欧姆定律的重要性范文

时间:2024-04-21 14:39:40

引言:寻求写作上的突破?我们特意为您精选了12篇欧姆定律的重要性范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

篇1

(2)理解欧姆定律,记住欧姆定律的公式,并能利用欧姆定律进行简单的计算。

(3)能根据串联电路中电压及电流的规律,利用欧姆定律得到串联电路中电阻的规律。

2、过程和方法

(1)通过根据实验探究得到欧姆定律,培养学生的分析和概括能力。

(2)通过利用欧姆定律的计算,学会解电学计算题的一般方法,培养学生逻辑思维能力。

(3)通过欧姆定律的应用,使学生学会由旧知识向新问题的转化,培养学生应用知识解决问题的能力。

3、情感、态度与价值观

通过了解科学家发明和发现的过程,学习科学家探求真理的伟大精神和科学态度,激发学生努力学习的积极性和勇于为科学献身的热情。

4、教学重点:欧姆定律及其应用。

教学难点:正确理解欧姆定律。

篇2

电流等于电压除以电阻。

欧姆定律的简述是:在同一电路中,通过某段导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比。该定律是由德国物理学家乔治·西蒙·欧姆1826年4月发表的《金属导电定律的测定》论文提出的。

随研究电路工作的进展,人们逐渐认识到欧姆定律的重要性,欧姆本人的声誉也大大提高。为了纪念欧姆对电磁学的贡献,物理学界将电阻的单位命名为欧姆,以符号Ω表示。用公式表示为:I=U|R,即电流等于电压与电阻之比。

(来源:文章屋网 )

篇3

静电场是电荷周围存在的一种特殊形式的物质,电荷之间的相互作用是通过电场实现的。对电场的任何一点来说,放在这点的电荷所受的电场力跟它的电荷的比值,总是一个常量,可以用来表示电厂的强弱叫做这一点的电场强度。电场强度是矢量,它的方向规定为正电荷所受电场力方向。除了用电场强度来描述电场的强弱及方向外,电场线也用来形象表示电场强弱及方向。电场线是在电场中画出的一系列从正电荷出发到负电荷终止的曲线,并且使曲线上每一点的切线方向都跟该点的电场强度方向一致;电场强度越大的地方,电场线越密,电场强度越小的地方,电场线越疏,沿着电场线的方向是电势降落的方向。

在复杂电路的某一段电路或一个电路元件的分析与计算时,可事先假定一个电流的方向,这个假定的方向叫做电流的“参考方向”。我们规定:若电流的“参考方向”与实际方向相同,则电流值为正值,即I>0;若电流的“参考方向”与实际方向相反,则电流值为负值,即I<0。和分析电流一样,有时很难对电路或元件中电压的实际方向做出判断,必须对电路或元件中两点之间的电压任意假定一个方向为 “参考方向”,在电路中一般用实线箭头表示,箭头所指的方向为参考方向。当电压的“参考方向”与实际方向一致时,电压值为正,即U>0;反之,当电压的“参考方向”与实际方向相反时,电压值为负,即U<0。电流与电压有了参考方向后,电流与电压就有了正负。

电流与电压参考方向,在应用基尔霍夫定律解决复杂电路计算中,贯穿始终。

欧姆定律是分析与计算电路的基础。如果电阻元件上的电压与通过它的电流参考方向相同,欧姆定律可表示为U=IR,如果电阻元件上电压的参考方向与电流的参考方向不同时,则欧姆定律可表示为U=-RI。除了欧姆定律,分析与计算电路还离不开基尔霍夫电流定律和电压定律。基尔霍夫电流定律应用于节点,基尔霍夫电压定律应用于回路。

基尔霍夫电流定律是用来确定连接在同一节点上的各个支路电流之间的关系的。由于电流的连续性,电路中任何一点(包括节点)均不能堆积电荷。因此“任何一瞬时,流入任一节点的支路电流之和恒等于流出该节点的支路电流之和”,这就是基尔霍夫电流定律的基本内容。

基尔霍夫电压定律是用来确定回路中的各段电压之间的关系。“在任一回路中,从任何一点出发以顺时针或逆时针方向沿回路循行一周,回路中各段电压的代数和等于零”,这就是基尔霍夫电压定律的基本内容。为了应用基尔霍夫电压定律,必须选定回路的参考方向,当电压的参考方向与回路的循行方向一致时取正号,反之取负号。列方程时,不论是应用基尔霍夫定律或欧姆定律,首先都要在电路图上标出电流、电压或电动势的参考方向;因为方程式中的正负号是由它们的参考方向决定的,若参考方向选得相反,则会相差一个负号。

如图所示电路中,已知R1=10Ω,R2=5Ω,R3=5Ω,Us1=12v,Us2=6V。

求:R1、R2、R3所在支路电流I1、I2、I3。

解:1.先假定各支路电流的参考方向,如图所示。

2.根据KCL列出节点电流方程,由节点A得到I1+I3-I2=0。

3. 选定回路的绕行方向就是电势降落的方向,如图所示。

4. 根据KVL列出两个网孔的电压方程。

网孔AdcBbA:-I2R2-I3R3+Us2=0;其中I2R2、I3R3为负是因为电流与电压参考方向相反,欧姆定律用负的。

网孔AbBaA:I1R1+I2R2-Us1=0;其中Us1为负是因为它电压的方向与循行方向相反。

代入电路参数,得方程组:

I1+I3-I2=0

-6=-5I2-5I3

12=10I1+5I2

解方程组,得:I1=0.72A,I2=0.96A,I3=0.24A。

从基尔霍夫定律的应用中可以看到,电流、电压的方向问题就是解题的对错问题,足以见证电流、电压方向的重要性。如果没有静电场的电场线的形象讲解,学生就很难看出电流与电压实际方向的一致性,那么,欧姆定律正负公式推出就难讲述,欧姆定律讲不好,基尔霍夫定律就很难讲,更别说应用基尔霍夫定律解决实际问题了。所以,静电场内容是是直流电内容讲解的前提和基础,两章内容密不可分。

参考文献:

篇4

(1)画出电路图;先识别电路,在图上标出已知量,未知量(如是动态电路则需画两个或三个电路图)

(2)列出已知条件和所求量;

(3)利用欧姆定律求解;(先公式,再代入,再计算;若是动态电路可列方程或方程组.)

解题时应按例题格式书写.

例 一只小灯泡额定电压为3 V,电阻为10 Ω,现将其接入电压为4.5 V的电路中,为了使小灯泡正常发光,要串联一个多大的电阻?

已知:小灯泡的电阻UL=3 V,电阻RL=10 Ω,总电压U=4.5 V.

求:串联电阻Rx.

1.(2007年安徽)可以用图2的电路图测量未知电阻Rx的阻值.调节电路,当电压表示数U为14.0 V时,电流表的示数为0.40 A.

(1)计算Rx的阻值;

(2)实际上,电流表是有电阻的,如果考虑到电流表的电阻值RA为0.5 Ω,计算这时待测电阻Rx′的阻值.

2.(2008年安徽)干电池是实验经常使用的电源,它除了有稳定的电压外,本身也具有一定的电阻.实际使用时,可以把干电池看成一个理想的电源(即电阻为零)和一个电阻串联组成,如图3(a)所示.用图3(b)所示的电路可以测量出一个实际电源的电阻值.图中R=14 Ω,开关S闭合时;电流表的读数I=0.2 A;已知电源电压U=3 V,求电源电阻r的大小.

3.(2009年安徽)常用的电压表由小量程的电流表G改装而成.电流表G也是一个电阻,同样遵从欧姆定律.图4甲是一个量程为0~3 mA的电流表G,当有电流通过时,电流可以从刻度盘上读出,这时G的两接线柱之间具有一定的电压.因此,电流表G实际上也可以当成一个小量程的电压表.已知该电流表的电阻为Rg=10 Ω.

(1)若将这个电流表当成电压表使用,则刻度盘上最大刻度3 mA处应该标多大的电压值?

