时间:2024-03-13 14:38:44
引言:寻求写作上的突破?我们特意为您精选了12篇生物医学工程发展趋势范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
本文就其目前发展情况进行分析讨论。
生物医学工程在国际上做为一个学科出现,始于20世纪50年代,特别是随着宇航技术的进步、人类实现了登月计划以来,生物医学工程有了快速的发展。在我国,生物医学工程做为一个专门学科起步于20世纪70年代,中国医学科学院、中国协和医科大学原院校长、我国着名的医学家黄家驷院士是我国生物医学工程学科最早的倡导者。1977年中国协和医科大学生物 医学工程专业的创建、1980年中国生物医学工程学会的成立,有力地推进了我国生物医学工程的发展。目前,我国许多高校科研单位均设有生物医学工程机构,从事着生物医学的科研 教学工作,在我国生物医学工程科学事业的发展中发挥着重要作用。
一、显微镜的发明
“解剖”一词由希腊语“anatomia”转译而来,其意思是用刀剖割,肉眼观察研究人体结构。17世纪lee wenhock发明了光学显微镜,推动了解剖学向微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进一步观察研究其细胞 形态结构的变化。随着光学显微镜的出现,医学领域相继诞生了细胞学、组织学、细胞病理 学,从而将医学研究提高到细胞形态学水平。
普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞的超微细结构、核结构、dna等大分子结构。而20世纪60年代出现的电子显微镜,使人们能观察到纳米(nm)级的微小个体,研究细胞的超微结构。光学显微镜和电子显微镜的发明都是医学工程研究的成果,它们对推动医学的发展起了重要作用。
二、影像学诊断飞跃进步
影像学诊断是20世纪医学诊断最重要发展最快的领域之一。
50年代x光透视和摄片是临床最常用的影像学诊断方法,而今天由于x线ct技术的出现和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床诊断水平。即计算机体断层 摄影(computed tomography ct),即是利用计算机技术处理人体组织器官的切面显像。x线ct片提供给医生的信息量,远远大于普通x线照片观察所得的信息。目前,螺旋ct(spiral ct 或helicalet ct)已经问世,能快速扫描和重建图像,在临床应用中取代了多数传统的ct,提高了诊断准确率。
医学工程研究利用生物组织中氢、磷等原子的核磁共振原理。研制成功了核磁共振计算机断层成像系统(mri),它不仅 可分辨病理解剖结构形态的变化,还能做到早期识别组织生化功能变化的信息,显示某些疾病在早期价段的改变,有利于临床早期诊断。可以认为mri工程的进步,促进了医学诊断学向功能与形态相结合的方向发展,向超快速成像、准实时动态mri、mra、fmri、mrs发展。根据核医学示踪,利用正电子发射核素(18f,11c,13n)的原理,创造 的正电子发射体层摄影(pet),是目前最先进的影像诊断技术。美国新闻媒体把pet列为十大医学生物技术的榜首。pet问世不过30年历史,但它已显示出对肿瘤学、心脏病学、神经病学、器官移植,新药开发等研究领域的重要价值。影像学诊断水平的不断提高,与20世纪生物医学工程技术的发展密切相关。
三、介入医学问世
介入医学是一种微创伤的诊疗技术。dotter和judkin(1964 年)是最早使用介入技术治疗疾病的创始人,他们用导管对下肢动脉阻塞性病变进行扩张治疗取得成功。1967年margulis首先使用过介入放射学,这是医学文献出现“介入”一词的最早记载。1977年 gruenzing成功地进行了首例冠状动脉球囊扩张术获得成功以后,介入性诊疗技术由于其创伤小、患者痛苦少,安全有效而倍受临床欢迎。20世纪80年代随着生物医学工程的发展,高精度计算机化影像诊查仪器、数字减影血管造 影(dsa)、射频消融技术以及高分子(high-polymer)新材料制成的介入技术用的各种导管相继问世,使介入性诊疗技术发生了飞速进步,临床应用范围不断扩大,从心血管、脑血管、非血管管腔器官到某些恶性肿瘤等都具有使用介入诊疗的适应证,并使诊疗效果明显提高,患者可减免许多大手术之苦。有人把介入诊疗技术视为与药物诊疗、手术诊疗并列的临床三大诊疗技术之一,也有人把介入诊疗技术称之为20世纪发展起来的临床医学新领域--介入医学。
四、人工器官的应用
当人体器官因病伤已不能用常规方法救治时,现代临床医疗技术有可能使用一种人工制造的装置来替代病损器官或补偿其生理功能,人们称这种装置为人工器官(artificial organ)。如20世纪50年代以前,风湿性心脏瓣膜病的治疗,除了应用抗风湿药物、强心药物对症治疗外,对病损的瓣膜很难修复改善,不少患者因心功能衰竭死亡。而今天可以应用人工心肺机体外循环技术,在心脏停跳状态下切开心脏,进行更换人工瓣膜或进行房、室间隔缺损的修补,使心脏瓣膜病、先天性心脏病患者恢复健康。心外科之所以能达到今天这样的水平,主要是由于人工心肺机的问世和使用了人工心脏瓣膜、人工血管等新材料、新技术的结果。
肾功能衰竭、尿毒症患者愈后不良,而人工肾血液透析技术已挽救了大量肾病晚期患者的生命,肾病治疗学也因此有了很大进步。
现代生物医学工程中人工器官的发展也非常迅速,除上述人工器官外,人工关节、人工心脏起搏器、人工心脏、人工肝、人工肺等在临床都得到应用,使千千万万的患者恢复了健康。可以说,人体各种器官除大脑不能用人工器官代替外,其余各器官都存在用人工器官替代的可能性。
此外,放射医学、超声医学、激光医学、核医学、医用电子技术、计算机远程医疗技术等先进的医疗技术和仪器设备都是现代医学工程研究开发的成果,综上可见,20世纪生物医学工程的发展,显着提高了医学诊断和治疗水平,有力地推动着医学科学的进步。
五、生物医学工程展望
纵观医学新技术诞生和发展的 历史,从伦琴发现x线到今天x射线诊疗技术的发展,从朗兹万发现超声波到今天b超诊断的广泛应用,从布洛赫和伯塞尔发现核磁共振到今天mri的问世,从赫斯费尔德发明ct到今天ct成像系统的应用,都是以物理学工程技术为基础、医学需求为前提发展起来的医学新技术。
(一)各种诊疗仪器、实验装置趋向计算机化、智能化,远程医疗信息网络化,诊疗用机器人将被广泛应用。
(二)介入性微创,无创诊疗技术在临床医疗中占有越来越重要的地位。激光技术,纳米技术和植入型超微机器人将在医疗各领域里发挥重要作用。
(三)医疗实践发现单一形态影像诊查仪器不能满足疾病早期诊断的需要。随着pet的问世和应用,形态和功能相结合的新型检测系统将有大发展。非影像增显剂型心血管、脑血管影像诊查系统将在21世纪问世。
(四)生物材料和组织工程将有较大发展,生物机械结合型、生物型人工器官将有新突破,人工器官将在临床医疗中广泛应用。
“是不是也要和典型工科男一样,整天对着电脑看数据,或是画图呢?”
