播种均匀、精量播种、播深一致。精准播种技术既可节约大量优质种子,又可使作物在田间获得最佳分布,为作物的生长和发育创造最佳环境,从而大大提高作物对营养和太阳能的利用率。

精准施肥。要求能根据不同地区、不同土壤类型以及土壤中各种养分的盈亏情况,作物类别和产量水平,将N、P、K和多种可促进作物生长的微量元素与有机肥加以科学配方,从而做到有目的地肥,既可减少因过量施肥造成的环境污染和农产品质量下降,又可降低成本。要求有科学合理的施肥方式和具有自动控制的精准施肥机械。

精准灌溉。在自动监测控制条件下的精准灌溉工程技术,如喷灌、滴灌、微灌和渗灌等,根据不同作物不同生育期间土壤墒情和作物需水量,实施实时精量灌溉,可大大节约水资源,提高水资源有效利用率。

精准收获。利用精准收获机械做到颗粒归仓,同时可根据一定标准确分级。

3、我国精准农业的重点发展方向

我国各地的自然条件、社会经济条件差异明显,农业生产水平差距较大,农业集约化总体水平较低。表2示出1994年中印日美4国农业集约化程度及世界的平均水平。可以看出,我国农业具有以下特点:1)农业人口人均耕地面积小,仅为世界平均水平的1/5;低于印度、日本,同美国相差甚远。2)农业机械化水平低。每万公顷拖拉机拥有量,仅约为世界平均水平的34.7%,甚至低于印度的水平。3)化肥投入水平高。每公顷化肥投入量是世界平均水平的3.37倍,高于美国,但低于日本。

同农业发达国家相比,我国农业集约化水平较低,要实现现代化,是继续走农业发达国家已走过的以牺牲土质、环境及使用对人类健康有不良影响的大量依靠农药、化肥的石油农业发展道路,还是利用现代信息技术、生物技术和工程装备技术发展具有中国特色的精准农业,答案是不言而喻的。应根据我国农业发展所面临的资源环境问题,走具有中国特色的精准农业发展之路,实现我国农业的可持续发展。

3.1重点发展节水、节肥精准农业技术体系

1)实现精准灌溉,提高水资源利用率。

水资源短缺是我国许多地区农业生产的主要制约因素。据测算,我国全年降水量约为6.19万亿m3,其中约55%消耗于陆面蒸发,只有45%转径流和地下水,实际利用率不到10%(约5000亿m3)。

当前我国农业灌溉用水面临的主要问题是灌溉农区面积约5000hm2,其中渠灌面积较大,多属粗放型灌溉模式。在华北井灌区特别是华北平原地区,自从将"两年三熟制"改为"一年两熟制"后,水分亏缺部分全靠超采地下水来弥补,地下水位连年下降,给北方灌溉农业造成严重威胁。

同时我国农业节水潜力巨大。我国渠灌面积约3900hm2,井灌面积1100多万hm2,合计约5000万hm2。渠水灌溉的利用率约为0.3,井水灌溉利用率约为0.5,两者加权平均值为0.35左右,与发达国家0.7-0.9的利用率相比,差距巨大。有关部门测算,如将农业用水(按4000亿m3计算)的利用率提高0.2,即达到0.55,则可节水800亿m3。

山东海阳引进以色列技术,建成约33hm2(约500亩)果园自动化控制微喷工程,采用微机控制。根据土壤吸水能力、苹果生产阶段和气候条件等因素,定时、定量、定位给果树供水。据有关专家测算,粮田自动化喷灌可节水30%-40%;省地1.5%-2.0%;果园和菜园的微灌可节水50%-60%;防渗渠道与土渠相比可节水约50%。

有研究认为,北京市耕地面积与以色列耕地面积基本相同,但北京市水资源总量和农业用水量都约为以色列的2.4倍,如采用精准农业战略,以管道灌溉、喷灌、滴灌和渗灌等方式取代大水漫灌,在产量上达到以色列现水平,可节水约2/3,即约18亿m3。

