电气控制设计论文范文

时间:2022-06-20 02:02:15

引言:寻求写作上的突破?我们特意为您精选了4篇电气控制设计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

电气控制设计论文

篇1

课程设计是综合一门或多门课程知识的实践性环节,是学校实践教学环节的重要组成部也是培养学生综合素质的重要环节。对于电气控制类专业,比如自动化和电气工程及其自动化等专业,常见的课程设计有计算机程序课程设计、电子技术课程设计、嵌入式系统课程设计、电气工程综合课程设计、可编程逻辑控制课程设计和工业控制系统综合课程设计等,大部分课程设计都具有“硬件和软件相结合”的特点,实践性和实用性很强,与企业需求结合非常紧密,契合度较高。基于该类课程设计的特点,在课程设计教学中,笔者打破原有的课程设计教学思路,采用与企业深度合作,将企业需求职位的专业和技能要求融入课程设计教学过程中,对学生进行有针对性的训练,在培养学生的创新精神和实践能力的同时,注重培养其良好的职业素养和综合能力。课程设计的内容结合相关企业的某个工程项目,教学过程尽可能与工程项目的运作过程接近,使学生熟悉工程项目的运作流程和不同职位的工作内容和专业技能要求。学生以团队合作的形式,由3~5人组成一个工作小组,根据企业需求,每位成员都有相对独立的任务分工。通过这种方式的课程设计,学生可以对企业的需求有深入的了解,对自己的能力有进一步的认识。在此基础上结合自己的专长和爱好,学生可以尽早明确自己的工作方向,完善个人的职业规划,最大可能成为企业需求的综合性人才。

1.2基于企业需求的电气控制类专业的职位

在课程设计创新教学模式中,课程设计的过程尽可能与企业中工程项目的运作过程接近。根据对企业职位设置的调研,笔者将该教学模式中团队中各成员的职位和任务说明如下:

(1)项目管理工程师是一个团队的核心人物,负责制定和管理项目进程,组织必要的讨论和会议。对于项目管理工程师而言,如何调动团队内每个成员的工作积极性,最大程度地发挥成员的专长是其主要任务。可见,良好的沟通能力和个人魅力最为重要。这个职位为学生毕业后的个人创业或某些管理职位提供了基本的训练。

(2)硬件工程师和软件工程师完成整个项目的核心技术工作,包括系统的方案设计、绘制图纸等。在国内外倡导工程教育的背景下,工程师的工作尤其要与企业需求和行业规范相结合,指导教师对软硬件工程师的具体工作提出严格的要求。

(3)外观或结构设计师需要机械类专业的知识,不是电气控制类专业的主要学习范畴,在教学实施过程中将机械类与电气控制类专业的学生进行混合,组成一个更加专业的团队,不仅有利于更好地完成任务,而且扩大了团队成员的知识面。而且,一般情况下电气控制类专业的学生也会学习机械制图(或AutoCAD),若设计要求不是很高,他们也能完成任务。

(4)销售工程师在企业人员的职位中也是比较重要的角色。在我校电气控制类专业的毕业生中,有不少同学都从事市场或销售方面的工作。一方面企业需要有该类专业背景的毕业生,另一方面电气控制类专业某些学生善于言谈,亲和力强,更喜欢做与人沟通的工作。销售工程师需要掌握一定的销售理论,做全面的市场调研,提炼产品特色和产品卖点,制定完整的销售计划。

(5)秘书的主要任务是会议记录,制作项目陈述PPT,撰写论文等文字性工作。从方案设计开始,秘书就开始构思并撰写论文。秘书的工作是整理和总结资料,大部分的文档原始资料都需要其它成员提供。秘书需要经常和每一个成员沟通,尽量按照毕业设计论文的标准完成课程设计论文的撰写。

2课程设计创新教学模式的实施

2.1对课程设计团队的要求

团队人数要适宜,若人数过多,任务分配不均,必然有成员的工作较轻松,易偷懒,造成不团结;若人数过少,每个人承担任务较多,不能起到成员间交流合作,培养良好职业素养的目的。经过实践,根据任务复杂程度,一个课程设计团队的组成人数以3~5人为宜。团队中每个成员根据需要可以承担多项工作,比如项目管理工程师可以兼任其他任何职位,外观设计工程师兼任销售工程师,采购人员兼任秘书;而软件和硬件工程师一般独立设置,而且在项目软件编程任务较多时,可以采用模块化设计,由多个人共同承担。团队内每位成员按照分工都有自己明确的工作任务,具有强烈的责任感和使命感。而且,由于是团队工作的性质,团队之间的竞争更为激烈,在工作过程中每位成员也会强烈地感受到集体的凝聚力和荣誉感。在这种情况下,个体能力强并不意味着集体的成功,只有大家团结合作、互帮互助才能取得最终的成功。因此,在做好课程设计的同时培养了成员的工作主动性、积极性和团队协作意识。