(2)如图4乙所示,若将该电流表串联一个定值电阻R后,使通过G的电流为3 mA时,A、B 之间的电压等于3 V,这样A、B之间(虚线框内)就相当于一个量程为0~3 V的电压表(图4丙),求串联的定值电阻R的大小.

4.(2010年安徽)实际的电源都有一定的电阻,如干电池,需要用它的电压U 和电阻r两个物理量来描述它.实际计算过程中,可以把它看成是由一个电压为U、电阻为0的理想电源与一个电阻值为r的电阻串联而成,如图5甲所示.

在图5乙中R1=14 Ω,R2=9 Ω.当只闭合S1时,电流表读数I1=0.2 A;当只闭合S2时,电流表读数I2=0.3 A,把电源按图甲中的等效方法处理.求电源的电压U和电阻r.

5.(2011年安徽)实验室有一种小量程的电流表叫毫安表,用符号mA表示,进行某些测量时,其电阻不可忽略.在电路中,可以把毫安表看成一个定值电阻,通过它的电流可以从表盘上读出.利用图示电路可以测量一个毫安表的电阻,电源的电阻不计,R1=140 Ω,R2=60 Ω.当开关S1闭合、S2断开时,毫安表的读数为6 mA;当S1、S2均闭合时,毫安表的读数为8 mA.求毫安表的电阻RA和电源的电压U.

6.(2012年安徽)有一种装饰用的小彩灯,如图7(a)所示,它的内部是由一个定值电阻与灯丝并联而成,等效电路如图7(b)所示.已知灯丝的电阻R1=10 Ω,定值电阻R2=1000 Ω.

(1)求这个小彩灯的电阻.(结果保留一位小数)

(2)若将一个小彩灯接在电压为1.5 V的电源两端,求通过灯丝R1的电流大小.

(3)如图7(c)所示,将数十个小彩灯串联后接在电压为U的电源两端,均正常发光(图中只画出3个,其他未画出).若其中一个灯的灯丝断了,其他小彩灯的亮度如何变化?写出你的判断依据.

(1)求电路中的电流大小.

篇5

在电路基础教学中,认真做好演示实验,同时尽可能让学生多亲自动手操作。给学生正确的引导,让学生克服对电的恐惧心理,(特别是女生)告诉学生只要正确的操作,电是对于我们有百利而无一害的。例如在简单电路,串并联电路的教学中,可以采取分组试验和课堂教学相结合的办法,从电路图到实物图的转换以及从实物图到电路图的转化,让学生明白理论的同时,注重实践,把理论和实践相结合。

二、反复试验,大胆摸索,理解仪器的正确使用

把电学的操作规则教给学生后,尽可能创造机会让学生自主试验,给学生犯错误的机会,这样才让他们能学到正确的知识,即使错了,也能明白错在什么地方。所谓知其然,还得知其所以然。如电流表和电压表为什么非得接线的时候“正进负出”,如果接反了会怎么样?电流表和电压表为什么要用“大量程试触法”选择一个合适的量程?这样让他们更深层次的理解电流表和电压表的使用规则。滑动变阻器接线为什么得一上一下,闭合开关前划片应该处于什么位置?这样通过试验自主的探究,让学生清楚明了的理解了变阻器的使用和作用。

三、通过试验探究,弄清公式、规律的来龙去脉

在串并联电路电流、电压、电阻规律教学中,通过学生的亲自动手操作,熟悉电学仪器的使用并引导他们得出串并联电路的电流电压电阻规律,一方面让学生在实践中学到知识,另外一方面满足学生的求知欲。

在欧姆定律教学中,通过利用控制变量法进行试验探究,让学生对欧姆定律有更深层次的理解,在电压不变的情况下,电流与电阻成反比;在电阻不变的情况下,电流与电压成正比,最终得出欧姆定律的内容。

四、结合生活实际,理解生活中的电学

在电功的教学中结合生活中的电表,对电功进行直观的教学,而电功率的教学中,通过对家用电器的了解,明白电功率的意义。对于焦耳定律的教学,利用生活中电炉子和电饭煲等进行教学。通过对安全用电和家庭电路的教学对学生进行安全教育的同事,又准确达到教学效果

篇6

二、 对几个物理规律的重构建议

在人教版教材中,《动能定理》《焦耳定律》《闭合电路欧姆定律》三个物理规律都是以特殊模型为演绎起点、通过理论演绎建立起的一般规律,而演绎方法的规则是由一般到特殊,故教材的呈现方式隐含着逻辑问题;《楞次定律》是通过实验归纳方法建立起来的,但在对实验现象进行归纳时,没有充分运用科学方法引导学生进行探究,而是直接提示学生通过“中介”——“感应电流的磁场”来进行归纳. 有鉴于此,建议对它们的呈现方式进行重构.

1. 对动能定理的重构建议

(1) 教材分析

动能定理是通过理论演绎的途径建立起来的,具体过程如下:

由牛顿第二定律F=ma=m及功的定义dW=F?dx得F?dx=m?dx=mv?dv,

将上式积分有W=mv22-mv21.

教材据图1所示的物理模型,运用牛顿第二定律F=ma与运动学公式v22-v21=2ax进行理论演绎,得出W=mv22-mv21,并直接指出此式即为动能定理,纵观上面的推理过程,其逻辑关系实质如图2所示.

上述演绎推理的大前提是牛顿第二定律,小前提是物体做匀变速直线运动,那么,由此演绎得出的W=mv22-mv21的适用条件自然是与小前提相同的,因此,我们不能将其称之为动能定理. 尽管教材此后也就物体受多个力作用及曲线运动情况作了说明或提示,但仍然不是对动能定理真正意义上的建构,故有必要对其呈现方式进行重构.

(2) 重构方案

由于学生知识结构的限制,在高中阶段不可能运用理论演绎的方法建立起动能定理,为此,建议根据分类方法,分别就直线运动与曲线运动两类情况设计的递进性问题链,变理论演绎为演绎与归纳相结合,引导学生在问题解决中“发现”动能定理.

类型一:直线运动

问题1 在图1所示的水平面上,如果物体与水平面间有摩擦力作用,物体的动能变化量与什么功相对应?

通过对此问题的探究,把W=mv22-mv21的适用范围推广至多力做功情况,此时的W为合外力所做的功,同时能使学生产生问题意识,即:这一结论是否具有普遍性?是否适用变力、曲线运动情况?从而生成新的问题.

问题2 如图3所示,物体在粗糙的水平面运动,在l1、l2段分别受到水平力F1、F2作用,则物体在整个过程中的动能变化量与什么功相对应?

通过对它的探究,引导学生建构起多过程问题中功和动能变化量的关系,并把单过程中的合外力功W扩展至各过程中功的代数和,从而加深了对功W的理解.

问题3 如果物体在粗糙的水平面上运动时,受到的水平作用力F是变化的,则物体的动能变化量又与什么功相对应?

这是由问题2衍生出的直线运动中更为一般的问题,通过问题2的启发,学生能运用微元法进行演绎推理,并得出W=mv22-mv21.

在上面三个问题中,对应的物理模型都是在水平面上的运动物体,对于其他类型的直线运动,学生也容易得出W=mv22-mv21的结论,从而通过问题解决建构起直线运动中功与动能变化量间的关系,那么此结论对于曲线运动是否成立?如果成立,我们就发现了一条新的物理规律,由此生成类型二的问题.

类型二:曲线运动

问题4 从高为H处将一物体以一速度v0沿水平方向抛出,重力对物体所做的功与物体的动能变化量之间存在什么关系?

以此问题为支架,让学生进一步体会物理科学方法在探究过程中的作用,实践表明,学生对此问题能从两个角度进行探究,一是运用“猜想—检验”模式,先提出假说“重力对物体做的功等于物体动能的变化量”,然后运用平抛运动知识进行检验;二是运用微元方法,化曲为直,进行演绎推理. 同时,也使学生意识到要建立一个新的物理规律,还需要对一般的曲线运动进行分析,从而衍生出问题5.