2)实施精准施肥,提高化肥资源利用率

据联合国粮农组织统计,化肥对粮食的贡献率约占40%。我国能以占世界7%的耕地养活占世界22%的人口,应该说化肥在其中起了重要作用;但同时也发现,从1980-1995年的十几年间,化肥施用总量增加了183.1%,年均递增率达7.2%。1995年化肥总施用量约达3600万t,而同期粮食总产只增加了46.6%,年均递增率仅为2.7%。期间化肥投入所生产的粮食由31.5kg.kg-1下降至17.70kg.kg-1。我国化肥施用的突出问题是结构不合理,利用率低。据大量试验资料统计,平均单产6500kg.hm-2的谷物,1季产量从土壤中带走N100.5-169.5kg,P2O549.5-75.0kg,K2O120.0-175.5kg,N,P,K比例为1:0.45:1。我国许多省区都存在过量施用氮磷化肥,钾肥施用不足的问题。1995年我国N,P,K实际施用比例为1:0.43:0.17。由于农田复种指数和作物产量的大幅度提高,有机肥施用量下降,化学钾肥投入不足,我国土壤缺钾面积日益扩大。

国外文献报道,氮肥平均利用率可达50%-60%,当季利用率磷一般为10%-30%,钾为20%-60%。据我国有关学者的研究,我国N,P,K平均利用率分别为35.0%,19.5%和47.5%,可见我国氮素化肥利用率低于世界平均水平,不仅浪费了资源、增加了农业生产成本,而且未被作物吸收利用的氮素向大气挥发、向水体淋溶,形成对环境的污染。

近年来我国农田微量元素缺乏面积不断扩大,而目前施用微量元素肥料的面积仅约1600万hm2,为缺乏微量元素面积的11.3%。

在我国通过实施精准施肥技术,不但可以提高化肥资源利用率,还可以降低成本,提高作物产量。

3.2发展精细设施农业

所谓设施农业是指应用某些特制的设施来改变动植物生产发育的小气候,达到人为控制其生产效果的农业生产形式。设施农业主要有:1)设施种植业,如温室栽培、塑料大棚栽培、无土栽培;2)设施畜牧业,如畜禽舍、养殖场及草场建设等。利用现代信息技术、生物技术和工程装备技术,进行设施农业生产,即为精细设施农业。

设施农业在国外发展较早,目前已达相当高的水平。在欧洲,多数国家以温室生产为主,其中荷兰和英国的温室主要是玻璃温室,用来生产蔬菜和花卉。荷兰生产的蔬菜80%用于出口,花卉出口达世界出口量的71%(1987)。日本温室栽培蔬菜和果树的技术十分发达,几乎所有品种的蔬菜在很大程度上都依赖于温室生产。

我国设施农业起步较晚,但发展较快。目前世界塑料大棚和温室面积约36.576万hm2,其中我国面积最大,达15.67万hm2,占42.8%。设施农业同普通农业相比,产业化程度高,效益好,接受新技术的能力强。

在我国设施农业发展较快的地区推广、应用精准设施农业可以达到增加农产品产出、提高农产品品质,节约水、肥资源,保护农业生态环境的目的。

1)精准农业是在现代、生物技术、工程技术等一系列高新技术最新成就基础上发展起来的一种重要的理代农业生产形式。其核心技术是地理信息系统、全球定位系统、遥感技术和计算机自动控制技术。

2)在我国建立现代精准农业系统应从开始就将现代信息技术、农业生物技术、农业工程装备技术等各方面的专家有机组合在一起,协同攻关,逐步建立起具有中国特色的现代精准农业技术体系。