2.2选题要求

多数应用型大学的电气控制类课程设计都是诸如电子钟、交通灯的控制之类的小题目,设计题目单一,与专业技术的当前应用脱节[4],而且容易查找到现成的资料,不利于培养学生的实践能力和创新精神。由于以团队形式工作,人数增加,可以适当地增加课程设计题目的难度。课程设计选题可以结合教师科研项目,与企业进行深度合作并能为其解决实际问题的综合性选题最好。比如在单片机系统课程设计中,与某企业合作,设计题目为“多功能电压力锅”;在工业控制系统综合课程设计中,与某自动化公司合作,设计题目为“恒压供水系统的PLC控制与远程监控”[5]。在课程设计过程中不满足于只考虑软硬件是否能实现任务要求的基本功能,还可以在图纸的完整性和规范性、系统的安全性和可靠性等方面提出更高的工程要求。

2.3工作流程

在课程设计实施过程中,教师引导团队的工作过程尽可能与实际项目的运作过程接近[6],在任务量、时间节点等方面制定详细的计划,使成员在具有一定压力下,既紧张又有条理地完成任务。课程设计基本工作流程如图1所示。小组会议是一个较为正式的环节,由项目管理工程师主持,秘书做会议记录,指导教师或企业工程师以及组内成员参加,目的是引导学生明晰工作目标和工作内容,合理安排时间,顺利完成任务。在第一次会议上,项目管理工程师陈述系统总体设计方案,各成员分别总结前期研究内容和明确后期的工作步骤和内容,并制定详细的工作计划。在团队成员分工后,项目管理工程师也可以根据需要多次组织会议,秘书做好会议记录,为最终的论文提供素材。指导教师在以学生主导的会议中,有目的、有意识地引导,培养学生在设计过程中有计划地学习、研究问题,综合运用自己的理论、专业和实践知识进行解决问题,从而提高实践创新能力[7]。指导教师通过提问掌握每个学生的工作进展情况,并对存在的问题做出正确的启发,鼓励学生进行互动讨论。各成员总结自己的阶段性成果,提出工作中遇到的困难,成员之间充分沟通。项目陈述和答辩环节是课程设计创新模式中重要的一个环节,培养学生总结能力、表达能力和PPT的制作和展示能力,使其学生在公众下能够不怯场,敢于表现自己。

2.4考核与评分

在课程设计创新教学思路和创新模式的引导下,考核也要更新观念,要与人才培养目标相一致。借鉴荷兰高校对学生实践能力的考核方法,不仅注重基于任务分工表现出的实践应用能力,而且还要兼顾学生在课程设计过程中展现的思路创新、表达沟通和团队协作能力[8]。由于课程设计的教学时间一般为一至两周,所以考核与评分不能过于繁琐,笔者在两轮课程设计实践基础上总结了一套与培养目标一致、相对公平和便于实施的考核评分方案,如表1所示。个人的最终成绩是由小组成绩和个人成绩两部分组成[9],各占50%,其中小组成绩由指导教师根据不同分项及其权重给出,个人成绩由指导教师和组内成员共同给出。组内成员互评均分权重为0.2,这个独创的考核细节大大激发了学生的工作热情并营造了工作团队内互帮互助的和谐氛围,培养了学生的团队合作精神。

3课程设计创新教学模式的支撑体系

(1)加强师资队伍的培养。对于应用型大学而言,高水平的师资队伍是应用型创新人才培养的关键。要培养出企业需要的应用型人才,必须建立一支综合素质强的“双师型”教师队伍。而大多数教师从学校毕业又进入学校授课,本身没有在企业工作过,教师的工程素质和实践经验不足,具有丰厚工程背景又有学术水平的“双师”型教师尤其缺乏[10-12]。一方面,可以建立教师有计划分批次轮流到企业锻炼的常规制度;另一方面,吸引企业的优秀工程师兼职或全职到教师岗位,充分发挥其多年来的企业工作经验。

