光合作用的好处范文

时间:2024-03-30 17:38:52

引言:寻求写作上的突破?我们特意为您精选了4篇光合作用的好处范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

光合作用的好处

篇1

谁在帮助锰氧化?

光合作用是用光和电子来产生能量,从而为有机体提供动力的。就现代的光合作用而言,电子来自水分子,氧气是这一过程的副产品。但这并不是说,光合作用一开始出现就如此的。比如说,光合作用大约是在34亿年前出现在地球上的,但并没有迹象表明,那个时候就已经有氧气产生了。所以有些科学家猜测,最早的光合作用很可能是靠分解别的物质,譬如说二氧化硫,而不是水,来获得电子的。

但到了大约24亿年前,这一情况发生了变化。这一时期地质层中沉积的大量氧化物矿物告诉我们,此时氧气开始在大气中积聚起来,所以,光合作用直到这个时候才进化出现代的形式,即靠分解水来获得电子。

那么这一过程是如何实现的?换句话说,早期的光合作用是如何找到水这一替代物的?

为了搞清楚这一问题,美国地质学家伍德沃德·费歇尔和他的同事考察了南非的一些岩石。这些岩石形成于大约24亿年前,形成的时间正好处于地球环境大转折——以分解水、释放氧气为特征的现代光合作用出现的前夕。研究表明,尽管这些岩石是在无氧的环境下形成的,但令人匪夷所思的是,岩石里的锰元素却都以氧化物的形式存在。

从化学中了解到,在大气中缺少氧气的情况下,金属锰需要一些催化剂才能形成氧化物,换句话说,没有一点别人的帮助,这个反应就不可能发生。那么帮助锰氧化的是谁呢?

光合作用也在进化

费歇尔提出一个大胆的猜想:这个帮手就是无氧呼吸同时又进行光合作用的有机生命!但这种生命的光合作用有点奇怪,电子“采自”金属锰。锰失去电子之后变成离子,而锰离子是不稳定的,很快会跟周围的水反应生成锰的氧化物。这样,在大气缺氧的情况下,通过这种方式也可以形成锰的氧化物。

篇2

爱因斯坦有句至理名言,“兴趣是最好的老师”。古人亦云“:知之者不如好之者,好之者不如乐之者。”我们只有通过创设问题的情境,才能使学生引起强烈的兴趣和求知欲。当学生产生某种需要而又没有满足时,便会产生一种不安和紧张的心理状态,在遇到能够满足需要的目标时,这种紧张的心理状态就转化为动机,从而推动学生的学习活动,向所确定的目标前进。在学《植物的光合作用》这一节时,我们可以先把一些花草布置在实验室的四周,也可以把一些著名生物学家的画像和格言布置在实验室里,使学生一进入实验室便沉浸在一种良好的情境中,从而自然本能地从内心激发学生的兴趣,并产生对知识的需求。

二、提出问题,进行设疑

学生的认识过程是在特定的条件下进行的,我们应加强教师的引导,最大限度地排除可能出现的偶然性和盲目性,使学生的认识具有明确的指向性和较大的受控性,从而有可能在规定的时间内获得预期的效果。我向学生明确海尔蒙特的实验证明了水分与植物生长的关系,但忽略了自然界的其他环境因素,如阳光、空气对植物生活的影响。在课前让学生收集光合作用发现史的资料,组织学生讨论:海尔蒙特的实验证明了什么?忽略了什么?引导学生发现问题:绿色植物生长所需的物质和能量是从何而来?阳光、空气等因素是否与柳树重量的增加有关?

三、学生利用教材和提供的条件,进行学习观察和操作,进行积极的思维活动,提出假设

我们知道,实践性教学可以使学生在亲身的实践中感知客体,获得感性知识,为学习理论知识奠定好基础,还可以深化书本知识,扩大视野、开拓思路,培养学生的观察、分析、解决问题的能力和创新能力;通过实践性教学还可以促进学生自身脑力劳动和体力劳动的结合,树立正确的人生观、价值观、劳动观。在这一节教学(2课时)中,我准备了十二个分组实验,让学生四人为一组,自己动手做实验,在实践中获得感性知识。(教师边巡视,边指导)