问题5 如果物体做曲线运动,且受到变力作用,则物体的动能变化量又与什么功相对应?

对此,学生运用类比方法得出W=mv22-mv21.

在对以上两类问题探究的基础上,引导学生进行理论归纳,进而在问题解决中建构起具有普遍意义的动能定理.

2. 对焦耳定律的重构建议

(1) 教材分析

在物理学史上,焦耳定律是由焦耳通过实验归纳方法得出的. 而在新教材中,没有重现物理学史,而是以电流通过纯电阻元件为前提,通过理论演绎方法对其进行重构,具体的逻辑关系如图4.

显然,上面推理过程的大前提是普遍适用的电功公式W=IUt,小前提是电流通过纯电阻元件,因而得到的结论Q=I2Rt也只适用于纯电阻元件,而由实验归纳方法建立起来的焦耳定律是适用于任何电路元件的,故需要对其呈现方式进行重构.

(2) 重构方案

尽管运用理论演绎方法在建立焦耳定律时面临逻辑问题,但在课堂教学中,完全重现焦耳的实验归纳方法也是不可取的,因为在运用实验归纳方法时,要面临诸如实验类型、精度等一系列问题. 为此,建议运用理想实验与真实实验相结合方法来建构焦耳定律,具体内容如下.

①通过定性分析,得出影响焦耳热的物理量有R、I、t

②理想实验的设计及其思维操作

设阻值为R0的用电器通以电流I0,在时间t0内产生的焦耳热为Q0,依据等效思想,运用控制变量法来探究其他情况下产生的焦耳热与Q0的关系,进而建构起Q与R、I、t的大致关系.

问题1 在电流、电阻不变的情况下,探究焦耳热Q与时间t的关系.

理想实验:如图5,在电流I0、电阻R0不变情况下,在两个时间t0内产生的热量Q之和即为2t0时间内产生的热量Q1,故有Q1=2Q0,由此可见,Q∝t.

在上面设计的理想实验中,为探究焦耳热Q与时间t的关系,运用了倍增方法和控制变量法,把待探究的时间设计为t0的整数倍,便于学生发现焦耳热Q与时间t的关系,下面两个理想实验的设计思想与此相同.

问题2 在电流I0及时间t0一定的情况下,探究产生的焦耳热Q与电阻R的关系.

理想实验:如图6所示,在电流I0及时间t0一定的情况下,电阻为2R0产生的焦耳热与两个阻值为R0的电阻串联后在时间t0产生的焦耳热等效,也即Q2=2Q0,故有Q∝R.

问题3 在电阻R0及时间t0一定的情况下,探究产生的焦耳热Q与电流I的关系.

在运用理想实验得出Q与R、t的关系后,要探究Q与I的关系,可用倍增方法构造出电流为I0的情况,以便借助上面的结论进行思维操作.

理想实验:在电阻R0及时间t0一定情况下,通以2I0的电流时产生的热量为Q3,根据等效思想,其产生的热量等效为阻值为2R0的两电阻并联后产生的焦耳热之和,见图7. 由问题2知Q′3=2Q0,而Q3与Q′3的关系为Q3=2Q′3,也即有Q3=2Q′3=4Q0,故有Q∝I2.

③焦耳定律的建构

在对上面的理想实验的思维操作基础上,再运用综合方法,可建构起焦耳热Q与I、R及时间t的关系为Q=kI2Rt,其中常数k可由实验确定,从而运用理想实验等科学方法建立起焦耳定律.

3. 对闭合电路欧姆定律的重构建议

(1) 教材分析

教材的编写思想是通过理论演绎把能量守恒定律与闭合电路欧姆定律联系起来,充分体现功和能的概念在物理学中的重要性,同时又能帮助学生形成完整的认知结构. 基于这一思想,教材以纯电阻电路为前提,运用能量守恒定律建立起闭合电路欧姆定律,其逻辑关系如图8所示.

从上面逻辑关系可以看出,理论演绎的小前提是纯电阻电路,大前提是能量守恒定律,因而导出的E=IR+Ir及I=也只适用于纯电阻电路,但是教材紧接着又由只适用纯电阻电路的E=IR+Ir推出适用于一般电路的E=U外+U内,这就产生了逻辑问题. 因此有必要对其呈现方式进行重构.

(2) 重构方案

在运用能量守恒定律进行理论演绎时,应该遵循理论演绎的规则,即从一般情况出发,导出相应的规律,然后再运用理论演绎得出纯电阻电路中的闭合电路欧姆定律,具体方式如下.

对于图9所示的电路,电源电动势为E,内阻为r,方框内元件性质未知,电路中的电流为I,路端电压为U. ①在时间t内,外电路中消耗的电能E外为多少?②在时间t内,内电路中电能转化成内能E内多少?③在时间t内,电源中非静电力做的功W为多少?④根据能量守恒定律,W与E外、E内的关系是什么?

对于上面四个问题,学生依据有关功和能的概念及能量守恒定律得到IEt=IUt+I2rt,对其整理后得到E=U+Ir,其中,Ir是电源的内电压,故此式也可写成E=U外+U内,这两个关系式即为一般意义上的欧姆定律,它适用于一切电路.

对于纯电阻电路有U=IR,则有I=. 这是纯电阻电路中的闭合电路欧姆定律.

4. 对楞次定律的重构建议

(1) 教材分析

本节教材的编写是以问题与问题解决为纽带,引导学生从发现问题分析问题解决问题等步骤去掌握知识,意在突出科学探究,着眼于学生探究能力的提高,其教学流程如下:

其中重温的实验如图10所示,而且运用草图记录相关信息,以便归纳出楞次定律.

在运用图10所示的实验进行归纳时,面临一个关键问题,就是如何从众多的物理现象及实验因素中寻找归纳的方向,对此,教材直接提出:“是否可以通过一个‘中介’——‘感应电流的磁场’来表述这一关系”,以此引导学生归纳出楞次定律. 但问题的关键是,我们是怎么想到从原磁场方向与感应电流的磁场方向的关系进行归纳的?

(2) 重构方案

根据分类方法,影响感应电流方向的因素有如下三类:一类是外部因素(磁场强弱、磁场方向、磁铁运动方向、磁通量变化等);第二类是自身因素(线圈粗细、线圈的绕制方式等);最后是自身与外部相互联系的方式. 在探究感应电流方向与哪些因素有关时,需要围绕这三类因素设计一些针对性的问题,让学生在问题解决中,提出猜想,设计实验,修正猜想,最终“发现” 楞次定律,具体方案如下.

①探究感应电流方向与外界因素之间的关系

问题1 感应电流方向与磁场变化快慢有无关系?设计实验验证你的猜想.

问题2 感应电流方向与磁感应强度大小有无关系?设计实验验证你的猜想.

问题3 分析图10甲和图11所示的实验现象,说明影响感应电流方向的外界因素有哪些.

设置问题3的目的是引导学生对两类电磁感应问题的共同的外部特性进行归纳,总结出影响感应电流方向的外部因素是磁场方向和磁通量的变化,从而为进一步探究奠定基础.

②探究感应电流方向与自身因素之间的关系

为了探究感应电流方向与自身因素的关系,可设置以下两个问题.

问题4 试猜测感应电流方向与线圈的粗细、匝数是否有关,设计实验验证你的猜想.

问题5 感应电流方向与线圈的绕行方向是否有关?设计实验验证你的猜想,并把实验信息记录在草图上.

通过问题5,引导学生提出猜想,并通过控制变量法,在保证磁场方向和磁通量变化方式相同的情况下,设计出图12所示的实验对猜想进行检验,进而研究感应电流方向与绕行方向的关系.

根据实验所记录的信息发现,在线圈的绕行方式变化时,回路中的感应电流方向也随之变化,但是线圈中的电流绕行方向是不变的,此时引导学生探究在线圈的绕行方式变化时,什么因素是不变的?

实践表明,按此方法重构后,学生能寻找到以“感应电流的磁场方向”为中介进行归纳,于是衍生出问题6.