“这会是工作的一部分,因为有不同的分支,就业也有很大的不同。”
很多人听说我学生物医学工程专业,都表现出惊诧的眼神,不知道会学些什么。当他们得知我在医学院,眼里的惊讶就又升了一个等级。是的,我在医学院读工科博士学位,梦想着能成为一个为医学事业效力的工程师。
下一个诺贝尔奖的产出地
生物医学工程是一门新兴的交叉学科,它是工程学、生物学和医学的完美结合。通过研究人体系统的状态变化,运用工程技术手段去控制这类变化,来解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务。如果说医生是在临床上给予病人直接的救助,那么生物医学工程师就是通过研发的方式,为医生提供技术支持。
现代医学的迅速发展,离不开高新设备的推动。手术室中高端器械,如高频电刀、激光刀、呼吸麻醉机、监护仪、X射线电视、超声、核磁共振成像技术等,都是生物医学工程高速发展的产物,生物医学工程研究者就是这些医用电子仪器的研发者。当你看扣人心弦的美国医疗剧时,医生常常使用的挽救了无数生命的除颤仪,就得力于医学工程师的研究和设计。
生物材料制作也是生物医学工程的重要组成部分之一。在我国器官捐献还较少,而很多终末期器官衰竭者又在等待新的器官来延续生命,于是人工器官应运而生。生物材料为各种人工器官提供物质基础,器官制造直接关乎生命,是个大学问。制作人工器官的材料必须要充分考虑强度、硬度、挠度、韧性、耐磨性及表面特性等各种物理、机械等性能。由于这些人工器官大多数是植入体内的,所以要求具有耐腐蚀性、化学稳定性、无毒性,还要求与机体组织或血液有相容性。这些材料包括金属、非金属及复合材料、高分子材料等,其中轻合金材料的应用较为广泛。所以,从事这一领域研究不仅要有丰富的医学知识作为基础,还要对物料、材料等方面有深入了解和研究。相信在未来随着技术的成熟,我们会设计出质量高而又成本低的人工器官,为人类的健康作出更大贡献。
最有趣、最前沿的要数神经网络的研究了。大脑是人体最复杂的器官,对脑神经的研究是目前世界各国科学家掀起的一个新热潮。这是一个可能引起重大突破的新兴边缘学科,它研究人脑的思维机理,将其成果应用于研制智能计算机技术。运用智能原理去解决各类实际难题,是神经网络研究的目的,现在这一领域已取得可喜的成果。也许,下一个诺贝尔生物或医学奖的获得者就是研究该领域的生物医学工程科学家。
除此之外,生物医用陶瓷材料、纳米医学、微创医学、生物力学、生物信息学、远程医学与健康信息学等,都是生物医学工程的重要分支。
英语想不好都难
单看这个专业的名字,就能看出这个新兴的交叉学科的三大板块――生物、医学、工程,缺一不可。
第一板块:生物。在该领域,学生要修读化学生物学、生物传感与分析、生物信息学、生物电子学等相关课程。不仅要掌握这些理论基础,还要有生物科学的基本实验技术,能从事试验工作。
第二板块:医学。在医学方面,学生要修读人体生理学、人体解剖与组织学、神经科学、医学统计学等。同时要学习生物医学仪器的基本原理、设计方法,并了解相关仪器的发展趋势,掌握现代医学影像技术的基本原理、技术现状和发展趋势。此前我对医学影像学一无所知,后来去医院和一些厂家实际参观,一张张生动立体的器官美图、核磁共振检查带来的精确诊断,让我领略了生物医学工程的巨大魅力。
第三板块:工程。尽管此专业在很大程度上是为了服务于医学领域,但是在学习的过程中,涉及工科的课程最多,也最复杂。生物力学是必修课,但是有其自身特点,这是一个应用力学原理和方法对生物体中的力学问题进行定量研究的学科。像生物流体力学、生物心血管系统、飞行等与水动力学、空气动力学、边界层理论和流变学等有关的力学问题,学习者了解了这些后可以对自己的身体有更深的认识。除此之外,纳米科学技术引论、成像理论与技术、信息可视化技术、电路与电子技术、计算机硬件与软件、信号处理与分析等实践性较强的课程也是必修课。
一、校企合作在生物医学工程专业教学中的必要性分析
1.开展校企合作是生物医学工程专业学生就业的要求。目前,我校生物医学工程专业学生的主要就业去向是医疗卫生部门和医疗公司。这两者在人才需求上均要求学生具有较高综合素质和实践动手能力,其中医疗卫生部门要求学生具有较好的医学和工程学的综合能力,除要求学生应具有基本的医疗设备的使用和维修能力外,还能向管理、研制、开发等方向拓展,参加医院各相关科室的科研课题;要求学生既要参加仪器设备管理,又要参加医院各种软件(门诊、检验、放射)网络等全面管理、培训和技术支持。而在医疗公司,则更多的要求学生能够具有生物医学工程、医疗仪器等领域及相关的电子技术、计算机技术、信息产业等部门从事研究、开发及管理的能力。单纯依靠学校教育要想达到这些要求是不现实的,采用校企合作方式,则可以通过建立就业实践基地等方式,根据用人单位的不同要求进行有针对性的培训和指导,从而提高学生的就业竞争能力。
2.开展校企合作是生物医学工程专业课程设置的要求。由于生物医学工程专业课程涵盖众多领域,其知识体系跨度较大,涉及从物理化学基础到工程学、医学、生物学等。在四年内进行如此庞杂的知识学习,学生可能出现基础知识欠缺而专业知识与综合运用能力不强等问题。校企合作则可以通过综合分析市场和社会需求,重点培养学生的全面素质和综合运用能力。通过校企合作,可以由学校根据市场和社会需求将课程设置和教学重点放在对学生基础知识和专业知识教育上,由企业根据学科知识应用前沿来重点培养学生的综合运用能力,并进一步提高学生的就业竞争力。
3.开展校企合作是生物医学工程专业办出特色和水平的要求。由于生物医学工程技术的迅速发展,该学科领域内呈现出了知识与技术更新快、设备更新淘汰快等趋势。由于生物医学工程专业对学生实践能力要求较高,为保障教学质量,学校需要建立稳固而先进的实践基地和专业实验室。尽管国家和社会对教育的资金投入不断加大,但由于生物医学工程专业实验、实践所需设备价值较高,仅仅依靠学校单方面的投入仍显资金不足。同时,由于学校教师在专业结构、学历结构等方面存在基础知识较强而运用能力较弱、学历层次高而管理经验欠缺等问题,学生在毕业时的设计已经开始出现脱离应用实际、毕业设计命题重复、一个教师因需要指导多名学生而造成学生毕业设计质量下降等问题。通过校企合作,以校企共建实践实训基地的形式,可以解决一部分实验、实践经费;通过“订单式培养”、“顶岗实习”等方式,学生可以了解生物医学工程的应用实际和现实情况,增加毕业命题选择范围;通过建立“双师制”等教师培养体制,可以改善学校现有师资队伍结构,提高师资水平,同时增加学生指导教师数量,提高学生毕业设计质量和教学整体质量水平。
二、生物医学工程专业建设中应用校企合作存在的问题
我校生物医学工程专业自开办以来,就通过不断加强与医疗卫生部门和医疗公司的合作,在专业建设和教学质量等方面均取得了一定成绩。但综合来看,仍存在以下问题:1.由于课程设置和课程资源的缺乏,许多应用型课程的实践必须放在学生毕业实习阶段进行,影响了学生实习的创新性能力培养;2.由于企业在学生培养过程中,片面追求学生的动手技能,忽视了对学生综合运用基础知识能力的培养,造成学生职业发展的局限;3.由于制度建设和保障力度不够,造成专业课程设置相对滞后、学生培养目标单一等问题。
三、校企合作在生物医学工程专业建设中应用的具体措施探讨
从我校生物医学工程专业校企合作的经验来看,要想实现高素质、应用型技能专门人才培养的目标,仍需在以下几个环节加强建设,把控质量:
1、什么是生物医学工程?
1.1含义
生物医学工程是一个新兴的多学科交叉领域,其内涵是:工程科学的原理和方法与生命科学的原理和方法相结合以认识生命运动的“定量”规律,并用以维持、改善、促进人的健康。“生物医学工程”这个词汇蕴含了三个专业领域的相互影响:生物学、医学和工程学。生物医学工程是综合生命科学和工程技术的理论、方法、手段,研究人类及其他生命现象结构功能的理、工、医相结合的新兴交叉学科,是多种工程技术学科向生命科学渗透和相互交叉的结果,并已成为生命科学的重要支柱。生物医学工程是应用基础科学,主要服务于人类疾病的诊断、预防、监护、治疗及保健、康复等方面;生物医学工程的主要研究任务是利用工程技术手段解决医学诊断、治疗和信息化管理等问题,为医学提供高技术含量的现代医疗装备。
1.2内容与领域
生物医学工程的研究内容可分为基础研究和应用研究两个方面。基础研究,包括生物力学、生物控制、生物效应、生物系统的质量和能量传递、生物医学信息的提取与处理、生物材料学、生物系统的建模与仿真、各种物理因子的生物效应等;应用研究,直接为医学服务,包括生物医学信号检测与传感技术,生物医学信息处理技术,医学成像与图像处理技术,人工器官、医用制品和仪器,康复与治疗工程技术等。后者是医学工程研究领域中最主要的内容之一,它的成果直接推动医疗卫生事业的发展,效果最明显、最迅速,所以特别受医学工程人员和医生的重视。
2课程安排
根据我国《生物产业发展“十一五”规划》,生物医学工程高技术专项将按照当代生物医学工程技术和产业发展的方向,重点发展医疗影像设备、医疗监护系统及设备、肿瘤物理治疗设备等11大类产品,强化新型医用植入器械和人工器官、数字化与智能化医疗装备、可生物降解医用高分子及药物控释载体、医疗监护和远程诊疗系统等领域的创新能力。针对这一方向,我们将设定14次课,分别介绍各项技术产品或领域的现状和发展,让学生对生物医学工程学科有个整体的了解和认识。课程设置如下[2]:
1.生物医学工程概况:介绍生物医学工程学科概况、发展历程、学科内容、工程分支,以及国内外高校建设发展生物医学工程学科的情况。
2.组织工程学:应用细胞生物学和工程学的原理,吸收现代细胞生物学、分子生物学、材料与工程学等学科的科研精华,在体内或体外构建组织和器官,以维持、修复、再生或改善损伤组织和器官功能,是继细胞生物学和分子生物学之后,生命科学发展史上又一新的里程碑,标志着医学将走出器官移植的范畴,步入制造组织和器官的新时代。目前组织工程已经成为再生医学研究和发展的核心与主要方向。
3.生物材料学:研究与生物体(特别是人体)组织、血液、体液相接触或作用时,不凝血、不溶血、不引起细胞突变、畸变和癌变,不引起免疫排异和过敏反应,无毒、无不良反应的特殊功能材料。许多重点院校和科研单位都成立了相应的研究机构,从事生物材料及制品的开发研究,在天然高分子和合成高分子、无机和金属生物材料研究方面均取得了举世公认的成果。
4.人工器官:主要研究人体组织与器官的再生、修复与替代。人工器官在临床上的应用,挽救了不少垂危的生命,为临床医学的发展开拓了新途径。目前人工器官的研究和应用已基本遍及人体全身。
5.生物传感器技术:使用固定化的生物分子结合换能器,用来侦测生物体内或体外的环境化学物质或与之起特异互作用后产生响应的技术。目前,生物传感器正朝着以下几个方面发展:①向高性能、微型化、一体化方向发展;②生化检测的智能化系统;③仿生生物学的发展。
6.生物系统的建模与仿真:对生物体在细胞、器官和整体等各层面的参数及其相互关系建立数学模型,并用计算机求解该模型以分析和预测各种条件下生物系统运行的机制和状态。研究领域涵盖生物力学、复杂生物医学系统的建模与仿真等领域,主要采用计算力学、图形图像分析和数学建模等方法,对生物医学中的科学问题进行计算机建模和分析。
7.生物医学信号检测与处理技术:生物医学信号的检测与处理几乎成为了生物医学工程学科共同的研究方向。从生物体中获取各种生物医学信息,并将其转换为易于检测和处理的电信号。
8.医学成像与图像处理技术:研究如何将人体有关生理、病理的信息提取出来并显示为直观的图像、图形方式,或对已有的医学图像进行分析处理,为疾病的早期诊断和治疗提供了可能性,也为临床诊断引入了新的概念。
9.数字化X射线影像技术及设备:数字化X射线影像技术现已成为临床诊断的最主要手段。涉及的关键技术包括:直接数字化平面X射线影像技术;数字化X射线三维影像技术;低剂量CT、容积CT等。
10.磁共振影像技术及设备:磁共振影像是检测人体解剖、生理和心理信息的多因素、多层面和多对比度成像设备。
11.核医学成像技术及设备:核医学成像是对放射性核素标记化合物的体内生化过程成像的装备,是目前能够在临床应用的最主要的分子成像手段。涉及的关键技术:单光子断层成像(SPECT)技术和系统、正电子发射(PET)影像技术和系统、PET与CT融合技术等。
12.数字化超声波成像技术及设备:超声成像设备在四大影像设备中使用最为广泛。目前重点发展技术包括:多波束成像技术、谐波成像技术、多角度复合成像技术、三维成像技术、电容式微机械超声换能器、彩色超声成像设备系统、数字黑白超声影像设备等。#p#分页标题#e#
13.医学纳米技术和纳米材料:可运载肿瘤标志物分子的特异性抗体、肿瘤治疗药物以及造影剂等新的高效药物(基因)载体;发展纳米尺度的显微探针成像技术;发展用于组织再生修复的纳米生物材料;建立用于纳米材料健康与安全评价的技术与方法,都是当前重点发展方向。
14.康复工程技术:重点发展假肢仿生智能控制技术、低成本假肢矫形、适应不同功能障碍者工作和学习的环境控制系统与远程交流、认知功能康复、人工电子耳蜗汉语识别、电子助视、老年人室内安全监护等技术。
3教学模式的探索
针对课程本身的特点和学生认知的特点,设想从以下几个方面探索课程的教学:
3.1多媒体教学
多媒体教学具有直观、生动、易于理解的特点,并可节约教学时间,提高效率。由于每次课针对的是某项技术领域相关理论知识和行业动态的介绍,涉及的知识点多且泛,采用多媒体教学课件进行教学,形象直观,趣味性强,可以使学生印象深刻,降低了抽象知识的理解难度和记忆难度,激发了学生的学习兴趣。
3.2优化课程内容,加强实践教学
【中图分类号】G【文献标识码】A
【文章编号】0450-9889(2012)10C-0135-02
一、生物医学工程专业的特点
生物医学工程旨在运用工程技术的原理和方法,研究和解决生物学和医学问题的新兴、边缘、交叉学科。其主要任务是:从工程学角度研究、解释生物体特别是人体的生理、病理变化过程。其主要研究方向包括:生物系统的建模与仿真、生物医学信号的检测与分析、生物医学成像和图像处理、电磁场生物效应、脑科学与认知、人工器官以及相关的医疗设备的研制等。生物医学工程学是医疗卫生健康、保健性产业的重要基础和动力,它所带动的产业在国民经济中占有重要地位,世界各国都在不断加大对生物医学工程的投入。经过本专业培养的学生,不仅应能够在医学中较熟练地运用电子技术、信息处理技术、计算机技术,而且还应具备生物科学理论基础以及医工结合的研究和实验技能,以及医疗电子设备、医学信息处理的初步开发、研究、应用、维护和管理能力。本专业毕业的学生择业面宽,就业适应能力强。毕业生既可以在医疗仪器行业从事新产品的开发与应用,又可以在医院医学工程部门比如医学仪器、医学影像设备与技术,国家技术监督部门,以及其他电子技术、计算机技术、信息产业等部门从事研究、开发、维护与维修、教学及管理等方面的工作。此外,本专业的学生还可以进入生物医学工程、电子信息工程、通信工程与技术、计算机应用技术等方向继续深造。生物医学工程专业培养要求知识方面:打好坚实的数学、化学、物理学、外语、计算机与信息科学和电子技术的基础,掌握宽厚的生物医学工程专业知识,具备宽广而深远的科技视野、强烈的求知欲望、事业心和创新意识。
二、普通化学课程及其教学的基本要求
(一)课程的地位、性质和任务
化学是在原子、分子层次上研究物质的组成、结构、性质及其变化规律的一门科学。在解决人类最关心的环境、材料、能源、医药保健、粮食增产、资源利用等问题中,化学科学处于中心地位。而普通化学则是化学的导言,它包含了现代化学的基本理论、基础知识和基本技能,是现代大学生应该普遍掌握的自然科学基础知识的重要部分,是高等院校非化学专业必修的一门重要的基础课。通过本课程的学习,学生在一定程度上掌握一些必需的近代化学基本理论、基本知识和基本技能,并了解这些理论、知识和技能在生物医学工程领域中的应用;培养学生具有应用化学观点分析生活、生产中的一些简单的化学问题的初步能力;为今后的专业学习和工作打下一定的化学知识基础。
(二)课程教学的基本要求
通过对普通化学课程的学习,学生应掌握化学热力学、化学动力学、化学平衡以及原子、分子结构等方面的基本理论和基础知识;掌握一定的元素化合物的基本知识;掌握重要的有机化合物结构、性能以及一些重要的有机合成反应;掌握分析化学基本原理和一些重要的化学、仪器分析方法;并了解化学在生物医学、环境保护、新材料的研究与应用、能源开发与利用以及生命科学研究等领域的作用,为生物医学工程专业课程打下化学理论基础。
三、普通化学教学改革的具体措施
(一)修改教学大纲
应根据生物医学工程专业的培养方案,修改普通化学的教学大纲,并将本课程分为理论教学和实验教学。理论课时为32学时,实验课时为16学时。首先从普通化学课程的地位、性质和任务来定位。普通化学则是化学的导言,它包含现代化学的基本理论、基础知识和基本技能,使学生掌握化学热力学、化学动力学、化学平衡;掌握一定的元素化合物的基本知识;掌握重要的有机化合物结构、性能以及一些重要的有机合成反应;掌握分析化学基本原理和一些重要的化学、仪器分析方法;并了解化学在生物医学以及生命科学研究等领域的作用,为生物医学工程专业课程打下化学理论基础。
为了培养学生的动手能力,应让学生熟悉化学实验及实验室的基本规则;培养学生认真观察实验现象、正确记录和实验数据的习惯;了解常用化学仪器的性能、使用和维护方法。同时,应培养学生正确处理实验数据,正确书写实验报告的能力;促使学生逐渐养成严谨的科学态度、实事求是的实验习惯和工作作风,并初步具有独立思考、独立设计实验、独立进行实验以及独立分析、综合问题的能力,从而为后续课程的学习和进一步的科学研究打下基础。主要实验项目如下:玻璃工操作实验(2学时);离解平衡与沉淀一溶解平衡(2学时);铜、锌、银、镉及其离子的鉴定(2学时);烃的性质和鉴定(2学时);粗盐的提纯(4学时)。
值得注意的是,理论教学大纲和实验教学大纲的修订,应体现专业特色明确、重点突出、思路清晰的教学思路。
(二)探索新的教学方法