篇6

一、3S技术的应用

1.卫星定位系统

6PS系统在精确农业实施过程中异常重要,它一方面将农田各种信息给予准确定位,并输入到GIS,另一方面也是农机作业轨迹的依据。在翻耕机、播种机、田间取样机、施肥喷药机、收割机等机具上安装上GPS接受器,可以准确指示机具所在位置的坐标,使操作人员可以按计算机上GIS操作指示图进行定点作业。近几年来,GPS产业技术发展迅速,若干大公司迅速涉足农业领域,提供了用于农田测量、定位信息采集和与智能化农业机械配套的差分校正全球卫星定位技术。系统可用于农田面积和周边测量、引导田间变量信息定位采集、作物产量小区定位计量、变量作业农业机械实施定位处方施肥、播种、喷药、灌溉和提供农业机械田间导航信息等。DGPS作为农业空间信息管理的基础设施,一旦建立起来,即不但可服务于“精准农业”,也可用于农村规划、土地测量、资源管理、环境监测、作业调度中的定位服务,其农业应用技术开发的前景广阔。

2.地理信息系统

地理信息系统是实现精准农业概念的核心系统。它可以用于农田数据管理,查询土壤、自然条件、作物苗情、作物产量等,并能够方便的绘制各种农业专题地图,也能采集、编辑、统计分析各种不同类型的空间数据。在精准农业中地理信息系统还应用于绘制作物产量分布图和进行农业专题地图分析。通过地理信息系统提供的覆合叠加功能,将不同农业专题数据组合在一起,形成新的数据集。例如,将土壤类型、地形、作物覆盖数据采用覆合叠加,建立三者在空间上的联系,可以很容易分析出土壤类型、地形、作物覆盖之间的关系。

3.整体集成

在精准农业中,单纯地运用GPS、RS与GIS中的某一种技术往往不能满足综合工程的需要,不能提供精准农业实施过程中所需要的对地测量、存储管理、信息处理、分析模拟的综合能力。这就需要把ItS、GIS、GPS有机结合,综合应用,构成一个一体化信息获取、信息处理、信息应用技术系统,这是一个充分利用各自技术特点的空间技术应用体系,并逐步成为一个实践性和应用性较强的新学科,简称为“3S”集成技术。在“3S”集成技术中,RS是GIS的一个重要数据源和强有力的数据更新手段,GIS作为一种空间数据管理、分析的有效技术,可以为RS提供各种有用的辅助信息和分析手段,而GPS则为RS和GIS综合系统中处理的空间数据获得准确的空间坐标提供了获取和定位手段,并且可以作为一个数据源为?GIS提供相关数据,三者已发展成为不可分割的整体,相互渗透相互补充。

4.遥感技术

篇7

位于赣粤边缘江西省龙南县的龙灵农场在建立水果蔬菜质量安全追溯体系的同时还构建了食用农产品动态信息监管系统。

各地农业信息化蓬勃发展的态势彰显着“十二五”期间农业农村信息化在农业生产、经营、管理、服务领域的渗透日渐深入。信息化正成为现代农业发展的强大引擎。

物联网助力农业精准高效。国家物联网应用示范工程智能农业项目和农业物联网区域试验工程深入实施,取得重要阶段性成效。畜禽养殖物联网在环境监控、精准饲喂等方面,水产养殖物联网在水体监控、饵料投喂等方面,大田种植物联网在水稻智能催芽、农机精准作业等方面,设施园艺物联网在环境监控、水肥一体化等方面,初步实现产业化应用。总结推广了426项农业物联网软硬件产品、技术和模式,节本增效作用凸显。农业物联网等信息技术应用比例达10.20%。

电商平台助力农户“种对卖好”。农业电子商务异军突起,正在形成跨区域电商平台与本地电商平台共同发展、东中西部竞相迸发、农产品进城与工业品下乡双向流通的发展格局。农产品电子商务保持高速增长,2015年农产品网络零售交易额超过1500亿元,近两年年均增速超过70%,占农业总产值比重达1.47%。农产品质量安全追溯体系建设快速推进,有力支撑了农产品电子商务健康快速发展。农业生产资料、休闲农业及民宿旅游电子商务平台和模式不断涌现。农产品网上期货交易稳步发展,批发市场电子交易逐步推广。新型农业经营主体信息化应用的广度和深度不断拓展。