篇7

中图分类号:G633.7 文献标识码:A文章编号:1003-6148(2008)5(S)-0032-3

物理规律教学在中学物理教学中占有重要地位,其教学成效直接影响到物理教学质量和学生科学素养的培养。提高物理规律教学效果的前提是了解物理规律内涵、本质和特征,并在此基础上结合学生的认知特点设计科学的教学策略。

1 物理规律的内涵

“规律就是相互联系着的事物、现象、分子、元素(因素、要素)或方面的本质之间的关系”。相应的,物理规律就是物理现象、物理过程在一定条件下发生、发展和变化的内在、必然的联系。

1.1 物理规律的类型

经过2000多年的建设,物理大厦恢宏庞大,其组成规律自然纷繁复杂。为了认识物理规律本身,我们有必要对物理规律进行必要的分类。从物理规律获得途径的角度来看,物理规律可分为实验规律和理论规律;从物理规律知识形式的角度来看,物理规律可分为定律、定理、原理等类型;从过程中不同质的运动角度来看,物理规律可分为力学规律、热学规律、电磁规律、光学规律等;从“定性―定量”维度来看,物理规律可分为定性规律、定量规律。

1.1.1 实验规律与理论规律

从物理规律建立基础和过程的不同,可以将物理规律划分为实验规律和理论规律两种。实验规律是在观察和实验的基础上,通过分析归纳总结出来的,中学物理中的绝大多数规律都属于实验规律。如电磁感应定律、欧姆定律等即为实验规律。理论规律是由已知的物理规律经过理论推导,得出的新物理规律。动能定理、万有引力定律等即为理论规律。我们以万有引力定律为例来说明一下理论规律的建立过程。牛顿在伽利略的自由落体运动定律、牛顿自己的第三定律、开普勒的行星运动第三定律等前人工作的基础上,应用他超凡的数学才能,通过理论计算建立了万有引力定律。

1.1.2 定律、定理与原理

从物理规律知识形式的角度来看,可以将物理规律划分为物理定律、定理与原理三种类型。通过大量具体事实(包括实验和观察)归纳而成的结论称为物理定律,如牛顿第二定律、电磁感应定律、光的折射和反射定律等。通过一定的论据,经过逻辑推理而证明为真实的结论称为物理定理,如动量定理、动能定理等属于物理定理类。对大家公认的具有普遍性,而且可以作为其它规律基础的物理规律一般称为物理原理,如我们中学阶段比较熟悉的功能原理、叠加原理等即属于物理原理类。

1.1.3 定性规律与定量规律

从“定性―定量”维度来看,可以将物理规律划分为定性与定量两种类型。定性规律揭示的是各物理量间必然联系的存在和发展趋势;定量规律揭示的是必然联系中量的相互制约。例如牛顿第一定律就定性的描述了一切物体在不受外力作用或所受合外力为零的情况下的运动趋势,不反映外力与运动趋势之间的量化关系,属于定性规律。而定量规律则不同,如欧姆定律,除文字描述外,我们还可以用公式I=U/R来揭示各物理量之间的相互制约关系。

不同的物理规律分类之间并不是完全对立的,比如欧姆定律即属于物理定律,又是实验规律,同时也属于定量规律。

1.2 物理规律的特点

1.2.1 物理规律的实践性

物理学是一门以实验为基础的自然学科。中学物理的众多规律都是在实践、实验的基础上建立起来的。新课程标准倡导“从生活走向物理,从物理走向社会”,在教学中应重视引导学生运用物理规律解决生活实际问题,在使用中进一步加深学生对物理规律及其物理意义的理解,这对学生能力的发展、科学素养的提升,显得尤为重要!

1.2.2 物理规律的联系性

物理规律都存在一定的联系,包括物理规律内在的概念、现象之间的联系;规律与规律之间的关系。

以牛顿运动定律为例,牛顿第一定律是说物体不受外力时做什么运动;牛顿第二定律公式F=ma揭示了物体的惯性质量、所受到的合外力与由此而产生的加速度之间的关系,是阐述物体受力时做什么运动,二者是从不同的角度回答了力与运动的关系。第一定律是第二定律的基础,没有第一定律,就不会有第二定律。虽然第一定律可以看成是第二定律的特例,但不能取消第一定律。

1.2.3 物理规律的对应性

物理规律中的各物理量都针对于某一研究对象。如果是状态量则对应于某一时刻、某一位置、某一状态。如果是过程量则对应于某一段时间、某一个过程、某一空间等,这就是物理规律的对应性。如,欧姆定律U=IR中各量均对应于同一导体、同一段电路在同一时刻的量值。

1.2.4 物理规律的因果性

因果性是物理规律的重要特点,任何物理规律都是在规律所表述的具体条件下才具有规律所阐述的结论。例如牛顿运动定律是在研究宏观低速运动物体的“前因”下,才有其结论的“正果”修成。

1.2.5 物理规律的发展性

物理规律是认识的结果,是在一定的事实基础上,归纳、推理得出的结论,具有历史局限性,只能部分地反映客观世界及其内在联系。规律会随着人的认识能力的提高和认识的深入不断发展。发展有时是温和的――是对已有规律的修正、丰富;有时是激进的――是对已有规律的否定、颠覆。换言之,物理规律不是绝对的真理,而是逐渐发展变化的,具有一定的相对性。如从经典力学到相对论、量子力学的发展变化过程。

2 物理规律教学的重要性

物理新课程改革强调改变过去过于注重知识传授的一维目标而向三维课程目标迈进。教学要以人为本,在学生获得知识的过程中,同样注重学生终身学习与发展所需的各种能力的培养。如何实现物理规律教学由传统向新课程理念的转变,应进一步明确物理规律教学在新课程实施过程中所发挥的重要作用。

2.1 物理规律教学,有助于学生对知识的理解

新课程改革倡导从三个维度对学生进行全面的培养,知识的理解历来是一个重要培养目标。依据布鲁纳的认知结构学习理论,我们教学的目的,就是引导学生建构一个理解物理知识的学科结构,从而运用知识解决具体问题。在最终建构的物理知识结构中,分散的各个点表示物理概念,联接各点的线就代表了物理规律,通过点和线及其之间的相互联系的讲解,引导学生在头脑中建构物理知识网络图。

2.2 物理规律教学,有助于学生思维能力的发展

作为智力核心的思维能力的培养对学生的发展是至关重要的。物理规律教学既是物理知识教学的核心内容,同时也是对学生思维能力培养的重要途径。

物理规律教学是在学生的感性认识(已有的对实验和事实认识)基础上,教师指导学生探索物理规律的过程。根据规律建立的思维过程和学生的认知特点,选择适当的途径方法,指导学生对感性材料进行思维加工,认识到物理规律中某些物理概念之间的内在联系,考虑到物理规律的近似性与局限性,从而概括出物理规律。作为近似反映物理对象、物理过程在一定条件下发生、发展和变化的物理规律的建立,离不开观察、实验和数学推理,也离不开物理思维,是诸多因素相结合的产物,学生在理解具有这些特点的物理规律的同时,其思维能力就会得到培养。

2.3 物理规律教学,有助于学生科学方法的掌握

物理规律的教学过程,其实也是科学方法教育的过程。我们知道物理规律的获得,少不了一些科学方法的使用,在物理规律教学过程中,合理运用一些研究方法并适时适当地进行显性教育,使学生不仅学到了物理规律,同时也学到了科学方法,培养了能力,可谓一举多得。

例如,在牛顿第一定律的教学过程中,教师重点要向学生说明的,除了牛顿第一定律的内容外,就是讲解这个规律获得过程中所用到的一个重要的科学方法――理想实验法。在欧姆定律、牛顿第二定律等的实验探究过程中,可以重点要求学生设计实验方案,在这一过程中,使学生明确研究3个变量的关系时,通常采用“控制变量”的方法。