1.理论联系实际。普通化学是非化学化工类专业学生开设的一门基础化学课,主要介绍化学学科基本情况,化学各个分支对社会发展的作用,化学学科的发展现状、发展趋势,化学与其他自然科学、工程技术学科的关系。因此,普通化学课程知识点多、内容复杂、概念跨度大,需要与学生所学专业及实际情况有机结合起来。然而,在教学实践中,本课程的教学课时不足,教学过程中,化学理论和化学与专业结合选择是,教师往往容易顾此失彼,使化学教学演变成一堆化学名词和专业术语的堆积,枯燥乏味。同时,学生重视度不够、学习兴趣不浓。但是化学知识在各种领域中不断渗透,在日常社会生活中起着越来越重要的作用。面对实际问题,针对生物医学工程专业特点,在教学过程中,教师可首先和学生进行讨论,解决如下问题:(1)学习的原动力。(2)学习的方法和习惯;告诉大学课程内容多,上课进度快、信息量大,并且辅导课和习题课少,要掌握好学习方法;设计了从实验现象一引发思考一理论内容一实验内容一在线测试的教学路线。(3)学习精神,只有更加刻苦才有可能适应大学阶段的学习。通过讨论和示范,激发学生的学习兴趣,以求达到最佳教学效果。
将普通化学中基础部分的讲授与中学化学教学良好接轨,在上课时首先回顾一下中学化学相关知识点,再引入新的知识点。在讲例题的采用为“先示例、后解析”的方式。上实验课,采用实验前提问和预习,代替实验课先讲实验原理和步骤的方式,要求、鼓励学生预习和思考。在指导实验时,及时发现问题,引导学生深入思考。建议学校平时适当开放实验室,为对化学感兴趣的学生提供实际操作平台。鼓励学生根据个人兴趣参加项目创新活动,和指导教师一起选题,查阅文献,学习相关知识,进行科研活动。当然,也可结合其他课外科技活动展开教学。
2引入实例。在实际的教学过程中,针对生物医学工程专业特点,可适当引入生活和专业应用中的具体实施例。课堂讲授时,利用具体实例,引入每一章节内容,再将每一章节的重点、难点内容在学生深入挖掘的基础上,将内容分解成若干小问题或将若干相关小问题合并起来,指导学生联想、讨论思考、联想归纳、比较总结本课程的目标是系统讲授化学基本理论和知识,加强基础,提炼基本,按需拓宽,注重实践性和应用性。
在讲到酸碱时,可把知识点延伸,把电子舌知识和酸碱性结合起来。电子舌测量酸味时就是利用酸性,检测出酸的浓度,也就是将酸的浓度通过化学传感器转化为可检测的信号,信号的强弱就能反映酸的浓度。同样,电子舌检测其他味觉,就是将其味觉物质,通过化学传感器转化为可检测的信号,通过信号的强弱来反映味觉物质的含量,进一步体现味道的内涵。
可引入直观形象的化学反应动画效果,加强学生对反应机理和抽象概念的理解;同时,可采用动态图表,充分发挥各类图形的优势。
DOI:10.16640/ki.37-1222/t.2016.22.095
0 引言
从广义层面上来说人工生命即为具备有人的生命指征、功能、结构以及外在形象的人工制造系统,是人对于自然生命的一种模拟与拓展。广义上的人工生命是多门学科合并之后的产物。一般认为人工生命学科是由生物科学技术与工程科学技术所结合而产生出的一门学科。下文将主要就针对材料技术型生物医学工程与组织工程、人工生命间的相关性,以及材料技术型生物医学工程、组织工程、人工组织及器官展开具体的论述。
1 材料技术型生物医学工程
此种工程学科的主要研究目标即为各类生物材料及人工器官组织,其中就涵括了组织工程学科。在此方面研究工作中涵括有材料科学、生物科技、化学、信息技术、计算机技术、医学以及生命科学等多门学科的基础知识。
生物材料也就是对于生物体进行临床诊治以及将其受损组织器官替换下来,亦或是增强人体某一部分功能的材料,因此就必须要求其能够植入到人体当中并不出现排异反应,确保活体细胞可以在此材料之上自然生长。生物材料亦可被视作构成人工组织与器官的核心材料。生物医学材料在未来一段时期的主流发展趋势,即为给予组织工程的发展提供优势特性显著的活性生物材料,应确保其具备良好的生物相容特点;亲水特性;性;预防组织粘附特性;抗炎特性;抗凝特性等。以保障活体细胞能够在所制成的人工材料上生长并对病变组织起到良好的改善、恢复效果,使之免疫识别与生物催化性能得以有效提高。
依据生物医学材料的属性可将之主要划分为以下几种:
(1)无机非金属生物材料。①同人体组织力学间具备良好的相容性,同时还可改善组织生长的材料。②具备人体有机以及无机结构的复合型材料。
(2)金属生物材料。①毒性较低,弹性模量更加符合入骨特点的合金材料。②各种植入人体当中的器械材料,如较为常见的人工关节、种植牙、心脏支架等。③接入性诊治所采用的医疗器械设备如官腔支撑架、引导丝等。
(3)生物医用高分子材料。①可将血液之中的毒副物质吸出的材料。②能够在临床上应用于免疫性病症治疗的材料。
2 组织工程与人工组织
目前临床上所面临的主要医学问题当中主要就包括了组织与器官的衰竭、损伤,而临床上在应对此类问题时所较常采用的措施方法主要包括以下三方面:
(1)自体移植。由人体自身的部分组织来对损伤位置进行修复,例如,对面部皮肤大面积烧伤患者进行面部手术修复时通常会取其自身大腿位置的皮肤来进行修复损伤组织。
(2)异体移植。例如,某患者在遭遇意外事故时,家属自愿将其身体部分组织如眼角膜、肾脏等组织捐献给有需要的人。然而此种情况时常会出现异体组织的兼容性问题,同时需要被捐助的人员与每年的捐献人数相比差距过大,供体不足情况十分显著。
(3)人工器官。这种方式能够彻底解决供体不足的情况,但是其目前所存在的问题也是十分显著的即异体反应与感染情况十分明显,绝大多数的患者在接受器官移植后都是应各类感染致死。
对此人们也就设想若是能够采用母体细胞以及生物降解材料在人体当中构建起新的组织器官,也就是进行结构组织,代谢组织以及细胞系统的重新建构。目前这一设想已经不再是仅存在于人们脑海之中的假想,而已经走进了现实生活当中,可以预见组织工程的发展必将会促成这一设想的实现。
当前,组织工程研究的主要内容即为:适宜的母体细胞来源;能够为细胞粘附生长提供空间的细胞外基质;可应用在促进细胞组织再生长的因子;以及组织间的相容性。
开展组织工程通常会应用以下三种策略:(1)细胞以及生物材料的杂化体系,例如由小块活体组织将特异细胞分离出来,通过体外扩散增大之后种植于生物相容性较好同时能够生物降解的聚合物所建立起的多孔支架当中,在体外培养一段时间后可将细胞和支架结构置入于患者体内;伴随着组织缺损部位的重新构建,聚合物将会逐渐降解并消失。(2)仅具备生物降解材料体系,借助于生物生长方式促使细胞成长为多孔支架结构,在通过增殖、分化来产生为相应的组织结构,并且与周边组织相整合。例如采用珊瑚骨加支撑的羟基磷灰石陶瓷,其孔隙架构与人体骨架构极为接近,可被应用在骨组织工程支架中。(3)细胞体系,经过移植的细胞经由生物过程演变为微结构。
3 结束语
总之,从广义性的角度上来说人工生命必须要基于工程科学技术、生物科学技术以及生物工程科学技术的基础上。因而大量的工程、生物以及生物工程均是广义上的人工生命科学技术基础。材料技术型生物医学是工程的研究对象主要是生物材料与人体的各个身体器官。组织工程则是借助于生命科学以及工程科学的基础理论与方法,来探究并开发出具备修复以及改善人体组织器官功能的新型临床应用取代物,也就是人工组织,因而材料技术性生物医学工程以及组织工程也便是生物工程人工生命的基础。
参考文献:
[中图分类号] G640 [文献标识码] A [文章编号] 2095-3437(2013)22-0019-03
生物医学工程(Biomedical Engineering,简称BME)是运用现代自然科学和工程技术的原理和方法,从工程学的角度,在多层次上研究人体的结构、功能及其相互关系,揭示其生命现象,为防病、治病提供新的技术手段的一门综合性、高技术的学科。BME的研究方向较多,如生物信息学、医疗仪器、医学图像、图像处理、生理信号处理、生物力学、生物材料、系统分析、三维建模等。在每个方向上又有着非常宽广的内容。因此,BME领域将是今后的研究热门之一,具有广阔的发展前景。
广东药学院医药信息工程学院2005年开始招收生物医学工程专业本科生,并成立了生物医学工程系。为了使BME专业更好地融入医药信息工程学院的医药信息背景平台,我们先后三次对人才培养方案进行了修改和完善。目前本专业有两个方向――生物医学电子仪器方向和医学影像技术方向。
在8年教学实践的基础上,我们根据学生的学习状况和社会需求,从明确培养目标、设置合理的课程体系、强调实践环节教学和加强实习基地建设、双师型教师队伍建设四个方面对生物医学工程专业应用型人才培养模式进行了探索研究。
一、明确人才培养目标
从社会需求和毕业生就业的角度考虑,我院BME本科教育培养方向定位于应用型人才,专业领域为医疗仪器,即培养大型医疗设备的操作、维修及管理人员。
根据这个专业定位,我院BME本科教育的培养目标为:培养面向生物医学工程技术及医学仪器领域从事科学研究、系统设计、质量管理、维修销售的高级工程技术人才,具备生命科学、电子技术、计算机技术及信息科学有关的基础知识和基本技能,具有本学科及跨学科技术开发与应用的基本能力,适应社会需求的应用型人才。
为了实现上述培养目标,拓宽就业渠道,我们要求本专业的学生要具备以下的知识和能力:首先,精通本专业领域的技术基础理论知识,尤其是电子技术、医学信号的获取、处理的基本理论和一般方法,具有BME应用研究和产品设计、维护和管理的基本能力;其次,了解本专业所需要的医学知识和生命科学知识;再次,了解医疗产业的基本方针、政策法规、医疗设备企业管理的基本知识;最后,熟悉文献检索和资料查询的基本方法,了解BME理论前沿,具有研究与开发新系统及新技术的初步能力。
二、设置合理的课程体系