四、学生提出看法,相互交流讨论

学生在观察实验后,可以进行专题讨论。对于重点问题和难点问题,教者要能够及时地参与到学生的讨论中来,并督促学生集中力量进行讨论。在讨论过程中,一方面密切注视学生讨论的情况和进程,同时还进行及时的、恰到好处的点拨,但不越俎代庖,目的是充分调动学生的积极性和主动性,对在讨论中表现出色的学生,及时给予充分肯定。通过讨论,各抒己见,互相切磋,互相启发,取长补短,共同提高,使学生思路更开阔,认识更全面。

五、对讨论,老师要做出必要的、有针对性的结论

对讨论的结果,教师要做出必要、有针对性的讲解和小结,简明扼要,突出重点,强调难点,这有利于学生加深对知识的理解。同时,对在讨论中出现的知识性错误、知识漏洞或不严密、不规范的表述加以纠正。这样可以使学生对实验的观察过程、现象、本质和规律掌握得更简练、更精辟、更准确,避免出现知识的盲区和误解,有利于以后对书本知识的学习,让学生以积极的心态去获得知识,认识世界。

实验1结论:叶片的见光部分遇到碘液变成了蓝色,这就是说叶片的见光部分产生了淀粉。可见,淀粉是光合作用的一种产物。

实验2结论:在植物体中,叶绿体越多的部位,蓝色越明显,也就是产生的淀粉越多,证明光合作用的场所在叶绿体。

实验3结论:快要熄灭的卫生香,遇到金鱼藻在光下释放出来的气体,立刻猛烈地燃烧起来,这就是说,金鱼藻在光下能够产生氧气,可见,氧气也是光合作用的一种产物。

实验4结论:甲装置里的氢氧化钠溶液,吸收了容器里的二氧化碳,叶片吸收不到二氧化碳,就不能制造出淀粉,乙装置里的清水,不能吸收容器里的二氧化碳,叶片吸收了二氧化碳,就制造出淀粉。可见,二氧化碳是光合作用的原料。科学实验还证明,水也是光合作用的原料,光是光合作用的条件。

篇3

早在100多年前,“现代生物学之父”达尔文的儿子弗朗西斯就对叶片上的气孔进行了仔细观察。他发现,夜间的气孔不是完全关闭的;但却无法解释这个现象,只能推测这种开放的状态或许与植物处于应激状态有关。随着科学技术的发展,人们对于这个问题的认识越来越全面,并且基于试验提出了不同的假说,解释植物这种看似“不经济”的做法。有人认为,植物从表面上浪费的行为中得到了某些好处或补偿,如增加了营养元素的吸收、提高了竞争力等。

概括来说,植物夜间失水有以下几种作用,如提高了碳同化、氮素吸收和氧气输送等方面的能力。

提高光合作用

植物的“夜生活”到底要消耗多少水分?这要看是对于什么样的植物。一般情况下,植物夜间蒸腾失水的比例可以占到白天蒸腾失水量的5%~15%,有时会高达30%。

消耗这么多水分,却没有给植物带来什么好处,确实是一种浪费。然而,科学家通过测量黎明前的气孔导度(度量气孔张开大小的指标)发现,那些在夜间蒸腾失水较多的植物在早上的气孔开度也是比较大的,而这会帮助植物尽快投入到光合生产中,从而提高了植物在清晨的光合能力。因为气孔的打开往往需要一定的时间,一直处于开放或者半开放状态的气孔,自然就会比那些还在“睡梦”中的气孔有更高的活力。这有点儿像汽车比赛,同一起跑线,行进中的汽车总比那些还没发动的汽车跑得更快。

促进氮元素吸收

曾有美国学者通过对一种灌木植物的研究发现,终止了夜间蒸腾作用的植物相比于对照组,吸收的氮元素相对较少,从而间接证明了夜间蒸腾失水可以提高植物对氮的吸收。

为了验证营养元素吸收和夜间蒸腾失水的关系,阿根廷学者肖尔兹等人对在巴西生长的树木进行了添加氮肥和磷肥的试验。他们发现,相比于营养匮乏的样地里的树种,生长在养分充足的环境中的植物,夜间气孔导度明显降低,这说明植物的夜间蒸腾失水或许有利于营养元素的吸收,特别是氮素。

加拿大和美国的学者则证明,那些叶片氮含量高的树种,它们的树干在夜间的液流和蒸腾作用也比较大,这些树种同时也是生长较快的树种。

白杨幼苗的试验也表明,肥沃的生长环境不仅提高了植物体内的氮含量,其夜间蒸腾失水的比重也加大了,这说明夜间水分蒸发与植物的生长状态密切相关。

但也有一些研究认为,夜间失水与氮素吸收没有关系。如在对几种向日葵植物的夜间蒸腾失水的研究中,佐治亚大学的科学家发现,向日葵夜间的气孔导度不受土壤养分状况的影响,而对土壤水分有更直接的响应。