2.4 物理规律教学,有助于学生科学探究能力的形成

提倡对学生进行科学探究能力的培养,是新课程改革的一大亮点,在新教材的编写中贯穿了科学探究精神并安排了一些科学探究的内容。由于物理规律的实践性特点,便于在课堂教学中开展实验教学,创设问题情境,从而激发学生探究物理问题的兴趣,经历物理规律发现的过程,培养学生的科学探究能力,并能使学生更好地运用物理规律去解释生活中的物理现象、解决生活中遇到的物理问题。

2.5 物理规律教学,有助于学生情感、态度与价值观的培养

我们知道,情感、态度与价值观培养,是物理新课程改革所倡导的三维课程目标中的一个维度。在物理规律的教学过程中,无时无刻不渗透着对学生情感、态度与价值观的培养。我们在进行物理规律教学时,可以通过创造良好的物理学习氛围、对相关物理学史内容的选择性介绍、开展科技创作活动、采用科学探究的教学方式等等,对学生进行情感、态度与价值观的培养。

比如,在进行牛顿第一定律的教学过程中,就可以适当地给学生讲述一下它的发展历史,激发学生的学习兴趣,同时使学生在了解亚里士多德、伽利略、笛卡儿、牛顿等大科学家的观点的基础上,使其不畏权威、理性求真的科学态度与科学精神得到培养。而在进行万有引力定律教学的时候,可以联系神舟六号载人飞船的发射与回收过程进行讲解,把物理知识与科技发展、应用技术相结合,能使学生获得一个更为宽广的视野,有助于学生形成科学的价值观。

3 物理规律教学的基本策略

当明确了物理规律教学在新课程实施过程中所发挥的重要作用之后,为行之有效的进行物理规律教学,我们提出以下基本策略。

3.1 活化物理实验教学:为学生提供主动获得规律的机会

在物理学的产生、建立和发展过程中,物理实验是归纳物理规律、产生物理假说的实践基础,是验证理论预言和假说的主要依据;在物理规律教学中,物理实验是培养学生操作技能的主要途径,是发展学生非智力因素的一个重要环节。通过实验重现物理规律的发现历程,使学生在实验操作过程中体悟物理规律所反映的各物理量之间的相互关系,有助于更新学生头脑中的物理观念、提高物理规律的教学质量。

3.2 强化物理思想教学,使学生感受物理学的理性美

在进行物理规律教学时,为了让学生最有效地掌握好物理规律,达到课程标准所规定的能力要求,应该在规律教学的过程中渗透科学史、科学思想的教育,引起学生对物理思想在物理规律建立过程中所发挥作用的重视,使学生感受到物理学的理性美,同时给学生以更多的启示。

教师在采用此策略教学时,应明确两点:一是渗透物理思想的教学策略主要是指向学生展示物理规律建立的思想史;二是科学史的历史发展逻辑与课本上的知识逻辑并不相同,规律教学过程中要引导学生感悟到二者的异同,处理好二者之间的辨证关系,在了解真实历史发展过程的同时明了知识逻辑的呈现脉络。

3.3 重视规律应用教学,让学生体会物理学在社会发展中的作用

物理规律来源于生活实践,反过来应锻炼学生将物理规律运用于社会生活实际的能力。因此,在教学中应重视引导学生利用物理规律解决实际问题,让学生体会到物理学在社会发展中的重要地位,增强学习兴趣,进而在使用中进一步加深学生对物理规律及其物理意义的理解,这对学生能力的发展、科学素养的提升,显得尤为重要!

3.4 提升教师科学素养,为实施新课程背景下的物理规律教学奠定良好基础

我们将其作为一项策略提出,重在强调教师对新课程理念与目标的钻研、对物理规律的理解、对物理规律教学的整体认识与把握等。同时该策略也是关系到物理规律教学实施效果的重要因素,教师应努力提升自己的科学素养,进而才会有足够的信心调控物理规律教学,为学生的全面发展创造最好的先决条件,从而取得最佳教学质量。

篇8

调查发现:大多数学生觉得初中物理不难学,相当一部分学生对物理有极厚兴趣,大部分学生不喜欢,但也不讨厌学习物理。而在以往的教学中笔者发现,学生进入高中一个月左右,学习物理的积极性比较高。一方面,学生刚进入高中,新的教师、新的同学、新的环境,个个都想跃跃欲试。另一方面,刚开学,对新的知识,大家站在同一起跑线上,在主观上给自己的学习提出了新要求,从而在学习上比较积极。随着时间的流逝,教学内容的增多,学生普遍反映高中物理难学,对学习物理在心理上出现了严重分化现象。究其原因,是因为高中物理比初中物理知识难度大,给学生的物理学习带来了很大困难,从而产生畏难情绪,造成物理教学的严重分化现象。下面是我对高中生学习物理时产生畏难情绪原因的一点看法。

1.学生存在学习的心理障碍

第一,学生从初中升入高中,由于对高中课程不了解,容易产生胆怯心理。第二,物理学科本身就要求理论联系实际,我们教师若不及时变换教学方式,不研究学情,那么有趣的课程也使学生的兴趣慢慢变淡。第三,因数学推理、计算不熟练,或因其他原因,使学生逐渐失去学习兴趣与热情。

2.学生存在学习的思维障碍

(1)用错误的生活经验分析具体的物理现象

高中生已经从生活中和初中的物理课中接触了大量物理现象,积累了一定生活经验。有些生活经验是正确的,是我们建立物理概念的基础;有些生活经验是错误的,错误的生活经验往往会导致思维障碍。例如,生活经验告诉学生“摩擦力是阻碍物体运动的”,会使学生产生“滑动摩擦力和物体运动方向始终相反”的错误结论。

(2)思维定式

所谓思维定式就是人脑受到某种外来信号的刺激作用而形成的一种固定思维方式。学生容易按照习惯思考方法处理问题,往往陷入“思维功能僵化,处理问题绝对化”的困境。

(3)只重结果,忽视思考过程

不能深入理解物理概念及规律的本质和内在联系,只要得出正确结论,不愿多想其他解决方法。在解决问题时很难展开联想,影响思维的流畅性。例如,在电场学习中,问学生带电粒子在电场中运动时动能的变化与什么因素有关?学生会回答和重力做功有关。这是由于没有真正理解物体做功和功能变化的关系,没有考虑到电场力做功的特点。

3.教师在教学中不重视物理情境的创设

当前的教育模式仍然以灌输式为主,在物理情境教学方面存在着很多误区。在当前的考试制度与社会背景下,有的教师在概念教学中忽视现象,忽视物理情境的建立,一味强调物理量的含义、单位、方向。最终使学生觉得学习内容枯燥,没有吸引力,不能激发学生的学习兴趣,并且学生学到的物理概念如空中楼阁,很容易忘记。这种情况在高中物理教学中很普遍。

二、克服高中物理学习困难的方法

1.把握好初中物理与高中物理知识的衔接点,形成知识的可持续发展

例如,在初中物理教材中,速度的定义为物体在单位时间内通过的路程。这时,学生应明白这个定义是对于物体做匀速直线运动而言的,由于物体在各个时刻运动的快慢和方向是相同的,因此任意时刻的速度都等于整段时间内的平均速度。对于物体做变速运动,物体在各个时刻运动的快慢和方向是不同的,这样定义出来的速度只能是平均速度。

2.重视物理规律的内涵和外延,将新知识与原有的知识有机衔接起来

例如,欧姆定律的内涵是导体中的电流与导体两端的电压成正比,与导体的电阻成反比,即部分电路欧姆定律。欧姆定律的外延是电路中的电流与电源电动势成正比,与整个电路的总电阻成反比,即全电路欧姆定律。

3.重视培养思维能力的衔接

由于初中生在思维上主要以具体形象思维为主,所以初中物理教材在编排上注重联系实际、贴近生活、图文并茂,加强了形象思维能力的培养,但教材中也不乏抽象思维能力的训练。另外,处理问题时,既要注重结果,又不要忽视思考过程,不能深入理解物理概念及规律的本质和内在联系,只要得出正确结论,不愿多想其他解决方法,也会阻碍思维的衔接。