课程设置是人才培养的核心,其合理与否直接影响毕业生的质量。课程设置的知识模块不应是封闭的“金字塔”形状,而应该是开放的“知识树”状态。合理的课程体系应是以社会需求为导向的,紧密结合生产和科技发展变化的需要,并坚持技术知识本位、知识能力本位和做人本位的有机统一,及时调整课程设置,不断更新课程内容使学生能够尽快地接受新技术与信息。
根据广东药学院建设高水平应用型大学的目标,针对BME专业在数字信号处理、医学影像设备、电子学等方面的学科优势,重视医学课程与工程技术课程知识的相互渗透,实现医、工的有机结合。据此,我们在深入分析BME学科性质和特点的基础上,学习借鉴国内外同类专业的办学经验,经过3次修订教学计划,逐步建立完善了BME专业的课程体系。在课程设置上做到既重视基础知识课程,包括专业基础知识课程和医学知识课程,又突出专业特色,开设了医学电子仪器原理与设计、医学仪器故障诊断与维修、生物医学仪器与医疗器械、医用X线机与CT成像技术、MRI与医学超声技术、核医学与放射治疗技术、医疗器械营销、医疗器械质量体系与法规等课程。围绕生物医学工程专业的培养目标、专业技术重点来设置各课程在整个专业教学计划中的比重。在突出主干课程的同时,尽可能多地开设前沿选修课,让学生了解该领域的研究热点。具体需做到以下几点:
第一,在专业课程设置中注意突出应用型本科课程设计要求和特点,加大实践课的比重。以学分制为例,目前本专业开设的实践课学分21分(含课外实践学分),占课程总学分160分的13.13%,应当进一步加大实践课的比重。
第二,重视医学、理工两大学科基础知识的加强。在构建课程体系时,重点加强生理学、人体解剖学、临床医学概论、电子技术、计算机基础课程,以公共基础课和专业基础课作为支柱,形成宽口径学科教育平台。
第三,重视实践能力和创新意识的培养。教学要求强化实验、实训、实习等实践教学环节,通过适当增加课程设计、综合实验、大学生课外科技活动及竞技活动、建立创新实验室等多途径给学生创设动手训练的机会,提高专业技能,使学生毕业后能迅速适应工作岗位。目前,我院实验课、实训课开出率达到100%,建立了生物医学工程创新实验室,多次组织学生参加国家级和省级等各类级别的电子设计竞赛等。
第四,把国内外知名的网络教育品牌引入学院的教学中。在美国纽交所上市的安博教育集团已经与我院签约合作培养医药软件及服务外包人才,使同学们有机会接触到最前沿的信息技术知识与技能。
三、强调实践环节教学,加强实习基地建设
第一,加强专业实验室建设。目前虽建有生物医学工程专业实验室,但仅能开展信号与系统实验和医用传感器实验,像医学影像设备原理、医学电子仪器原理与设计、医学仪器故障诊断与维修、生物医学仪器与医疗器械、医用X线机与CT成像技术、MRI与医学超声技术、核医学与放射治疗技术等课程所需的实验仪器和设备因所需资金较大,所以目前只能开展模拟实验,效果不是很好,这是我们需要改进的地方。
第二,开设第二课堂。全院所有教学实验室和大部分科研实验室向学生开放,接受高年级学生进行科研训练和创新性实践,并要求承担了省厅级科研项目的教师积极吸收学生进实验室,参与课题研究。同时,鼓励学生参加各类型的科技创新竞赛活动,并屡创佳绩,有数十人获得国家及省部级奖项,其中,我系学生分获2008、2009年全国电子设计大赛广东省二等奖、三等奖;2010年全国电子设计大赛广东赛区二等奖; 2010、2011年全国文科类大学生计算机设计大赛二等奖; 2011年全国电子设计大赛广东省二等奖、三等奖等。
第三,在医疗设备生产企业和医院之间建立长期稳定的实习基地。在企业实习过程中,要求学生下到车间参与生产过程,并对医疗设备的技术发展动向和市场状况有明确的认知;在医院实习过程中,要求学生轮换到各个相关科室工作,了解常用医疗仪器的使用、操作和维修方法,掌握其原理和关键技术,并熟悉医疗设备的管理和维护方法。如广东药学院第一附属医院、第二附属医院和广东药学院附属中山医院(中山市人民医院)均可作为生物医学工程专业的实践教学基地,为本专业的相关课程(如医学影像设备原理、医用X线机与CT成像技术、MRI与医学超声技术、核医学与放射治疗技术、医学电子仪器原理与设计、医学仪器故障诊断与维修、生物医学仪器与医疗器械等)提供见习、实验条件。
第四,学院多次举办学生与医药企事业的交流活动,请政府官员、企业老总到学校给学生做学术报告,带领学生参观医疗设备企业、参加各种学术研讨会,举办模拟招聘会,给学生提供广泛接触企业的机会。让学生在交流活动中展现自己的学识、能力与才华,了解医疗设备行业的发展趋势和珠三角地区医疗设备行业的发展布局,了解自己学习的专业方向与今后就业的联系,了解企业的经营范围、产品开发流程、运作模式、感受企业文化。
四、建设“双师型”教师队伍
“双师型”教师队伍建设是落实人才培养模式的关键,是提高应用型本科教育教学质量的关键。我院的教育理念是“重实践,强能力”,力争培养“上手快、善沟通、动手能力强”的应用型医药卫生人才,因此要求我们建立一支敬业爱岗,教风严谨,既有理论又能实践,既能从事学院教学,又能从事在职员工培训,既肯刻苦学习专业前沿技术,又富于改革创新精神,既搞教学又搞科研的“双师型”教师队伍。
我院生物医学工程系现有专任教师15名,具有高级职称的教师4名,占专任教师的26.7%;具有博士研究生以上学历的教师6名,占专任教师的40.0%;从附属第一医院、安博教育集团、广东凯通软件开发有限公司、广州中星网络技术有限公司等聘请10余位兼职教师。基本形成了一支结构合理、素质高、专兼职相结合的师资队伍。当然,我们做得还远远不够,接下来将在以下方面进一步加强“双师型”队伍的建设:
第一,组织教师深入医药和医疗设备企业一线了解人才需求情况,制订培养目标。积极鼓励教师开展经常性的下厂实践活动,让每一位教师都与一个或几个与本专业相关的企业建立长期的联系,不断学习企业的先进技术和管理思想,并将其应用到教学与培训中来,同时利用自己的专业知识帮助企业解决实际工作中遇到的问题。我们鼓励教师在不影响正常教学的情况下在相关企业中兼职,为企业提供咨询服务活动,通过这项活动,教师积累了大量来自医药和医疗设备企业的教学案例,使理论教学更加结合实际,受到学生的欢迎。另外,在实践教学过程中打破了理论课教师与实践课教师的界限,积极鼓励理论课教师参与到实践课教学指导中来,目前,BME专业中不但实验课、实训课开出率达到100%,而且实验、实训课的指导全部由任课教师担任。
第二,指导数学建模、电子设计大赛等。积极参加每年的全国大学生数学建模比赛与电子设计大赛,学院各级领导与多名教师参与各类竞赛的组织、辅导、参赛等工作,均取得了优异的成绩。从中既锻炼了学生的理论实际应用能力,又使参赛教师的业务水平得到了提高。
第三,教研室内形成良好的学习、教学氛围。在教师队伍建设方面,及时总结推广教研室或教师的先进经验,按照计划、实施、检查、总结这四个阶段,使教研室工作计划保证落实,固定教研活动时间,明确科研课题,教改目标到位,对教师能力、素质培养体现充分,并将常规教研活动与专题教研活动和创造发挥型教研活动有机结合,在活动中实现教师间的相互交流和共同提高,创设一种青年教师成长、中年教师进步、老年教师提高的良好氛围,努力提高“双师型”教师业务水平,建设成为一支稳定的“双师型”教师队伍。
五、结束语
我院自2005年开设生物医学工程专业以来,目前已有五届毕业生,就业情况良好,就业前景十分广阔。用人单位普遍反映毕业生的思想品德优秀、专业基础扎实、实践能力强以及适应性好,具有良好的综合素质,用人单位对本专业毕业学生的满意率达到95%以上。今后,我们将继续秉承培养“上手快、善沟通、动手能力强”的应用型医药卫生人才的办学方针,在人才培养模式上不断调整和完善,培养高素质的创新型应用技术人才。
[ 参 考 文 献 ]
[1] 王能河,邹卫东,梅贤臣.生物医学工程专业课程体系建设与应用型人才培养质量保障[J].咸宁学院学报,2009,29(2):104-106.
中图分类号:G64 文献标识码:A 文章编号:1009-3044(2015)33-0112-02
Abstract: This article takes the Bio-medical Engineering of AHUCM Specialty as an example to summarize the problems occurred in the course of Embedded System Course.It condensed out a teaching method which combines the selection of teaching materials and professional construction,combines the selection of theory course and training objectives, combines the training of practical ability and school running characteristics and builds a new evaluation system. It will improve the teaching and practice of Embedded System Course in Bio-medical Engineering in order to meet the needs of the society.