篇8

2智能化农业机械应用的主要问题

2.1数据信息采集系统的精准化程度不够

数据信息采集系统是一种通过数据分析来了解农作物的基本情况,农作物的生长环境以及农作物的实际用途等多个方面的系统,数据信息采集系统具有重要作用,但是现阶段数据信息采集系统存在数据不精准的问题。从整体上来看,主要包括信息手机、信息统计、以及信息数据整理等多方面的问题,这些问题的存在直接影响对农作物的分析不到位的问题,智能化农业机械系统的应用具有重要的作用[4]。

2.2决策系统人员的技术水平不够

决策系统是指将收集的信息进行分析以及数据整理,并且进行一定的统计,这些人员需要专门的技术人员,但是从现阶段来看,整个决策系统的技术人员技术水平不够,这与农业技术人员的素质水平有关,也与高校对有关农业人才的培养的输入力度不够有关,这些问题的普遍存在直接影响了智能化农业的整体系统的完善。

2.3执行系统的技术性不强

执行系统包括现代化的有关技术,包括传感技术,GPS技术等多样化的技术水平,从实际来看,要高度重视整个系统体系的配合,可是现阶段在采用这些技术应用过程中存在的一个关键的问题就是执行系统的技术性水平不够,同时,从整个技术的应用与执行过程中,还存在技术设备较落后,整个技术系统以及技术体系发展不够完善的问题,针对现阶段的问题,对于执行系统的技术性不强问题,必须高度重视,这也是在现代化的农业机械应用系统中需要充分注重的问题。

3智能化农业机械应用的主要策略

3.1提升数据信息采集系统的精准化程度

在进行数据信息采集系统的健全与完善过程中,必须不断提升采集系统的精准性程度,针对不同的农作物以及农业产品,可以在信息采集过程中进行分类,通过整个分类程序更好地提升整个信息采集系统的健全,从而不断推动整个系统应用以及系统化发展的整体水平,其次,有关农业人员还要结合具体的农作物情况进行手机与整理,让农作物的管理体系更加完善。

3.2决策系统人员的技术水平要不断提升

篇9

坚持以新时代中国特色社会主义思想为统领,凝聚科技资源助力精准扶贫、产业脱贫,逐步建立和完善科技助推精准扶贫、稳定脱贫长效机制模式。到2020年底,建成市级农业科技园区3家,创建省级以上“星创天地”2家,培育“农业科技小巨人”企业2家,累计示范推广先进适用技术和成果20项,形成覆盖全县的科技扶贫服务体系。

三、重点工作

(一)推动精准施策,助力扶贫攻坚

加强与省科技扶贫专家服务团对接,科学制定科技精准扶贫行动方案,高标准精准施策助力扶贫攻坚。针对本县特色产业基础,摸清短板和需求,联系邀请省科技扶贫专家服务团开展产业创新发展调研,制定并推行适合我县产业发展的技术路线图和施工图,推动特色产业发展。

到2020年底,建立完善的科技服务体系,形成科技精准扶贫长效机制。

(二)整合科技资源,加快特色产业转型升级

引导和支持各乡镇村选准主导产业和特色产品,加快壮大区域特色产业。加大与高校、科研院所、科技型企业以及科技扶贫专家服务团的对接力度,围绕我县主导产业发展,开展关键技术协同攻关,集成产业技术成果包,示范引领特色产业转型升级。积极培育“农业科技小巨人”企业,引导其开展新产品研发和生产,发展高效农业、品牌农业、订单农业,提升现代农业产业水平和规模。打造一批产业示范基地,带动贫困户发展特色产业。