4.培养学生探究式学习的精神

把科学家从事科学研究的一些基本做法应用到学习中来,即“问题假设求证结论”的探究路径,注重对结论的产生过程的理解。

5.加强数学知识学习

高中物理对学生应用数学工具的能力要求较高。由于种种原因,对于刚升入高中的学生,还没有学过如“正弦定理”“余弦定理”“斜率”“极限”等数学知识,这对学生学习物理造成一定的困难。因此,同学们应在平时学习中及时补充一些相应的数学知识。

6.教师必须以新的观念来理解和实施新课程

篇9

2.在初中物理教学中培养学生逻辑思维能力的方法

2.1在物理知识授课中培养学生逻辑思维教师在物理概念、原理、公式等授课过程中要着重培养学生的逻辑思维能力。课堂教学是目前传授知识的主要方式与方法,课堂也是老师与学生接触与沟通机会最多的地方,因此,在课堂教学中教师可以更为直接的培养学生的逻辑思维能力。例如,教师在讲解物理公式时所展现的推导过程就是一个培养学生逻辑思维能力的过程。已知欧姆定律U=IR,其中U为电压,I为电流,R为电阻。下面推导串联电路的串联公式。

篇10

有个学者曾经说过:“提问得好即教得好”。课堂提问是优化课堂教学的必要手段之一,也是教师教学艺术的重要组成部分。恰如其分的提问不但可以活跃课堂气氛,激发学生学习的兴趣,了解学生掌握的知识情况,而且可以开启学生心灵,诱发学生思考,开发学生智力,调节学生思维节奏,与学生作情感的双向交流。因此,课堂提问是教学过程中不可或缺的一个重要环节,是启发学生思维、传授基本知识,控制教学过程,进行课堂反馈的一个重要手段。尤其是在物理学科的起始阶段,教师在物理课堂教学过程中如何适时有效地提出问题,点燃学生智慧的火花,就显得更加重要。校际间教学交流的日益扩大和频繁,使笔者得以观摩了不少青年物理教师的公开教学。坦率地说,很多青年教师的课上得挺不错,但是,不少青年教师不太注意课堂提问的艺术和策略,使课堂教学效果减弱,实在可惜。青年教师较常见的课堂提问误区主要有以下一些。

1.提问随心所欲,无目的性和针对性

某初中物理教师在讲“欧姆定律”的应用时,兴趣所至,中途突然话锋一转:“对了,请问同学们,还记得电阻的单位吗?”学生答:“欧姆。”“对,就是这个发现欧姆定律的人的名字;同学们想想,欧姆是哪个国家的人?他发现欧姆定律期间是从事什么职业的?”这一与此时所讲教学内容并无十分密切联系的提问,使学生思维突然转轨,打乱了原有教学进程,致使课堂教学不和谐,影响教学效果。

2.提问不断,提问内容简单,追求有问有答、课堂热闹

某教师在讲授完惯性定律后,为了巩固所学知识,课堂中有如下一段提问:师:一切物体都具有什么?生:惯性;师:物体的运动需不需要力来维持?生:不需要;师:要使物体运动状态改变必须施加什么?生:力;师:量度物体惯性大小用什么物理量?生:质量。我们看到,该教师的提问,学生几乎都不用通过思考就立即回答了,整堂课表面看来热热闹闹,气氛活跃,实则流于形式,肤浅,华而不实。这样的提问对激发学生的思维、培养学生的能力没有任何益处。

3.提问过于笼统或虚无缥缈,琢磨不定

某教师在复习牛顿三大定律时,提问:牛顿第一定律和第三定律谁的作用更大?没有牛顿第二定律行不行?对诸如此类的问题,学生的思维难以展开,他们不知朝什么方向思考,回答就很困难。显然,这样的提问教学效果是不会理想的。

4.提问后没有停顿,立即点名学生回答

有些青年教师这样做的本意,可能是为了节约时间。但教育心理学研究表明,要回答一个有一定难度的问题,学生必须经历由浅入深、由表及里的思维过程。对问题作深层探究和多向判断,并选择比较准确的语言,尽可能对问题作出完满的富有创造性的答复,这些都需要一定的时间保证。有经验的教师,根据自己所提问题的难易度,提问后都要作适当时间的停顿,给学生一定的思考时间后,才要求学生回答。可见,问后停顿是必要和值得的,绝不是浪费时间。没有问后停顿,学生仓促回答也就难以做到准确和全面,当然也很难达到提问的目的。

5.提问的程序颠倒,先点名后提问

有的青年教师提问的程序是这样的:下面我请同学们回答问题,被叫到的站起来。这时学生大都心理紧张,注意力高度集中,等待提问。但当教师一叫出某学生的名字时,其他学生就大松一口气,对教师接着提出的问题和被点名同学的回答就不很专心地听了。这样的提问,实际上只有那一个被点了名的同学在认真地思考和回答。

经验丰富的教师提问程序一般是:“下面我提一些问题,看谁能回答。问题是这样的:此时全体学生都会集中精力听,积极思考。在学生思考了一定时间后,教师也不急于指定谁回答,而是先说:"被叫到的同学请站起来答,其他同学注意听他回答,说得对不对,稍后请大家评价或补充。”这样,被指名的同学回答时,其他同学都会专心听。被指名的同学答完后,有些同学就会争先恐后地举手发表自己的意见。这种提问程序就抓住了学生的心理,能收到好的教学效果。

6.提问只注意结论,而忽视对学生思维过程的考查

有的青年教师设计的提问往往偏重于结论,如问“对不对?”“答案是什么?”“哪一个错了?”而很少问“为什么这个是对的?”“你为什么这样答?”“这个问题你是怎么想的?”其实后面的问法更可以起到了解学生思考问题的方法和相互交流思路的目的。思路往往比结论更为重要,因为只有学生学会思考,才能掌握获取知识的本领。理科教学中,尤其应扭转偏重答题结果,轻视解题思路的教学思想。教学实践中常发现这样的情况,答题的结果虽然一样,但学生思考过程的优劣却有很大的差别。教师应注意对学生智力活动的评价,使学生认识到思路在解决问题过程中的作用和重要性。对于那些思路简捷巧妙,概括水平高,有独到见解的思考方法应给予积极的肯定,以达到提高学生思维水平的目的。

7.课堂提问设计注意点

7.1要有一定的难度,即要激发学生的好奇心,求知欲和积极的思维,又要促使学生通过努力达到“最近发展区”、“跳一跳,摘桃子”。

7.2应有主次、轻重这分,紧扣教学内容和中心环节,选题恰当,切勿随心所欲,注意问题的内在联系以及知识的前后衔接。

7.3要由易到难、由简到繁、由小到大、层层推进,步步深入。

7.4要有探索性,通过问题的设置,引导学生学会思考分析,学会发现问题,提出问题和解决问题。

7.5在保证一定难度的同时还要兼顾广度,即应考虑到大多数学生的知识智力水平,应面向全体学生,切忌专为少数人设置。

8.具体提问时的注意点

8.1要有针对性、目的性,表达简明扼要和清晰,问题具体而不笼统,浅显而不晦涩,使学生易回忆、易归纳、易口头表达。

8.2要讲求过程,不仅要使学生得出正确的结论,还要知道结论是怎么来的,明白获得结论的过程,提高认识问题的能力。

8.3提问应疏密有间,有定的停顿时间,以适应学生的思维规和心理特点,一节课不能提问不断。

8.4要注意时机,提问时间要得当,把握好时机,寻求学生思维的最佳突破口。

篇11

1.会根据用电器的额定电压、额定功率算出用电器正常工作时的电流和用电器的电阻.

2.理解计算实际功率的思路.

能力目标

培养学生审题能力和初步综合运用学过的电学知识解题的能力.

情感目标

使学生获得解决实际用电的初步知识.

教学建议

教材分析

有关电功率的计算涉及的物理量较多,综合性较强,而且灵活性强,对学生来说有一定难度.