Key words: Bio-medical Engineering;Embedded System;Teaching method
生物医学工程(Bio-medical Engineering,BME)是综合运用多门学科的理论和技术,研究和解决人类健康、疾病预防、诊断和治疗等的新技术、新方法,是一门多学科交叉和渗透性强的新兴学科,也是一门结合其他学科和技术快速发展的学科,本身具有高度的前沿性和先进性,高新技术的突飞猛进,要求我们不断调整课程设置以适应社会的需求和时代的发展。随着嵌入式系统在各个领域表现出强劲的生命力,并且越来越多的应用到医疗器械中,在本校开设的生物医学工程专业(医疗器械方向)本科生教学中增加嵌入式系统的教学内容已势在必行[1]。
根据IEEE(电气和电子工程师协会)的定义,嵌入式系统是“控制、监视或者辅助装置、机器和设备运行的装置”。目前国内一个普遍被认同的定义是:以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统[2]。虽然侧重点不同,以上两种定义却均体现出嵌入式系统是可以涵盖机械等附属装置的软硬件综合体。鉴于医疗器械自身的特点,嵌入式系统不仅能够在安全性、实时性、控制精度、数据处理能力以及与医院管理系统匹配性等方面增强其性能,并使医疗器械呈现便携式和网络化的发展趋势。
综上所述,如何开展我校生物医学工程专业的《嵌入式系统原理及设计》课程的教学工作,结合专业培养目标和我校办学特色,值得我们探索和研究。经过两年的教学实践,我们发现教学过程中存在的若干问题,并总结了一些经验。
1 教材选择与专业建设相结合
因为嵌入式技术很强的行业相关性,高校应考虑基于理论且面向应用的教材,教学不会与实践脱节。但由于新技术日新月异,导致很难找到一套普遍适用的系列教材。同时,嵌入式系统兼具软硬件方面的知识与应用,各类教材的侧重点不同。例如,以软件开发为主,包括应用软件和驱动程序开发,放弃硬件设计内容,并且在多种处理器、操作系统中选择主流、有发展前景的ARM微处理器和嵌入式Linux作为主要授课内容,可选择林晓飞等编写的《基于ARM嵌入式Linux应用开发与实例教程》;周立功等编写的《ARM嵌入式系统基础教程》是目前嵌入式系统课程最为成功的教材之一,其配套资源非常全面,但其教学内容偏重硬件,扩展内容和工程案例较少,适合工程人员查阅。生物医学工程既有侧重于电子专业的嵌入式系统硬件电路设计,又有侧重于计算机专业的嵌入式系统软件开发,对于开展专业建设,提升专业内涵,稳定学生的专业思想,有很好的示范引导用。基于以上,本教研室首先确定以市场主流的嵌入式微处理器ARM9作为教学内容,采用高等院校规划教材,北京航空航天大学出版社出版的《ARM9嵌入式系统设计基础教程》,并结合实验指导书、开发板使用手册、应用程序开发手册、系统移植手册等内容,使嵌入式技术被更多学生掌握,也保证了硬件和软件知识的完整性。为之后开展的医疗器械类专业课,建立了良好开端。
2 理论课程选择与培养目标相结合
目前,嵌入式系统产品应用到医疗器械各个领域。CT、核磁共振等大型成像设备,彩超、经颅多普勒等超声设备,心电、脑电等电子设备,全自动生化分析、免疫测试系统等检测设备,呼吸机、麻醉机等监护设备均需要嵌入式系统的支持[3]。我校生物医学专业主要偏重医疗器械方向,培养学生成为能从事医学电子仪器、医疗器械开发设计和研制、医疗器械质量检测和技术监督管理等工作。那么提高相关专业课与实际应用领域的关联性,让学生清楚地认识到嵌入式系统是如何应用到医疗器械领域的,是我们任课老师应该做到的。
所以,本人在教学过程中,穿插列举嵌入式系统在医疗器械中的应用实例,不但使学生更容易理解相关理论知识,将两者有机结合,而且为接下来开展的医疗器械方面专业课打下一定基础。例如,基于嵌入式系统开发设计的便携式电子血压计不仅能够有效缩小血压计的体积,还能够实现“傻瓜式”血压测量,所返回的测量结果也更加准确。电子血压计由气袖、气泵、传感器、嵌入式控制器以及显示器等部件组成。在使用其进行血压测量时控制模块主要是与气泵传感器相配合实现控制气压,采集、记录、显示参数的功能。依照血压测量原理,控制器分别记录血压测量过程中的收缩压和舒张压即完成了一次血压测量;基于嵌入式系统的多参数监护仪可以将传感器采集到的人体生理信号转换为可被嵌入式系统识别的数字信号,然后该数字信号经过滤波、放大、量化等预处理后即可被传输到处理模块进行处理和分析。分析时,若信号超出人体正常参数范围则系统将该信号所对应的参数标注为非正常,向相关医护人员进行报警,同时将出现异常的各项数据存储在存储模块中,以便于后续分析和诊断[4]。
3 实践操作能力的培养与专业办学特色的结合
国家科技部印发的《医疗器械科技产业“十二五”专项规划》提出,要紧密围绕疾病预防、临床诊疗、健康促进的需要,重点开发新型中医诊疗等医疗器械产品和系统等新型医疗器械产品。未来的几十年,随着医疗水平的逐步提高,医疗器械产业将进入高速发展的时代,我校应迎合国家和社会的需求,将高精尖的现代信息技术与自身具备的丰厚的中医理论知识等专业优势相结合,改进现有的并开发新型的中医诊断仪器[5]。在开展实验教学的过程中,可以根据学生具备的不同软硬件基础,也就是对先导课程(高级语言程序设计、微机原理与接口技术、单片机原理等课程)的掌握程度进行分组,基础较差的学生主要进行基础验证型实验,基础稍好的学生进行设计综合型实验,而基础较好并且对嵌入式系统兴趣浓厚的学生可以进行研究创新型实验,实现分层次教学。划分后,各个层次的学生均能对如何学习这门课做出自我定位,从而产生兴趣,反响良好。设计综合型实验和研究创新型实验需与具体项目结合、与相关竞赛结合、与中医诊疗设备的发展方向结合,充分体现出本专业的办学特色使学生深刻了解本专业的优势特色和发展前景,并清楚地认识到其身上肩负的使命,有助于增强学生的专业认可度,调动其学习积极性。
同时,课堂教学不能与具体实践脱节,医疗器械技术和设备发展很快,相关实验设备又价格昂贵。我校的附属医院可以为本专业的学生提供现场观摩学习的机会,其中各个科室配备的各类功能型号的医疗器械让学生们可以看得到、摸得到、学得到,在现场体会嵌入式系统是如何成为医疗器械整体结构中不可或缺的功能模块,发挥其特有的作用,使学生有更直观的感受。
4 构建“形成性+终结性”评价体系
与传统的终结性评价不同的是,本嵌入式系统课程的考核采用“形成性+终结性”的评价方式。包括分别占总成绩50%和30%的理论考核和实验考核,此外,平时考核占20%。这种考核方式改变了传统的一役定生死的考核方式,逐步建立“平时表现、理论掌握、动手操作”三者并重的考核模式。平时表现包括课堂考勤、提问、课后作业、答疑等,其目的是培养学生学习的主观能动性。理论掌握的考核主要通过期末考试的形式,其目的是督促学生增强学习的自觉性,建立正确的学习方法和学习态度。动手操作的考核主要是以学生做实验时的表现和实验的完成情况来评估的,制定一套可行的、量化的标准考核方法,定性定量的肯定学生的实际操作能力,可以有效提高其积极性和主动性。经过改良后的考核方式更加侧重于评估学生的自主学习能力,建立其主体意识,对于改善学习效果起到了立竿见影的作用。
5 结语
嵌入式系统是一门多学科交叉、涵盖内容广泛、软硬件兼有、产业前沿性较强、对实际应用能力要求较高的课程,不同类型的院校的不同专业,开展本课程的侧重点也不尽相同。所以,开展嵌入式系统课程的本科教学,要想达到理想的效果,需要任课老师下一番苦功。总结来看,本专业是中医类院校、医药信息工程学院中的生物医学工程专业,偏重医疗器械方向,培养既有医学基础又有工科背景的专业型人才是我们的办学特色,所以,在嵌入式系统课程中,加入中医理论和医疗器械产业方面的知识内容对于开展教学会有很大帮助。同时,在选择教材、设置课程内容、实验实践教学和建立评估体系等方面,也需要任课老师因地制宜,量体裁衣。
我国医疗器械产业是一个创新能力不断增强、市场需求十分旺盛的朝阳产业。与此同时,也要看到产业发展的不足,提高技术创新能力、加强研发的产、学、研结合,已经成为当务之急。建国几十年来形成的良好基础,人民群众保健康复对医疗器械的刚性需求,医疗器械相关学科技术人才的长期储备,国家对医疗器械技术创新的大力扶持,都是促进医疗器械产业高速发展的保障和动力。我们作为开展生物医学工程专业的院校和任课老师,应清楚认识到自己身上的责任与重担,迎着大好的形势,在探索中教学,在教学中成长,紧跟科学前沿,同时脚踏实地,总结经验,吸取教训,为产业输送人才,为国家的医疗卫生事业安全有序的发展做出自己的贡献。
参考文献:
[1] 邓军民,等.生物医学工程专业本科教育课程设置探讨[J].首都医科大学学报,2007:166-168.
[2] 黄智伟,等.ARM9嵌入式系统设计基础教程[M].2版.北京:北京航空航天大学出版社,2013:1.