(2)重视校企合作。校企合作是解决实践教育缺失的根本途径[13-14]。一方面大力吸引企业参与到高校实践教学过程中来,在教学计划和教学内容上广泛征询和适当采纳相关业内专家的意见;另一方面,增加学生在企业进行专业技能训练和专业拓展课程的学习机会,理论联系实际,开拓视野,拓宽思路,促进学生的创新意识与创新灵感,为课程设计创新教学模式提供强有力的实践平台支撑。与相关企业建立长期合作关系,良性循环,最大可能实现更多学生毕业和就业上岗的零过渡,校企共同培养“适销对路”的应用型人才。

(3)开设公共选修课。公共选修课是高校面向全体学生开设的综合素质培养课程,对学生知识结构完善,知识面扩大,兴趣和个性发展和综合素质提高有重要意义。对于工科专业来说,根据企业对人才的需求,高校开设如市场营销、会计、社交技巧等人文类和经济类选修课,不仅有利于培养学生的综合能力,而且学生也可以结合自身职业生涯规划科学地进行选课,为将来的职业储备和积累知识[15]。

篇2

1.1电气控制线路设计法的重要性

电气控制线路的设计直接决定和影响了控制系统的的性能。在电气控制线路的设计中应当谨遵要求对电气控制系统的制造和使用,及维护资料进行编制和设计,确保其设备的安装、操作具有可靠性和安全性,这是保证电网正常运行的首要前提。

1.2电气控制线路设计法的基本特点

现代电气控制系统的三个特点:(1)功能强且体积小,灵活性较强,同时具有很强的通用功能,便于使用和维护。(2)采用了无触点式开关代替部分电器元件,执行程序的时间较短。(3)能够用软件实现电气控制,改变控制参数和要求时只需改动程序的对应部分,节省资源。

2电气控制线路设计法的优化策略

2.1了解生产机械和工艺

对电气控制线路的要求在进行电气控制线路的设计前应当对其生产工艺的要求有一定的掌握,同时要了解各程序的工作情况、保护措施及运动变化规律。设计人员在设计过程中要对同类产品进行调查和分析,将此结果作为设计的重要依据。

2.2线路设计法简单

在满足生产工艺的前提要求下,争取控制线路的设计简单、经济环保。(1)选用经过检验符合标准的线路环节。(2)贱导线连接的长度数量降到最低。在电器元件设计中合理安排触头位置,减少导线的连接数量和长度。(如图1)将启动、停止按钮都放在操作台上,接触器则放置在电器柜内。而由于按钮盒接触器之间距离较长,因此要将启动按钮盒停止按钮连接在一起,以简化导线连接。(3)采用标准件,同时注意将电气原件数量降到最少,尽量选择同一型号。(4)通过减少锄头来简化线路,增强可靠性。

2.3保障控制线路的安全可靠性

选用的电器机械使用寿命较长动作较为可靠、结构坚实同时抗干扰较强能够有效保障控制线路的安全可靠。在设计中注意以下几点:(1)选择正确的电气连接线圈进行线路设计法。在控制线路的设计时应当将线圈的一段统一接电源的同一端,使得电器触头在电源另一端。避免因为电器触头引发电源短路现象,也便于安装。(2)交流控制电路不能串联两个电器线圈。如果两个线圈串联,其中某一原件就只能得到一半电源电压。由于电压和线圈的阻抗成正比,不能同时进行动作。使交流接触器KM吸合,此时KM的磁路处于闭合状态,线圈的电感明显增大,使另一个接触器线圈的电压达不到工作电压。应当将两个电器线圈并联且保持同时动作才能保证运行。(3)避免因意外而在线路中接通的寄生电路。会造成误动影响线路的工作。(4)应当避免设计多个电器依次动作后接通另一个电器的控制线路。(5)线路的设计应当适应电网的情况,根据电网容量、电压和频率波动范围以及冲击电流的数值决定启动方式是直接或是减压启动。(6)以小容量继电器的锄头控制大容量接触器线圈来进行线路设计法,通过计算继电器触头断开和接通容量判断是否应当增加中间继电器和小容量控制器,增强可靠性。(7)将必要保护环节考虑在内,避免操作失误带来的线路事故。