提供氧气

植物的旺盛生长伴随着强烈的呼吸作用。我们知道,呼吸作用的效应与光合作用完全相反,它是消耗氧气产生二氧化碳的过程。据估计,密封树干内部的二氧化碳浓度相当惊人,有时甚至比大气中的二氧化碳浓度高900倍。如此之多的二氧化碳使细胞无法正常呼吸,甚至会产生缺氧症状,进而阻碍植物的代谢过程。不过还好,植物可以通过树干液流为各组织和器官提供氧气。有学者对白桦树干的氧气供应情况进行了估算,发现有60%的氧气是通过液流的方式提供的。树干液流主要用于蒸腾作用,其中包括夜间的水分散失和树干补水,这表明树干液流在夜间也扮演着氧气传输的角色。

美国波士顿大学的研究人员比较了3个树种的夜间液流特征,发现纸皮桦的夜间液流占到总液流比例的10%,是夜间水分利用最大的一个树种,而这与它处在演替早期、生长迅速且不耐阴的习性有关。据称,夜间的树干液流可以为纸皮桦边材深处的活细胞输送氧气,从而保证了它的快速生长。当然,除了液流能够给植物提供氧气之外,气孔和皮孔也是植物氧气供给的有效通道。

生物节律调节

世间万物皆按一定的规律繁衍生息。古人说的“日升而作,日落而息”貌似是一切生物共同遵循的法则。虽然有研究证实植物夜间失水与自身的一些生理代谢过程相关;但也有研究人员认为,植物在夜间打开气孔,就像白天进行光合作用一样,除了受到环境因素的影响外,生物节律本身也在发挥着重要作用。

篇4

那是一场灾难。在数次生物大灭绝事件中,氧含量上升毁灭的物种比例很可能高居魁首。尽管如此,氧气的危险特质—高活性,也使得它能够成为一种丰富的能量来源。生命很快就开始开采这座宝库,我们的动物祖先也在其中。

远古光合作用

过去的10年来,我们对地球历史这一阶段的认识,发生了大逆转。教科书会告诉你,光合作用甫一出现,氧含量就开始攀升。但是,据我们现在所知,有些生物早在34亿年前就能进行光合作用,这比氧含量上升要早得多。问题在于,为什么氧气会在那么久之后,才喷涌而出?

本质上,光合作用就是“收割”太阳能。植物利用太阳能制作食物,把二氧化碳变成碳链。这一过程中产生的糖类可以用作能源,也可以用于制造从蛋白质到DNA不等的各种更复杂的分子。可能与你所预期的不同,产生氧气并非不可避免。事实上,许多细菌都可以不用产生氧气,就把光能和二氧化碳转化为食物。而且,近期的研究表明,细菌这种光合作用的历史,几乎和地球生命史一样悠久。

2004年,当时任职于美国加利福尼亚斯坦福大学的迈克尔·泰斯(Michael Tice)和唐纳德·罗威(Donald Lowe),在

南非研究距今34.1亿年前形成于浅水中的岩石时,发现一种化石结构与现代光合细菌形成的微生物席非常类似,但是没有任何氧气产生的迹象(参见《自然》杂志,第431卷,549页)。对此,他们认为最可能的解释是,这些细胞进行的是不产生氧气的光合作用。

从这一发现起,我们开始真正接触到早期光合细菌。2011年,英国牛津大学的马丁·布雷泽(Martin Brasier)及其同事在澳大利亚西部的岩石中发现了距今34.3亿年前的细菌细胞化石(参见《自然·地球科学》,第4卷,698页)。“它们生活在光照良好的潮间带或潮上带,”布雷泽说。岩石的化学组成,以及充足的光线,充分表明这些细胞中有些能进行光合作用,却不产生氧气。

不产生氧气的光合作用出现得如此之早,似乎相当令人惊讶。现在已知最早的化石,形成于距今34.9亿年前,仅仅比它们略早一点。在英国伦敦大学学院研究生命起源的学者尼克·雷恩(Nick Lane)认为,一旦生命演化到能够依靠化学能为生,转而利用太阳能其实算不上什么飞跃。“实际上,光只是让电子流过同一台设备而已,”他说。

对于雷恩这样的研究人员来说,谜题在于,为什么产生氧气的光合作用要经过如此漫长的岁月才演化出来。产生氧气的光合作用出现在大约24亿年前,可能比不产生氧气的光合作用晚了10亿年。明明更具优势,为什么它会如此姗姗来迟?