科学技术的发展,各种新型生物医学材料被研制出来,并在医学领域中得应用。到2000年为止,在全世界高达1600亿美元的医疗市场中,医用生物材料所占比率已经达到了一半,且以20%的增长速度递增。二十世纪80年代是新型生物医学材料辈出的时代,进入到二十世纪90年代,以珊瑚为原材料的骨移植材料、人工皮肤、猪心脏瓣膜在医学领域中得以应用。二十世纪,美国采用新型聚氨酯材料研制出人造血管。中国在生物医学材料的研制方面起步较晚,但是应医学领域需要而对各种生物医学材料有所应用。随着国家对生物医学材料研究的重视,国家开始启动医学生物材料项目,并将生物医学材料纳入到优先发展的产业当中[3]。在中国的“十二五”规划中,还特别指出要将重点发展新型口腔植、人工关节、新型人工血管、人工心瓣膜以及各种人工修复材料等等生物医学材料。
一、生物医学材料研究现状
(一)金属生物材料
在医学领域中,医学金属材料是较早采用的,且应用材料非常广泛,包括不锈钢材料、钛合金材料等等。其中,不锈钢材料具有较强的耐腐蚀性,因此应用效果非常好。由于人体内为较为复杂的电解环境,随着316L不锈钢的应用,解决了这一问题,但是,却不具备生物相容性。钛合金具有良好的耐腐蚀性和生物相容性,具有一定的生物材料强度。钛合金的抗拉强度介于500兆帕至1100兆帕之间,使钛合金的弹性与人体的骨骼弹性更为接近,以使材料植入到人体后,与人的骨骼更为匹配。
(二)高分子生物材料
医用高分子材料的出现,使得医用材料可以用于对损伤的人体器官以修复,以增强器官的恢复功能。目前所使用的医用高分子材料分为可生物降解和非降解的高分子材料。可生物降解的高分子材料植入人体后,可以降解被为对人体无毒无害的CO2、H2O等对人体不会产生刺激性的物质。可生物降解的高分子材料可以是胶原蛋白或者纤维蛋白等等天然材料,也可以是聚乳酸等人工合成高分子材料。非降解的高分子材料属于是惰性的高分子材料。聚乳酸在医学生用于外科缝合线和药物释放的载体。由于其具有可降解性能,当伤口愈合后,就会被人体组织吸收。聚乳酸可以在降解的过程中,将药物释放到人体中,使药物发挥作用。
(三)秃仙物材料
复合生物材料用于医学领域中已经获得了长足发展,但是,由于材料植入人体后,会对人体的生理环境产生抵抗力,因此会存在一些问题有待进一步研究。目前医学领域中所采用的复合生物材料包括有三类,即生物陶瓷复合材料、金属基医用复合材料和高分子复合材料。生物陶瓷复合材料植入到生理环境中后,并不会产生毒性反应,且具有良好的生物活性和生理环境相容性。金属基医用复合材料在医学领域中应用,金属具有单一的生物活性,可以采用生物涂层技术,以提高金属表面的耐磨性和生物相融合。高分子复合材料是一种接近人体自然骨骼的高分子复合材料。人体骨骼本身就是一种层状的复合材料,采用这种复合材料替代,虽然可以起到治疗作用,但是其韧性明显要低于人体自然骨骼。
(四)无机非金属生物材料
无机非金属生物材料具有良好的化学稳定性和生物相容性,主要包括生物活性陶瓷和惰性的无机材料。生物活性陶瓷材料主要用于关节、牙齿等等的硬组织修复。但是,该种材料不会与人体的活体组织结合,从而影响治疗效果。惰性的无机材料以医用碳素材料为主。该种材料具有较高的耐磨性,韧性和强度都非常高,特别是具有良好的抗疲劳性,可以与人体自然骨骼相匹配。骨骼损伤者选择这种材料可以获得良好的治疗效果[2]。此外,医用碳素材料在人体的生理环境中并不会产生毒副作用,良好的化学稳定性和人体亲和性,且具有抗血栓性和抗溶血性。如果对患者执行人工心脏瓣膜手术,医用碳素材料是优先选择的材料。
二、生物医学材料研究的发展趋势
生物医用材料的发展进程中,从简单的结构模仿发展为组织诱导再生,使生物医用材料的单一性能逐渐向综合性能发展。简单的结构与外观的仿制,向智能化仿生发展,使材料的应用已经与现代的医疗技术融合,并共同发展。根据目前医学领域的发展程度,生物医用材料的研究空间还很大,并会涉及到多种学科,包括材料学、工程学、控制论以及生物技术等等,这些学科都会对生物医学的发展产生推动作用。特别是各种新技术、新方法的应用,将生物技术引入到智能化发展的思路,使生物材料不再局限于实验室研究,而会在临床上得以广泛应用,以为医疗做出贡献。
结论
综上所述,生物医学材料属于是交叉学科,为材料学和医学等等多种学科相互结合而形成。作为一门应用于医学领域的新兴学科,所研制的是用于医学组织工程领域的各种新型的人工材料。根据技术含量的不同,生物医学材料可以被划分为金属生物、高分析生物、复合生物和无机非金属生物材料。随着生物医学材料研究的发展,使得生物医用材料智能化发展。
教育是着眼于未来的事业,教育的首要任务就是为未来社会培养相适应的合格人才。随着人工智能的诞生和发展,我国已经开始将人工智能应用于教育领域,并显示出人工智能对于弥补当前教育存在的种种缺陷和不足,推动教学现代化和教育发展改革进程起着越来越重要的作用。在现代医学发展中,工程科学与临床医学不断融合,相互进步。近几年,随着人工智能技术,机器人技术,虚拟与增强现实技术,3D打印技术与医学不断的融合发展,衍生出一系列的医学诊疗技术,仪器,大大推进了医学发展。从2013年到2017年,国务院、发改委、FAD连续发文,多次提及医疗走智能化、云化的趋势,为推动智能医疗领域保驾护航。智能与医学的结合已经是大势所趋,因此,为培养大量智能医学人才极有必要对智能医学教育新模式进行深入研究。
一、目前医学教育以及医学人才培养状况
智能医学工程是一门将人工智能、传感技术等高科技手段综合运用于医学领域的新兴交叉学科,研究内容包括智能药物研发、医疗机器人、智能诊疗、智能影像识别、智能健康数据管理等。
智能医学工程的毕业生掌握了基础医学、临床医学的基础理论,对智慧医院、区域医疗中心、家庭自助健康监护三级网络中的医学现象、医学问题和医疗模式有较深入的理解,能熟练地将电子技术、计算机技术、网络技术、人工智能技术,应用于医疗信息大数据的智能采集、智能分析、智能诊疗、临床实践等各个环节。实验教学正是融合型创新人才的最好培养方式。智能医学人才的培养需要各学科间的相互交融更为紧密,学生的创新应用能力才能得到更好的培养。与此同时,由于绝大部分医工结合的专业大部分归属与工科学院下,缺乏必要的临床经验,因而学生不能很好的把握新技术的应用。
而国内相关人才缺口还非常大,目前,国内仅仅有生物医学工程、医学信息工程等工科专业培养医工结合人才。但是囿于培养时间与培养模式,他们往往只能针对具体某一方向,并且目前的培养体系还多着重于工学技术的研究,缺乏临床实践。
二、智能+医学教育的必要性探究
2.1技术进步对医疗人员的诊疗帮助
以癌症的治疗为例,由于针对癌症药物的研究何药物数量非常巨大,对于普通医生在短时间内难以进行准确的判断针对癌症的研究和药物数量非常巨大,具体来说,目前已有800多种药物和疫苗用于治疗癌症。但是,这对于医生来说却有负面的影响,因为有太多种选择可供选择,使得为病人选择合适的抗癌药物变的更加困难。同样,精确医学的进步也是非常困难的,因为基因规模的知识和推理成为决定癌症和其他复杂疾病的最终瓶颈。今天,许多受过专业训练的医学研究员需要数小时的时间来检查一个病人的基因组数据并作出治疗决定。
上述问题在拥有工学、医学双背景的医生手中已经不是问题,通过目前日渐成熟的AI技术,对于大量的医疗数据进行检索,通过可靠的编程手段,通过人工智能技术,建立完备的医疗数据库,帮助医生进行诊疗。据调查,美国微软公司已经研制出帮助医生治疗癌症的人工智能机器,其原理是对于所有关于癌症的论文进行检索,并提出对于病人治疗最有效的参考方案,它可以通过机器学习来帮助医生找到最有效,最个性化的癌症治疗方案,同时提供可视化的研究数据。
2.2智能医学对于新时代医生培养的影响
人工智能通过计算机可为学生提供图文并茂的丰富信息和数据,一方面加强了学生的感性认识,加强了对所学知识的理解和掌握,从而提高了教学质量。同时,人工智能可帮助教师完成繁杂的、需适应各种教学的教学课程、课件等设计,使教师将更多的精力专注于学与教的行为和过程,从而提高教学效率。正如前面所述例子,智能网络模块化学习平台可使教学摆脱以往对于示教病例的依赖,拓展了学生们的学习空间和时间,可极大地提高医学学习效率和教学质量。
教育与人工智能相结合将会创新教育方式和理念。北京师范大学何克抗教授在《当代教育技术的研究内容与发展趋势》中提到当代教育技术的五大发展趋势之一就是“愈来愈重视人工智能在教育中应用的研究”。结合上述人工结合上述人工智能在医学教育中的创新作用,下面就人工智能结合医学学教育新模式提出一些构想。
三、交叉医学人才的培养
3.1建立智能医学人才培养体系的必要性
目前智能医学的研发和临床还存在隔阂,临床医生并没有很好地理解人工智能,无法从实践出发提出人工智能能够解决的方向,而人工智能的产业界热情高涨,却未必能踩准点,所以产业界需要和临床深度沟通融合,才能真正解决看病难、看病贵的问题,缓解医疗资源紧张。目前,国内仅仅有生物医学工程、醫学信息工程等工科专业培养医工结合人才。
3.2医学人才培养体系初步构想
1《微机原理及接口技术》课程教学中存在的问题
1.1教学内容与所学专业脱节