2020年,全县形成1个科技扶贫特色产业,培育1家以上“农业科技小巨人”企业,每个脱贫攻坚重点村发展1个特色产品。

(三)开展结对帮扶,精准引导科技资源扶贫。

组织我县特色产业主动与联合帮扶团队、相关产业技术创新战略联盟结对。推动高校、科研院所、科技型企业与我县农业企业、合作社结对帮扶,示范转化科技成果。组织我县省级农业科技园区与周边村贫困户紧密合作,结合农户需求建立示范基地,推动脱贫攻坚重点村相关产业发展。鼓励“农业科技小巨人”龙头企业通过提供优良品种、技术指导、信息服务和订单生产等方式,与脱贫攻坚重点村建立稳定的利益关系,带动其产业化做大做强。

2020年,对接1个联合帮扶团队或产业技术创新战略联盟。每个省级农业科技园区与周边1个以上村结对开展帮扶。

(四)搭建科技平台,加快科技成果转化推广。

发挥农业科技园区科技成果培育和转化推广功能,加速农业新品种、新技术、新装备、新模式的推广应用。利用农业科技示范基地成果展示作用,让农民直观了解并积极参与先进农业技术推广应用。支持脱贫任务较大的乡镇建立科技服务站,开展多样化的科技服务工作。

2020年,建成市级农业科技园区1家,示范推广先进适用技术和农业科技成果不少于10项。至少建立3家乡镇科技服务站,培育1个新型经营主体,转化5项以上先进适用技术。

(五)推行科技特派员制度,促进各乡镇村创新创业。

鼓励和引导各类科技人才,带技术带项目到贫困乡村开展创新创业活动。建立科技特派员人才库,对各级科技特派员进行网络备案、分类管理、精准选派。支持乡镇创建“星创天地”聚集创新资源和创业要素,营造良好的农村创新创业环境。

2020年,选派科技特派员不少于10人到偏远贫困乡镇开展创新创业。创建省级以上“星创天地”1家。

(六)推进互联网应用,提升农业信息服务水平。

依托农业科技园区、星创天地、科技服务站等机构的线上平台,促进互联网技术在农业生产、经营、管理、服务等环节的应用,精准开展农村信息化服务。支持农业科技园区、星创天地、电商中心、电商服务站等网络销售平台,连接特色农产品网上交易服务平台,解决农户种养难、售卖难等问题,提高贫困户参与率,精准推动贫困村特色产业发展。

2020年,通过网络线上技术咨询服务不少于100人次,实现全县特色产业和“互联网+”科技扶贫全覆盖。

篇10

1现代农业信息技术创新

1.1现代农业信息技术创新的主要特点和趋势

科技的发展推动现代农业技术的不断创新,在这样的过程中,其技术创新体现出了以此几种特点:首先是投入成本较高,目前的农业信息化科技创新主要是以高科技为依托,在实际的技术创新中需要大量的投入,以此来实现农业的产业化发展。另外是开放性,与传统的农业发展不同,现代农业与各个行业之间具有一定的相互作用,彼此影响,相互渗透。差异性,在对农业信息化技术进行创新的过程中,实际的要求和需求之间具有一定的矛盾,这就体现出了农业技术创新的差异性[1]。最后,科技的不断发展,使现代农业信息技术创新具有鲜明的移动互联特征,体现出了集成化、网络化和系统化的发展模式。针对其主要发展趋势来说,主要体现在以下几个方面:首先是在新型技术的支持下,现代农业信息技术将重点从基础建设逐渐转移到了资源整合方面,希望以资源的优化配置实现农业的快速发展。另外针对产业的信息化发展,逐渐将传统的单一环节信息化科技创新,转变为全产业链的信息化科技创新发展,在这样的过程中,现代农业信息化关键技术的服务方式也在不断的发生变化。