2.4应具有必要的保护环节

(1)短路保护电气控制线路中通常采用熔断器、断路器来进行短路保护。在电动机容量较小时可以讲主电路的熔断器作为在控制线路中的短路保护,不需要再设熔断器进行保护。而当电动机容量大时就需要另设熔断器作短路保护。断路器在线路中既能做短路保护又可以当过载保护,而电气线路发生故障造成断路器跳闸时,排除故障后可直接合上断路器继续工作。(2)过流保护启动方法错误或是负载转矩过大都会熬制电动机的过电流故障。由于过电流较小,常用于直流电动机和绕线转子电动机控制线路。通过继电器、接触器相互配合将继电器的线圈和主电路串联,常闭触头和接触器控制电路串联。在电流达到整定值后断开常闭触头同时使继电器继续工作,同时切断控制电源和电动机电源进行线路保护。(3)过载保护三相鼠笼电动机会因为负载增加、断相动作或电网电压降低时引起过载,而电动机长期过载运行会造成过热导致的绝缘损坏。因此通常采用热继电器作为鼠笼型电动机的过载保护。(4)零电源保护通常将并联在启动按钮两侧的接触器自锁触头作为零电源保护。而主令控制器SA控制电动机则通过零电压继电器实现。

篇3

USB2.0设备连接到主机后,主机给设备供电并发送复位信号复位设备,之后设备进入全速模式工作,由图2所示在fullspeed状态检测到SE0(linestate[1:0]=00)持续2.5μs后,高速握手开始,设备控制器进入sendchirp状态,设备向主机发送一个持续时间大于1ms的K(linestate[1:0]=01)信号以检测主机是否支持高速模式。设备进入recvchirp状态并准备接收来自主机的JK序列。主机支持高速并检测到K之后,向设备发送JKJKJK序列以检测设备是否支持高速模式。设备控制器在recvchirp状态成功检测到3对JK序列后高速握手成功,进入到highspeed模式工作;否则,设备以全速模式工作。

2设备挂起

根据USB2.0协议,为了减小功耗,当总线3ms没有动作时,设备需进入挂起(suspend)状态,设备在挂起状态只能消耗小于500μA的电流,并且进入挂起后设备需要保留原来的状态。(1)全速模式挂起:检测到总线状态为SE0达到3ms,设备从fullspeed状态进入suspend状态。(2)高速模式挂起:设备工作在高速模式时,由于高速复位和高速挂起都是发送一个大于3ms的总线空闲信号,因此设备需要区分这两个事件。如图2,处于highspeed状态时,设备检测到总线空闲(SE0)3ms,进入hsrevert状态。之后检测总线状态不为SE0,此后设备挂起。假如在hsrevert状态后还检测到SE0持续100μs,则判断为高速复位,clrtimer2=1。设备状态转换到sendchirp状态,开始设备的高速握手。

3挂起恢复

设备处于挂起状态时,在它的上行口接收到任何非空闲信号时可以使设备恢复工作[5]。(1)全速挂起恢复:设备从挂起状态起检测到的不是持续的J,则恢复到fullspeed状态,以全速模式工作。(2)高速挂起恢复:挂起时保留着高速连接状态,highspeed=1且hssupport=1,挂起恢复需要判断是由总线动作引起还是系统复位引起。设备中测到总线状态为SE0,说明是由复位引起的挂起恢复,设备状态进入sus-preset,然后检测到SE0持续2.5μs后,进入高速握手过程sendchirp状态;反之,检测到挂起恢复信号K,则设备从挂起恢复到高速模式。

4复位检测

集线器通过在端口驱动一个SE0状态向所连接的USB设备发出复位信号。复位操作可以通过USB系统软件驱动集线器端口发出复位信号,也可以在设备端RE-SET信号置1,进行硬件复位。(1)设备是从挂起状态复位:在suspend状态检测到SE0时,设备跳转到suspreset状态,检测总线状态为超过2.5μs的SE0后设备启动高速握手检测,即进入sendchirp状态。(2)设备从非挂起的全速状态复位:设备在检测到2.5μs<T<3.0ms的SE0状态后启动高速握手检测。硬件纵横HardwareTechnique(3)设备从非挂起的高速状态复位:设备在high-speed状态检测到总线上持续时间3.0ms的SE0后,设备状态转换到hsrevert,以移除高速终端并重连D+的上拉电阻,此时为全速连接状态;之后设备需要在100μs<T<875μs的时间内采样总线状态,检测到SE0持续2.5μs后,进入sendchirp状态,开始高速握手过程。