光合作用分为两个主要步骤。在第2步中,电子进入二氧化碳,帮助把二氧化碳分子转化成糖类。而第1步则是获取这些电子,也就是从一种分子上剥离出电子,用来产生驱动第2步所需的电化学梯度。

10亿年的延迟

在产生氧气的光合作用中,由水分子提供电子。剥离电子的过程使水分子裂解为氢离子和氧。在把二氧化碳转化为糖类的过程中,氢离子和电子起着至关重要的作用,而氧气则是一种没什么用的副产品。

在不产生氧气的光合作用中,电子由其他种类的分子提供,其中最为普遍的是硫化氢。裂解硫化氢产生的副产品是硫。硫化氢具有非常容易失去电子的优点,或者说非常易于氧化。而且在早期海洋中,硫化氢也很常见。不过,在不产氧的光合作用发生的表层水域,硫化氢估计很快就被消耗一空了。

用水提供电子的最大好处是,水在海洋中可谓取之不尽用之不竭。但是,水的缺点也不小。“氧化水非常困难,”美国密苏里州圣路易斯华盛顿大学的罗伯特·布兰肯西普(Robert Blankenship)说。我们现在依然在为之努力:研究人员已经进行了数十年的尝试,希望开发出一种廉价高效的裂解水的方法,以生产氢气作为燃料。

因此,在选择水之前,光合细菌最先选择容易氧化的物质,也就合情合理了。传统观点认为,产生氧气的光合作用,是经过一系列中间阶段,逐渐从不产生氧气的版本演化而来的。布兰肯西普和很多研究人员都支持这一观点。

产生氧气的光合作用是如何出现的,所有与此有关的假设都不能绕过以下4个具有重要意义的事实。事实1:不产生氧气的光合作用有两个迥异的类型。一些细菌具有被称为Ⅰ型的反应中心,它们从硫化氢之类的分子中获取电子,而且电子走的是单行道,即每个电子只利用一次。另一些细菌具有Ⅱ型反应中心,可以在内部循环利用电子,从而降低了对外界电子来源的依赖。事实2:在产生氧气的光合作用中,一个Ⅰ型反应中心和一个Ⅱ型反应中心串联在一起工作。事实3:尽管蓝藻同时具备两种反应中心,但它只用Ⅱ型反应中心来裂解水分子产生氧气。并且,反应发生的位置上,有4个锰原子排列在一个钙原子周围。事实4:具有Ⅱ型反应中心、进行不产生氧气的光合作用的细菌,不具备这种锰和钙的组合。

布兰肯西普认为,后两个事实最为重要,它们指向了一个简单的发展过程。他认为Ⅰ型反应中心先演化出来。从古至今,基因交换在细菌中一直十分普遍。编码Ⅰ型反应中心的基因被另一类细菌获得,通过逐渐调整修改基因编码,形成了Ⅱ型反应中心。之后,这类细菌的后代又把金属原子纳入其中。最后,形成了包含4个锰原子和一个钙原子的结构布局。现在,细菌可以只用Ⅱ型反应中心氧化水分子,进行产生氧气的光合作用了。

布兰肯西普声称,在此之后,这些细菌的后代通过基因交换,又获得了Ⅰ型反应中心,蓝藻就这样产生了。因此,布兰肯西普认为,蓝藻具有两种不同类型的反应中心,只是一个巧合。

该假说作出了一个明确的预测:曾经有一种不同于蓝藻的细菌,能够通过光合作用产生氧气。这个缺失环节,将具有Ⅱ型反应中心、进行不产生氧气的光合作用的细菌(其中包括紫细菌,一种现生细菌),与进行产生氧气的光合作用的蓝藻联系在了一起,因此我们不妨称之为“靛蓝”菌。目前为止,还没有“靛蓝”菌被发现。布兰肯西普和其他研究人员试图通过其他方法,证明靛蓝菌曾经存在过。

美国亚利桑那州立大学的一支研究团队,试图把紫细菌改造成类似于靛蓝菌的生物。这或许是诸多尝试中意义最为重大的一次。研究人员改造了紫细菌,使它们有能力将锰离子纳入反应中心,并利用锰离子与含有氧元素的分子发生反应(参见《美国科学院院报》,第109卷,2314页)。这还算不上是产生氧气的光合作用,却是向着目标方向迈出的一步。