1.2主要发展策略

在对现代农业信息技术进行利用中可发现,对其技术进行创新的主要策略主要包括这样几个阶段:首先是农业信息技术基础设施进行开发和研究,并且对配套技术进行研发,这一阶段的资金主要由政府来进行投入。第二个阶段是通过政府、相关院校和企业的共同参与,来对农业信息技术进行建设,这个阶段需要政府和市场的共同引导。在最后一个阶段中,需要在政府的引导下,发展新型技术和产业,而在这样的过程中,企业作为信息技术创新的主要力量,在其中发挥了主体地位的作用。

2现代农业信息化关键技术创新

2.1精准农业

精准农业主要指的是农业生产过程的信息化,在目前农业生产中的各个环节中,其整体精细化程度不高,常常会出现农业污染和资源浪费等情况,针对农业种类的不同,需要对全球定位系统、农田地理信息系统、遥感监测系统和网络管理系统进行整合,实现农业生产过程中的精细化管理,并且根据实际情况,建立农业生产精准作业体系,进一步对资源进行优化配置[2]。

2.2数字农业

数字农业主要指的是提高农产品加工运输方面的自动化程度。随着农业技术的不断发展,农产品的加工运输和储存成为了目前农业发展中重点关注的内容,这样的数字农业主要包括对农产品智能加工设备的开发、对农产品的生产过程进行自动化控制、对其冷链的运输控制。这样的数字农业技术能够进一步对农产品进行开发。

2.3农产品电子商务

农产品电子商务主要指的是农产品的交易信息化,针对目前农产品交易过程中信息流通不通畅等情况,需要在相应信息技术的支持下,建立符合当地农业特色的电子商务平台和农产品交易系统,以此来提高农产品交易过程中的安全性和便捷性。通过对农产品数据库的建立,对农产品交易的各个环节进行开发和创新,并且与相应的提供商和金融服务机构进行协作开发,将手机和电脑等移动终端接入到农产品的交易过程当中,以此来对农业电子商务创新体系进行完善[3]。

3结束语

结合现代农业信息化关键技术创新的特点和发展趋势,需在未来的农业发展中,针对数字农业、精准农业和农产品电子商务进行创新发展,进一步推动现代农业信息化的进步。

参考文献:

[1]刘峥,张鹏飞,黄志文.省域现代农业信息化关键技术创新研究[J].软件导刊,2014(12):7-9.

篇11

[中图分类号] F320 [文献标识码] A [文章编号] 1003-1650(2016)10-0070-01

1 现代农业主要经营模式

农业经营模式主要分为两种形式,分别为农业经营方式和农业经营形式,经营方式是对农业技术的描述,经营形式是对当前我国的农业制度方面的内容进行了解。按照经营方式来分析,我国的现在农业经营的发展历程中,经过了以下几个形态的变化:

1.1 家庭作业

家庭经营方式主要是通过家庭的成员进行生产经营或者小型承包的方式进行经营。是现代农业经营中最原始和简单的方式,在家庭生产团队中,每个成员具有独立的生产能力,这种经营模式较为灵活,每个成员都有较强的自主性,但是家庭成员在拥有自主性的同时还要承担一定的风险。

1.2 联合协作

引导农民自主联合,聚集土地资源,使得吓呆农业经营模式由初级向中级形态过渡,其协作方式有“中介组织+农户”和“公司+农户”。协作双方以合同、合约作为合作的纽带,比如:公司向农户提供生产所需的资料、技术或者市场信息及销售网络等。农户则在土地上劳作。该种经营模式形成了双方的优势互补,明确分工。都能获得自己的收益。

1.3 农业公司

现代股份公司经营,是现代农业经营发展较为科学的形态,具有现代农业经营模式的特点,如企业管理化,法人化,独立经纪人等。这种经营方式更加注重科学、高校的农业生产方式,能够不断的按照市场分布和需求调整农业结构,引进科学的生产技术,创造合理化的生产理念,同时按照市场需求培育新品种等方式来提升企业的竞争力和利润。