本节习题课就是要帮助学生解决问题.教师在选择例题时应精心选择,要有目的性,如:课本上的例题1要解决的问题是要学生学会在使用电功率的公式时,应注意公式各个量的对应关系,熟悉电功率公式,为下道例题做铺垫.

例题2的目的是要学生掌握解电功率习题的思路,抓住解题中的变量和不变量,其中不变量在初中就是电阻不变.电压变电功率、电流变.

教材(人教版)中的例题2没有从最简便的方法解题突出了电功率的决定式的作用.

重点·难点·疑点及解决办法

理解计算实际功率的思路.

教法建议

有关电功率的计算涉及的物理公式较多对初中学生来说,有一定难度.在讲例题前可以帮助学生复习一下电功率的公式和欧姆定律的公式.讲例题前应给学生一定的思考时间,要在教会学生独立思考上下功夫.鼓励学生一题多解,教师也应在一体多变上下功夫.

计算涉及的物理量比较多,题目的难度比较大.解题时要认真审题,理清解题思路,挖掘题目中的隐含条件,加深对额定电压、额定功率、实际电压、实际功率的认识和理解,提高运用知识的能力,弄清串、并联电路中电功率的特点,加深对计算过程中必须对各物理量一一对应的重要性的认识.

明确目标

会根据用电器的额定电压、额定功率算出用电器正常工作时的电流和用电器的电阻.

培养学生的审题能力.

理解计算实际功率的思路.培养学生的审题能力,通过一题多解、一题多变,训练学生思维的灵活性.

培养学生运用电功率知识解决实际问题的能力.

进一步理解计算实际功率的思路.

培养归纳解题思路的能力.

教学设计方案

重难点:重点电功率公式的运用,难点是灵活运用电功率、欧姆定律公式解决问题.

教学过程:

一.引入新课

方案一.复习引入新课

问:(1)欧姆定律的内容是什么?

(2)串联电路的电流、电压、电阻有什么特点?

(3)什么叫电功?什么叫电功率?

(4)用电器在什么情况下正常工作?

(5)实际功率和额定功率之间有什么关系?

方案二:直接引入课题

二.进行新课

解决问题:

1)已知用电器铭牌,求用电器正常工作时,电流.

2)已知用电器铭牌,求用电器实际工作时,电压或电流或功率.

3)电功率在串联、并联电路中的应用.

例1:课本中的[例题1].

例题小结:

①若已知用电器的额定状态,可求出用电器正常工作时的电流I=P额/U额和用电器的电阻R=U额2/P额.(一般地说,应当把用电器上所标明的额定条件,理解为给出了用电器的电阻.不考虑温度对电阻的影响.)

②额定电压相同的灯泡,额定功率大的灯泡电阻小,灯丝粗.

分析:当电灯两端电压发生变化时,可认为灯丝的电阻没有改变,根据欧姆定律I=U/R可知,I随U的变化而变化,所以灯泡实际发出的功率也变化.

解题思路:

①根据额定状态求出灯泡的电阻.

②根据I=U/R求出灯泡在新电压上的电流.

③根据P=UI求出新电压下的功率.

请两位同学上黑板分别算出灯泡在210伏和230伏电压下的功率P1和P2,其他同学在课堂作业本上解此题.

讨论:本题还有没有其他解法?学生回答,教师指出:用比例法P1∶P额=(U12∶U额)2求P1较为方便.

例题小结:

①用电器的实际功率是随着它两端的实际电压的改变而改变的;

②求实际功率的思路.

例3:将灯L1(PZ220-25)和灯L2(PZ220-60)并联接在220伏的电压上再将它们串联接在220伏的电路上,两种情况下哪盏灯泡亮些?为什么?

分析:要判断两灯的亮与暗,只要比较二灯的实际功率大小就可以了.

解:并联时,每盏灯的实际电压均为220伏,则其实际功率就等于灯的额定功率,因此可直接判断出灯L1比灯L1亮.

串联时,因每盏灯两端的电压均小于220伏,所以两灯均不能正常发光,根据例1的结果知道,灯L1的电阻R1大于灯L2的电阻R2,又因为两盏灯串联,所以通过它们的电流一样大.因此可根据P=UI=I2R判断出P1>P2,L1这盏灯亮些.

例题小结:在并联电路中,电阻大的用电器消耗电功率小;在串联电路中,电阻大的用电器消耗的电功率大.

例4:标有"6V3W"的小灯泡能不能直接接到9伏的电源上?若要使小灯泡接上后正常发光,应怎么办?

分析:学生根据已有的知识不难判断,因为9伏已大于灯泡的额定电压6伏,如果直接接上去,因实际功率比额定功率大得多,灯泡会烧坏,所以不能直接接入.若要接,应和灯泡串联一个电阻R再接入,让电阻R分担3伏的电压.

解:不能直接接入.应和一个阻值是R的电阻串联后再接入.

I=I额=P额/U额=3瓦/6伏=0.5安.

R=(U-U额)/I=(9伏-6伏)/0.5安=6欧.

讨论此题还有哪些方法求R.

例题小结:当加在用电器两端的实际电压比额定电压大许多时,用电器可能会烧坏,应和它串联一个电阻再接入.

探究活动

【课题】观察比较两只灯泡灯丝的粗细,判断额定功率的大小.

【组织形式】学生分组或个人

【活动方式】

篇12

1。1 试题呈现

2015年苏锡常镇二模卷第10题:将两个金属电极锌片和铜片插入一个水果中就可以做成一个水果电池,某兴趣小组欲测量水果电池的电动势和内阻。

(1)甲同学用多用表的直流电压(0~1 V)档估测某水果电池的电动势,稳定时指针如图[TP12GW39。TIF,Y#]1中A所示,则读数为[CD#3]V;用多用表的欧姆×100档估测水果电池的内阻,稳定时指针如图1中B所示,则读数为[CD#3]Ω。上述测量中存在一重大错误,是[CD#3]。

(2)乙同学采用如图2所示电路进行测量,并根据测量数据做出了[SX(]1[]I[SX)]-R图象,则根据图3,该水果电池的电动势为[CD#3]V,内阻为[CD#3]Ω。(结果保留两位有效数字)

[TP12GW40。TIF,BP#]

答案如下:(1)0。84;3。2×103;不能用多用电表电阻档直接测电源内阻;(2)0。96±0。02 (1。6±0。1)×103

1。2 试题分析

本题围绕一个重要的电学实验――“测量电源电动势和内阻”展开考查,具体涉及多用电表的读数及操作、实验电路的设计、图象法处理数据等内容。如表1所示。

[JZ][HT6]表1

[BG(!][BHDFG2,WK3,K10,K17W]

序号[]考查内容[] 易错点解析 [HJ*3]

[BHDG4*2,WK3,K10ZQ*3,K17ZQ*3W]1[]会正确进行多用电表的读数[]读电压时应注意量程(“0~1 V”),读电阻时要注意多用电表欧姆档刻度不均匀,还有读数应乘以所选的倍率

[BH]2[]会正确使用多用电表欧姆档[]用多用电表欧姆档测电阻时必须把电阻从回路中取出,因此不能直接测电源的内阻

[BHG4*2]3[]“安阻法”测电源电动势和内阻的原理[]由闭合电路欧姆定律得到1/I-R图象是线性的,且图线的斜率大小等于1/E,图线的纵截距大小等于r/E

[BHDG2]4[]图象法处理实验数据[]单位要换算成国际单位(A和Ω) [HJ2mm]

[BG)F][HJ]

1。3 试题评价

本题用水果电池代替常见的干电池、铅蓄电池、手机锂电池作为实验对象,给人一种独辟蹊径、眼前一亮的感觉。水果电池取材方便、贴近生活、变化丰富,既适合学生进行探究,也体现了“从生活走向物理”的教育理念。

2 两处不同

2。1 实验对象

本题的实验对象变成了水果电池。在平时的教学中,许多教师都会习惯性地选择干电池进行实验,这是因为干电池比较稳定,实验操作也较简单方便。实际上,学生在初中就已经接触过水果电池,在化学课“原电池”部分也学习过相关内容,所以对水果电池并不陌生。笔者在讲评课上与学生进行了交流。

师:水果电池的工作原理是什么?