篇4

二、系统控制设计

2.1温度与加热功率

传感器芯体温度与加载在芯体上的正热能与负热能大小有关。若传感器芯体温度维持在环境温度以上,则传感器芯体加载的正热能来自电能,由焦耳定律可以知道若给定电阻R上加热电流为I,加热时间为T,那么有I2RT的电能转换成热能;而传感器芯体加载的负热能可以是传感器芯体与周围环境的温度差而产生的热对流及热传导带来的热能转移。这种正热能与负热能对温度的影响体现为传感器芯体的加热功率与制冷功率,它们共同决定了传感器芯体的稳定温度。假设传感器芯体工作环境温度为25℃,传感器芯体气体浓度响应最佳温度为80℃,因热传导和热对流损失的负热能为某个可测量值且保持恒定,那么该点环境下芯体温度只与加热功率有关。如上所述,给芯体合适电流,那芯体就可以维持设定点温度,若环境温度上下波动,芯体加热与制冷的功率随温度发生变化,要使芯体继续维持在设定点温度,只需要调节芯体上电流的大小。在25℃环境下,实际测得加热功率与芯体温度的关系,加热功率为0.45W时芯体即可稳定工作在设定温度80℃。

2.2温度测量

为了更加准确地测量敏感芯体温度场的温度,在氢敏芯体上集成了一个测温电阻与一个加热电阻。测温电阻、加热电阻和氢敏电阻版图设计经过温度场仿真实现最佳耦合。因而测温电阻能真实反映氢敏电阻当前工作温度。测温电阻材料采用高纯铂电阻镀膜而成,实际测试的测温电阻温度特性,从图中可以看出测温电阻具有良好的温度线性关系。该测温电阻的温度系数因为采用薄膜沉积工艺制备,温度系数没有标准PT100大,但并不影响使用。电阻经过测温电桥检测,输出反映温度的电压信号。这个信号在控制区域非常微弱,为了提高温度测量精度,采用四线制检测电路,减少测温铂电阻引线长度与铂电阻通电电流对温度测量的影响。

2.3温度控制环路

通常温度系统是大惯性系统,具有较大的滞后性,往往需要具有超前调节的微分环节。气体传感器芯体体积很小,无论是加热还是制冷,芯体对温度都有快速响应,采用比例积分[3]控制就可以获得不错的效果。

2.3.1比例环节

比例环节具有快速调节能力,比例系数越大静差越小,过大容易震荡。电路如图4所示,其增益为-RP1/RP2,试验测试比例系数为-4时控制效果较好。

2.3.2积分环节

积分环节可以消除系统静差,当系统有稳态误差时,积分环节的输出会持续增大使得控制作用加强,从而减小稳态误差。积分系数越小,积分作用越明显,控制精度越高。积分电路如图5所示,其增益为-1/RI1CI1S,其中S为拉式算子。经调整时间常数RI1CI1为4.7s比较合适。采用PWM通断控制模式,能最大化利用加热功率。在导通瞬间,加热电压完全加载在加热电阻上,电流峰值会比较大,因此需要控制加热电阻合适的阻值。另外PWM控制存在完全导通的情况,虽然在本电路应用中不会带来坏的影响,但是为了调整最大加热功率以达到控制最大加热温度的目的,在PID输出环节采用稳压二极管,控制PID输出电压的幅度,保证PWM能够输出一定宽度的死区。

2.3.3微分电路

微分环境对输入快速变化的情况具有较大的反应输出,能提高控温系统对环境温度波动的快速响应能力。

2.3.4PWM产生电路

PWM电路[4]采用简单分立器件搭建,具体电路如图7所示,主要构成有比较器产生限阈值翻转波形,然后经过积分电路充放电产生标准锯齿波,锯齿波在与PID环节输出电压比较,产生脉宽随温度误差调整的波形,该波形输出给驱动加热电路。

三、实验结果

样机进行了稳定动态过程的短时间测试和稳定点长时间测试。短时间测试样机温度曲线,其中可以看出样机到达温度设定点90%的时间非常短,大概为120s,整体控温精度在0.15℃以内。当环境温度波动时控温点会随着扰动,很快就能回到设定的温度值,动态响应非常快。样机控温效果稳定点长时间监测曲线如图9所示,从该图可知整体控温精度在0.15℃以内更加明显,说明样机电路控温点不会随时间飘移,也不随环境缓慢变化的温度波动漂移。

友情链接