1.4 农科工贸一体化

农科工贸一体化是当前农业产生的高级形态,以产权的方式进行合作,实现“农、科、工、贸”一体化,在整个过程中,对整个产业链进行有效的分工合作,避免环节过多而产生的低效率的情况,一般情况下,一般是由“农、科、工、贸”集团联合经营,“强强联手”来进行市场垄断。

2 现代农业经营模式创新的建议

2.1 加强政府的调控和扶持

当前阶段的农业生产力水平不高,农民对于现代农业认识不够,依靠当前农民的意识和力量是无法实现农业现代化的。地方政府应该加强对农业发展的宏观调控,从宏观层面把握现代农业的发展趋势,制定农产品质量、价格等各项有利于现代农业发展的政策法规,加强农业区划与规划工作,当好现代农业发展的引导者、规划者和组织者,并通过法律、经济以及行政手段引导和督促农业生产者注意生态环境的保护等,为农业经营组织营造良好的外部环境。同时应该加大对农业经营的资金扶持,建立农业规模经营风险基金制度,从财务和技术上对现代农业的发展给予支持,维护现代农业的可持续健康发展。

2.2 深化农村经济体制改革

要创新农业经营体制,就应该使得农村土地承包趋于稳定。增强集体经济组织服务功能是创新农业经营体制机制创新的重要内容。加快发展农民专业合作社是创新农业经营体制机制的重要依托。大力推进农业产业化经营是创新农业经营体制。大力发展农村服务业,完善共赢的联结机制,强化企业在创新实践中的作用。为企业的经营发展添加路径。

2.3 积极发展农业规模化、专业化

虽然从理论上讲精准农业不仅适合大规模生产也适合小规模生产,但精准农业的发展要求尽量扩大生产规模。农户联户经营方式比较适合精准农业的发展。经营规模的扩大可以通过健全土地流转制度等方式来实现。制定相应的制度,实现一定程度上土地所有权和经营权的分离,促进土地的合理流动,使土地规模适当集中,这是精准农业模式的客观要求。加快建立健全土地流转市场,发展农业专业化,发展多种形式的适度规模经营。适应家庭承包经营的实际,强化农业公共服务能力建设,发展多元化、多层次、多形式的农业社会化服务,创新农业社会化服务机制。

2.4 加强农业科技人员的培养

一是提高精准农业研究水平,加快科技成果的转化。在政府及企业的资助下,在吸收、消化国外先进技术的基础上,开发具有自主知识产权的有效的高性能的智能化精准农业关键技术,实现优质、高产和低耗,提高产品竞争力,争创良好效益。通过科技成果的快速转化促进精准农业技术的产业化。完善农村技术推广体系,加快精准农业技术以及其他先进适用技术的推广。二是着力培育涉农人才,为经营模式创新奠定人才基础。围绕着改造传统农户、培育现代农业经营主体,广泛开展多种形式的农民培训,培育有文化、懂技术、会经营的新型农民,提高其发展集约型规模经营的能力,使其成为集约型规模经营的引路者。对于应用型人才,要以现有的农村技术人员为基础,广泛推行培训制度。

3 结束语

构建生态型、增收型农业已经成为现代农业的主要发展目标。从家庭经营模式到现代农业经营模式的发展过程中,现代农业的经营模式逐渐走向成熟。农业技术参与到土地资源、劳动力及资金的管理中,使得资源配置更加高效、合理。农村经济体制改革已经成为现代农业经营模式创新的重要部分,科技推广和人才培养是农业模式改革的强大推动力,以提升现代农业发展。

参考文献

篇12

张桃林强调,智能化、精准化、信息化是设施农业装备的重要发展方向,科研院所和企业一定要努力提升科研创新能力,加强技术攻关,研发生产轻型、简捷、实用、质量好、(受)市场欢迎的设施农业装备,着力解决农业生产中存在的实际问题,从而推进设施农业装备应用发展,提升我国设施农业整体水平。

友情链接