生1:水果中含有丰富的水果酸,是一种很好的电解质,将不同的金属材料做成电极插入水果中,用导线将电极与用电器相连,回路中就会有电流通过。

师:如何判断水果电池的正、负极?

生2:根据原电池的工作原理,水果电池两电极必须存在金属活动性上的差异。本题中锌更活泼,所以锌片失去电子,其反应方程为Zn-2e-[FY=]Zn2+。电子经外电路流向铜片,由于物理学中规定正电荷定向移动的方向为电流方向,所以外电路中电流从铜片流向锌片,由此判断铜片是水果电池的正极。

师:水果电池的电动势、内阻与哪些因素有关?[HJ1。5mm]

生3:正负电极的活动性差异越大,水果电池的电动势越大。由电阻定律R=ρ[SX(]l[]S[SX)]可知,增加两电极间的距离,相当于增加导体长度,水果电池的内阻增大;增加电极插入的深度,相当于增大导体横截面积,水果电池的内阻减小。

2。2 实验器材和电路

由于实验对象发生了变化,实验器材和电路也需要进行相应的调整。在测量干电池的电动势和内阻时,通常选择学生电表(电压表0~3 V、电流表0~0。6 A)和滑动变阻器进行实验。由于水果电池的内阻很大(一般上千欧姆),为了便于读数和操作,选择电阻箱和微安表进行实验。

实验器材 水果,电极:铜片、锌片,MF47多用电表,微安表:量程0~500 μA,电阻箱(0~9999 Ω),带鳄鱼夹的导线若干、开关、砂纸、小刀等。

实验电路及测量原理 实验电路如图4,根据闭合电路欧姆定律E=I(r+R),整理得

[SX(]1[]I[SX)]=[SX(]1[]E[SX)](r+R)。

作出[SX(]1[]I[SX)]-R图线,若图线的斜率为k,[TP12GW41。TIF,Y#]纵轴截距为b,则电源的电动势E=[SX(]1[]k[SX)],内阻r=[SX(]b[]k[SX)]。

3 三个追问

3。1 追问1(实验误差分析)[HJ]

本题中微安表也有内阻,因此会引起实验误差。用此电路测电池电动势与内阻,测量值与真实值的关系是:E测[CD#3]E真、r测[CD#3]r真。(填“”或“=”)。

分析 若考虑微安表的内阻,不妨设其为rg,则根据闭合电路欧姆定律E=I(r+rg+R),整理得[SX(]1[]I[SX)]=[SX(]1[]E[SX)](r+rg+R)。作出[SX(]1[]I[SX)]-R图线,若图线的斜率为k,纵轴截距为b,则电源的电动势E=[SX(]1[]k[SX)],内阻r=[SX(]b[]k[SX)]-rg。与上面推导的结果相比可得:E测=E真、r测>r真。

3。2 追问2(实验注意事项)

为能较为准确地完成该实验,在仪表、导线都正常工作的前提下,请依据水果电池的工作原理,提出一些实验操作过程中需要注意的事项。(只需填写一项即可)[CD#3]。

分析 水果电池很不稳定,容易极化,因此电池电动势会明显下降,内阻会明显增大,因此实验中读数要快,每次读完立即断开开关。也可回答:用砂纸将金属片表面的氧化层磨去以增加其导电性;将所选水果切开,用小刀在其上划几刀以增加其导电性等。

3。3 追问3(实验思想方法)

某研究性学习小组对水果电池电动势和内阻可能的影响因素进行探究。成员们通过讨论,得出了以下一些可能影响的因素:水果种类、水果温度、电极种类、电极间距、电极插入深度等。在进行实验探究时,需要用到的物理思想方法是[CD#3]。

分析 本探究实验运用“控制变量”的思想方法,分别对不同影响因素进行探究。

4 四点策略

4。1 “会操作”打基础

研究近几年各地高考实验题不难发现,命题者越来越重视对基本仪器操作的考查。如2014年江苏高考物理试卷第10题的第1问,考查了用螺旋测微器测合金丝的直径。“为防止读数时测微旋杆发生转动,读数前应先旋紧哪个部件?”真正操作过的学生会比较熟悉,反之则不容易得分。

针对这一变化,教师在指导学生复习实验时,应特别关注基本仪器的使用。《考试说明》中所列的基本仪器主要有:刻度尺、游标卡尺、螺旋测微器、天平、秒表、电火花计时器或电磁打点计时器、弹簧测力计、电流表、电压表、多用电表、滑动变阻器和电阻箱等。要让学生了解这些仪器的构造、原理、用途,掌握仪器的量程、使用方法和使用规则,以达到熟练操作、正确读数。

本题中所考查的多用电表使用,还包括诸如机械调零、欧姆调零、倍率的选择等操作,假如在高考复习中让学生操作一次多用电表,完成几项测量任务,将会起到事半功倍的复习效果。

4。2 “懂原理”是关键

高考实验题的命题往往是在几个重点实验的基础上进行的,因此掌握这些实验的原理是解题的关键所在。分析近五年江苏高考物理试卷(如表2)可以发现,电学中常考的三个经典实验:探究决定导线电阻的因素、描绘小灯泡的伏安特性曲线、测量电源的电动势和内阻,以及新增考点“练习使用多用电表”分别出现在各年的试卷上。

针对上述情况,教师在进行实验复习教学时,应加强对实验原理的分析。同时,也要关注基本实验的变式,提升学生对实验原理的迁移应用能力。

本题考查的测电源电动势和内阻,可以用伏安法,也可以

[HT6][JZ]表2

[BG(!][BHDFG2,WK4,K18,K8W]

年份[]实验名称[]实验原理(操作)

[BHD]2010年[]测量电源的电动势和内阻[]“伏阻法”

[BH]2011年[]测量电阻的阻值[]“替代法”

[BH]2012年[]用多用电表探究黑箱中的电学元件[]多用电表的操作

[BH]2013年[]探究小灯泡的功率P与电压U的关系[]“伏安法”

[BH]2014年[]测量合金丝的电阻率[]“伏安法”

[BG)F]

用安阻法、伏阻法,甚至可以用伏伏法或者安安法,但是实验原理均为闭合电路欧姆定律E=U+Ir,都是在用各种方法寻找方程解出E和r。因此,在复习备考时牢牢抓住几个基本实验,确保每一个的原理都了然于心,高考解题时就游刃有余了。

4。3 “能分析”促严谨

实验误差的分析也是高考实验题考查的重要内容。如2014年海南高考物理试卷第12题考查了用伏安法测量一电池的内阻,其中第(4)问“在你设计的电路中,产生系统误差的主要原因是[CD#3]”。熟悉的学生知道该实验的系统误差主要是由于电压表不能看成理想表而引起的。

《考试说明》中明确指出:认识误差问题在实验中的重要性,了解误差的概念,知道系统误差和偶然误差;知道多次测量求平均值的方法可以减小偶然误差;能在某些实验中分析误差的主要来源。这就要求教师多关注误差分析,多对学生进行指导,而且笔者认为,教师不但要教会学生如何“定性分析误差的来源”,还要启发学生“合理给出减小误差的方法”,从而不断提高学生分析问题和解决问题的能力。

本题中由于微安表有内阻,会引起系统误差,由闭合电路欧姆定律分析可以得到E测=E真、r测>r真。其实,通过前面的推导不难发现,只要知道了微安表的内阻值,该系统误差就可以消除了。误差分析能培养学生科学、严谨的研究态度,很好地体现了物理学中“情感态度价值观”的课程目标,所以在复习中应引起足够的重视。

4。4 “巧设计”提能力

高考实验题中的设计性问题是对学生理解能力、创新能力的综合考查,这类试题要求高、难度大,对学生很具有挑战性。

友情链接