该课程目前的主要教学内容以80X86CPU和其组成的微型计算机系统为重点,包括微机原理和外部接口两大部分内容,并且已经形成了相对稳定的课程体系。但是,伴随着计算机技术的日益发展,以80X86CPU组成的微型计算机已经逐步退出了常见应用领域。因此,存在着教学内容相对陈旧的问题,并且缺少与学生所学专业相联系的实际案例,加之实验条件有限等诸多问题,不能很好地激发学生学习的积极性,更难以调动学生的主观能动性。因此,需要进一步调整教学内容,以适应学生就业的需要。
1.2教学方法过于陈旧
本课程的第一部分主要以微型计算机的原理为重点,抽象的概念较多,各个章节的名词术语和知识点多且复杂,并且各部分内容前后交叉。传统教学主要采用理论讲解为主的授课方式,教学方法单一陈旧,致使学生学习起来枯燥难懂、兴趣不高,学生学习的积极性差,课堂气氛较沉闷,导致教学效果欠佳。因此,教学方法亟需改进。
1.3实践教学环节薄弱
本门课程的实践性很强,其实验课程由软件部分和硬件部分组成。所开设的实验大部分属于验证性实验,只要学生按照实验指导编写的程序连接电路图就能得到结果,整个实验过程自主创新少,学生缺少自主学习与思考;并且,书写实验报告时存在袭现象。目前的《微机原理及接口技术》实验课程难以达到让学生自主学习、提高动手能力的目标。
1.4考查方式单一
现行的考查方式是期末一卷定终身。这种考查方式容易使学生出现期末考试前突击复习、背书应付考试,考后遗忘的现象。因此,需要改革这种单一的考查方式,以达到全面评价学生学习过程和学习效果的目的。
2教改措施
2.1优化教学内容,与本专业相联系
合理制定教学大纲,不断更新教学内容,补充与生物医学工程专业相关的实际案例,突出课程特色。以增强课程的实用性为原则,以微型计算机的基本原理和概念为主线,确保课程的系统性、完整性和应用性。授课时可将课程分为三大部分:基本概念、汇编指令、接口技术,以这三部分为重点,着重培养学生利用计算机技术的基本思想去发现、分析、解决问题的能力。以加强与所学专业联系为原则,在生物医学工程专业的基础上介绍微型计算机新的应用领域和发展趋势,帮助学生解决本专业要求的实际应用问题,以提高学生的学习兴趣,唤醒他们主动学习的潜能。
2.2采用多种教学模式,加强网络资源建设
为了获得好的教学效果,在《微机原理及接口技术》授课过程中采用了MOOC、翻转课堂、任务驱动法与传统教学方法相结合的多种教学方法,在一定程度上充分调动了学生学习的积极性,并培养了他们团队协作的能力[3]。结合我校多媒体网络课程复习互动中心(以下简称课程中心)的建设,将教学课件、网络课件以及一些其他教学资源到网站上,学生们可以登录学校的网站学习、观看、下载,不但方便了学生自主学习,并能帮助学生理解和消化课堂内容。在课程中心的网站上,学生们还能在线与教师和其他同学交流,不仅方便了学生学习,而且丰富了教师与学生的沟通方式。除开展网上课程中心的建设外,还开展了试题库的建设,主要题型包括选择、填空、判断、简答与编程等题型。
2.3加强实践教学环节
《微机原理及接口技术》是实用性非常强的一门专业基础课程,因此,非常有必要加强实践教学环节。由于学校的硬件条件有限,授课时将计算机仿真技术和网络平台引入到实践教学中,教会学生使用可视化软件Proteus、multisim,并鼓励学生用它们完成实验,以此来弥补仪器设备和经费的不足[4]。这样,不仅帮助学生掌握了微机原理的基本知识,也让他们对电工电子技术有了更为深刻的认识。
2.4改革考核模式
为达到检验教学效果的目标,应改变传统的考核模式,采用形成性评价的考核模式,以全面、客观、公正的反应学生的学习情况[5]。考核分两个部分,理论部分和实验部分。理论部分考试,采用期末试卷成绩占70%、平时成绩占30%的方式,平时成绩包括出勤、作业、提问、随堂测验等,每次课前公布上次课的平时成绩,可制定考核表贴于班级教室内或发至班级公共邮箱;实验部分考试从实验态度、操作能力、创新性和实验报告四个部分进行考核,考核方式和成绩公布同理论课平时成绩的公布方式。
3小结
近两年来,为了提高学生的学习兴趣,进一步改善教学效果,我校对《微机原理及接口技术》的课程改革进行了初步探索,并取得了一些成效。学生学习的积极性得到了明显提高,利用计算机思维提出问题、分析问题和解决问题的能力得到明显改善,对堆栈、指令队列、时序等抽象概念能够正确理解,基本能够完成简单的程序编写。但是还存在一些问题,如学习态度功利化,遇到问题容易浮躁、习惯性的去网上查找等,这些还有待继续探讨、改善。
【参考文献】
高敏.微机原理课程改革初探[J].电脑知识与技术,2014,10(33):7912-7913.
舒秀兰,李骁龙,叶伟慧.“微机原理与接口技术”实践教学改革与探索[J].科技视界,2015,(11):63,141.
蒋翀,费洪晓.面向MOOC的新型教学模式探索[J].计算机教育,2014,(9):17-20.
作者:潘小梅 宋咏堂 单位:湖北省医学会
转化医学时代的医学科技进入了多视角、全方位研究的整体医学的时代,医学科技的发展越来越依赖于多学科、跨领域的紧密协同、交叉、渗透融合。转化医学时代需要高度重视医学模式的转变,强化医疗服务模式的优化整合,加快推进数字化医疗、远程医疗、移动医疗等技术发展,优化建立不同层级医疗机构间协同医疗、整合服务的新模式,实现医疗服务资源的系统高效利用。紧密围绕医学科技发展需求,加速转变医学模式,加强医学研究资源的共享集成,推动不同学科和技术领域间的交叉融合,促进医学前沿技术、基础研究和临床医学的紧密衔接,在医学模式转变的过程中加快建立整体协同的转化医学研究模式正在成为新的发展趋势。
树立医学基础研究成果向临床实践快速转化的观念医学科技的基本功能是有效解决临床实际问题和切实提高公众健康水平。当前,基础医学、医学前沿技术的快速发展与临床实际应用脱节的问题非常突出。通过继续医学教育牢固树立研究成果向临床实践快速转化的观念,对于满足人民群众日益增长的健康需求,提高公众健康保障水平具有重要意义。在继续医学教育过程中,有效解决基础研究、临床应用、产业发展之间缺乏有效合作机制等问题,在基础研究与临床应用之间建立更直接的联系,缩短从科学发现到技术应用的时间。转化医学的本质是尽快将医学发展新成果快速转化为可应用的技术、产品、方法、方案或指南并应用到临床实践[2-3]。因此,大力推进转化医学的发展已成为医学科技自身发展的一个重大方向。传播和掌握转化医学新技能转化医学要求临床研究纵向深入、基础研究横向联合,因此在开展继续医学教育过程中,把握科技前沿领域的发展趋势,以生物、信息、材料、工程、纳米等前沿技术发展为先导,加强多学科的交叉融合,大力传播医学前沿技术向临床医学应用的理念,推进前沿技术向医学应用的转化,推动临床诊疗、疾病预防的科学循证,将科学研究的成果转化为服务大众的硕果,高效扩展人类战胜病患的知识并且完善、推进或开展新的研究,努力使我国在国际医学科技前沿及转化医学领域占据一席之地,在搭建转化医学平台过程中引领医学科技的飞速向前发展,更好地为临床和预防实践服务[4]。目前在个体化医疗的临床研究领域急需掌握的相关转化医学新技能有医学前沿“组学”技术和相应的系统生物学技术,发展基因组、转录组、蛋白质组、代谢组等各类组学技术,加快新一代测序技术、高通量样品分析技术、微量样品提取和放大技术、海量数据分析技术等发展,促进基因组、表观遗传组、结构基因组等组学技术在疾病防控和临床诊治中的应用。发展医学信息学、生物信息学和计算生物学技术,研发高通量生物医学数据分析与文本挖掘技术,建设支持基因组结构变异与疾病致病相关性分析、表观基因组和重大疾病分子分型等研究的大型生物医学数据融合分析平台。通过掌握上述新技能,才能够迸发出转化研究的火花,从而提升医院临床诊疗和科研品质,使医学在深入和转化的交替中不断发展进步,更好地为人类健康保驾护航。
提高医务工作者的转化医学综合素质转化医学研究是多学科、多背景、多技能的交叉研究,不是一个随时可以应用的孤立的主意或想法,而是一个需要每个研究者关注的理念,需要临床和基础研究人员的紧密交流和积极寻找合作机会,它应当成为健康供给(healthprovision)的现解的基础,而“健康供给”则是涉及诸多与人类健康有关学科的大概念[4-5]。研究和阐明生命过程本质,探索疾病发生与发展规律,深入揭示医学新科技对生命和疾病认识的理论基础和科学内涵,在解决人体健康和疾病防治的关键科学问题中提高医务工作者的转化医学综合素质尤为重要。转化医学研究的重要前提之一是收集足够多的临床样本。规范、科学地建立临床样本库是医务工作者转化医学综合素质的重要组成部分,也是开展转化医学研究非常重要的基础准备。抓住历史机遇,力争在生命活动的生理与病理过程、疾病的发生发展机理及其防治的基础理论研究等方面取得突破,实现我国医学科技的跨越式发展,必须提高医务工作者的转化医学综合素质,不断夯实我国医学科技领域的人才基础,打造一支规模庞大的人才队伍。要通过培养医务工作者的转化医学综合素质,凝聚一批国际一流的医学科技高层次人才,重点支持能够承担国家重大项目的领军人才和创新团队,尤其注重对医学交叉科学、医学工程、医学发展战略研究等新型创新团队综合素质的培养。同时,营造良好的医务工作者成长环境,促进我国医学研究队伍转化医学综合素质水平的整体提高,并尽可能为转化医学素质人才脱颖而出创造条件。