海洋灾难

即使有一天,生物学家真的在实验室里制造出了靛蓝菌,也不能证明靛蓝菌曾经自然演化产生过。对于埃兰来说,渐进假设并不能解释所有的事实。为什么如此显而易见、如此简单的过程,需要花上10亿年的时间?为什么产生氧气的光合作用只演化出了一次?(到目前为止,据我们所知,只有蓝藻。植物通过让蓝藻在体内生活,获得了这种光合作用的能力—换句话说,植物的叶绿体是由蓝藻发展而来的)。而且,为什么所有蓝藻都同时具有两种类型的反应中心?

埃兰同样认为,Ⅰ型反应中心先演化出来。但是在这之后,他的假设就大不相同了。他认为,光合作用细菌在发展早期遇到了某种问题,导致多复制了一整套Ⅰ型反应中心基因。多出来的这一套反应中心,拥有很大的自由度,可以承担不同的功用。这套反应中心演化出了循环利用的电子,成为了最初的Ⅱ型反应中心。埃兰推测,由于拥有两套不同的反应中心,使得这些“早期蓝藻”在广泛的环境中兴盛起来。当环境中的硫化氢比较充裕时,它们使用Ⅰ型反应中心。当硫化氢不足时,它们转而使用Ⅱ型反应中心,循环利用已经得到的电子。

然后有一天,灾难降临了。一些早期蓝藻漂进了一处富含锰、却缺少硫化氢的浅滩。细菌适时启用了Ⅱ型反应中心。然而,紫外线照射锰会使锰放出电子,所以,事实上环境中存在着大量的电子。这些电子很快就造成了Ⅱ型反应中心的拥堵。虽然锰离子会和水反应生成氧化锰,但周围环境中仍然存在着大量的锰,继续产生过量的电子,造成早期蓝藻的死亡。

或者说,造成了绝大部分早期蓝藻的死亡,只有一个幸运儿存活了下来。埃兰认为,在这个幸运儿中,由于基因突变,同一时间只能开启一套反应中心的开关坏掉了。当两套反应中心同时运作时,锰产生的电子流经Ⅱ型反应中心后会被Ⅰ型反应中心抽走,这样就解决了阻塞问题。换言之,两种反应中心开始联手工作了,就像在现代蓝藻中一样(参见《欧洲生物学化学会联盟通讯》,第579卷,963页)。

可是,这个细菌的后代是怎么从由锰提供电子,转到由水提供电子的呢?从某种程度上来说,它们没有变过。直到今天,所有植物用于光合作用的电子都是由锰提供的。只不过,这些电子现在来自于Ⅱ型反应中心内部的一个锰原子团簇。这个团簇具有一项不同凡响的能力—当它给出电子之后,能够从水分子中偷来电子,从而把水分子裂解开,释放出氧气。

当早期蓝藻演化出这种Ⅱ型反应中心后,它们对锰原子的需求就微乎其微了。接下来,它们就能从富含锰的水域向外开枝散叶,借助无穷无尽的水和阳光,开发利用当时丰富的二氧化碳资源。不久之后,数量庞大的蓝藻喷吐出来的氧气,改变了大气组成。

如果埃兰的假设是正确的,蓝藻偶然进入富含锰的环境,以及关键基因开关的失控,必然发生在同一时间。埃兰也同意,这种情况出现的几率太低了。但这或许就是产生氧气的光合作用耗费了10亿年才出现的原因。他说:“我研究的这条路线只是个时间问题,经过漫长的时间,终于等到两个意外因素,同时出现在一个细菌上。”出乎人们意料的是,现在埃兰的理论已经有实实在在的证据支撑了:我们已经发现了一处罕见的、富含锰的环境。

美国加州理工学院的伍德沃德·菲舍尔(Woodward Fischer)及其同事,一直在研究位于现今南非的岩层,该岩层的形成时期恰好是在氧含量上升的前夕。他们发现一处岩石中二氧化锰含量非常之高,而且意义格外重大的是,这处岩石是在缺乏氧气的环境中形成的。即使是紫外线,也不足以产出如此规模的氧化锰。这个研究团队在2012年12月的一次会议上说,埃兰提出的早期蓝藻的光合作用模式,似乎是对这种现象的唯一可信的解释。

友情链接