建模技术论文范文

时间:2023-02-09 15:59:35

引言:寻求写作上的突破?我们特意为您精选了12篇建模技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

建模技术论文

篇1

2基于历史建模(HistoryMode)到独立于历史建模的技术转换

从基于参数化历史建模(HistoryMode)到独立于历史建模(History-FreeMode):模型参数被剥夺,如特征支持同步模式,它被转换成一个同步特征,这些特征包括边倒圆,倒角,孔和螺纹特征,它们的表达式也被转换。产品设计中的某个特征是在基于历史模式中建立和存贮的特征。一个同步特征能对某个特征进行修改,不需要对产品构建的过程特征数进行实时的更新和回放。某些同步建模特征也被转换到同步特征,这个包括线性尺寸,角度尺寸,和径向尺寸特征,它们的表达式也被转换。也可以从部件导航器或通过在图形窗口中双击它们去编辑同步特征。草图曲线的约束在草图中被维护起来,但在草图内没有任何目标与草图外的对象是关联的。不呈现非同步特征的特征.从独立于历史建模(History-FreeMode)到基于参数化历史建模(HistoryMode),模型参数再次被剥夺。在模型中大部分同步特征被移去,草图和基准被保留为可编辑的特征,可以利用草图去建立新特征。如图3所示。

篇2

2.丰富教学方法

由于实用经济数学教学的目的和特点,就决定了运用传统的,比较单一的授课模式,即讲授式,是不可能达到理想的教学目标的。所以,在教学的过程中,要多种教学方法并用,尤其是能够促进学生思考,激起学生兴趣的教学方式,如讨论式教学法、启发式教学法等等,对于实用经济数学教学中融入建模思想都是非常有益的。

3.改革学生成绩评价机制,为社会输送应用型专门人才

由于当下的教育中,对于考试成绩的重视程度极高。然而,在实用经济数学的考试中,却在很大程度上侧重于推理以及推理过程中的计算。这就使得教师以及学生在教学以及学习的过程中都过度的重视推理与计算。所以要想提高数学建模思想的在课堂中的渗透,必须要改变学生的成绩评价机制,从而为我国培养更多的具有高强度思维能力的人才。

4.加强师资队伍建设,培养应用型专门数学教师

由于现在的经济数学教师在大学时接受的都是传统的数学教育,依据他们现有的教育观念和知识结构,很难真正实现上述三条措施,因此应大力加强经济数学师资队伍的建设。要加强教师的数学教育哲学、现代教育理论的学习,从根本上转变教师的数学教学观,要专门培养一批精通数学建模方法和数学软件的使用、掌握经济学基本知识、了解经济问题。要想将数学建模思想很好的应用在实用经济数学中,需要从教学的多个方面进行考虑。然而,以上也仅仅是实用经济数学建模思想的几个方面的探索,且这些研究都还比较浅显。而仅仅凭借这些研究来提高实用经济数学的教学质量,并且将数学建模思想很好的应用在实用经济数学中,显然是远远不够的。所以,对于实用经济数学中融入数学建模思想的研究还需要数学教育领域的研究人士进行进一步的研究和思考。

篇3

1.1引水式电站分布情况

河北省水利系统单机500kW及以上电站51座,水轮发电机组总台数130台,装机161.862MW,2000年发电量20.844GWh,其中河道引水式电站26座,占50.9%,水轮发电机组总台数70台,占53.8%,总装机60.202MW,占37%,2000年发电量114.80GWh,占55%。分布在漳河、滹沱河、唐河、沙河、拒马河、潮白河、滦河干流及主要支流上。

这些电站所处河流均是河北省挟带泥沙较严重的河流,如漳河多年平均输沙量为2580万吨,唐河多年平均输沙量为180万吨,这些河流上的水电站无一例外地存在着水轮机磨蚀问题。

随着小水电建设步伐的加快,全省500kW及以上电站中引水式电站所占比例越来越大,见表1。

表1河北省500kW及以上引水式电站发电量简况

年份

1989

1990

1993

1997

500kW及以上电站发电量(GWh)

192.856

204.449

161.637

362.52

引水式电站发电量(GWh)

59.524

83.2939

71.02

164.07

引水式电站发电量所占比重(%)

30.86

40.74

43.97

55.26

因此,解决水轮机磨蚀问题更成为当务之急。

1.2紫荆关梯级水电站磨蚀现状

紫荆关梯级水电站位于河北省易县城西40km的紫荆关镇,建设在跨流域引水的紫荆关五一引水渠道上,五一引水渠是将拒马河水引入建在中易水河上游的安格庄水库中。渠首建一座橡胶坝,在春夏秋三季为无坝引水,冬季用橡胶坝蓄水,以防止冰凌阻水影响发电。五一引水渠长度8.5km,设计最大引水能力25m3/s,总落差354m,规划分六级开发,已投入运行的电站有四座,总装机11.140MW,设计年发电量47.09GWh。

拒马河多年平均挟沙量为2.92kg/m3,多年平均输沙量91.3×108万吨,多为推移质、颗粒粗,粒径d50=1mm,硬度大,大部分为石英,磨损力强。因近年来天旱少雨,汛期引水流量也达不到电站满发,用水流量小,影响渠首沉沙池及各站沉沙池排沙效果,因此造成污期过机泥沙量大,加上各站机组安装高程均为+Hs,造成空蚀、磨损联合作用;机组转速高,水流流速大,加剧了水轮机过流部件的磨蚀破坏。

水轮机转轮磨损严重,出力降低,各站水轮机均按清水河流条件设计,Hs选择均为正值,在泥沙河流中易产生空蚀、磨损联合作用,转轮破坏形成鱼鳞坑,叶片背面呈海锦状蜂窝麻面,叶片厚度变薄,出水边成锯齿状破坏,每年至少修补1~2次,因修型不佳,叶片变型,使水轮机水能效率降低,达不到额定出力,直至转轮报废。以紫荆关一级水电站为例:1994年10月投产至1998年底,三年多时间更换了9个转轮,平均一年一台机组用一个转轮。磨损使水轮机水力效率降低,出力不足,检修工作量加大,检修周期缩短,检修时间延长。

水轮机前后抗磨板磨损严重,泥沙磨蚀使水轮机迷宫间隙增大,容积效率降低。紫荆关五级水电站1993年投产1#机两年后拆开检修,下抗磨板迷宫间隙由原0.5~0.7mm,变为12~14mm,容积效率大大降低,且导叶轴孔处有磨蚀沟槽,上抗磨板虽比下抗磨板略轻,但水轮机顶盖磨损严重,主轴密封漏水量增大。紫荆关五级水电站投运5年后,1#、2#机更换下抗磨板各一套,三台机顶盖磨损得都近乎穿孔,难以用常规方法修复。紫荆关一级水电站1994年投产,1997年汛期曾发生顶盖穿孔。

磨蚀不但使水轮机导水叶端面与上下抗磨板漏水严重,同时呈沟槽锯齿状立面磨损,使导水叶变薄,间隙增大,也导致了严重漏水,使水轮发电机组关机时间延长不能正常停机。紫荆关五级水电站1#机运行两年后,关机时间是正常关机时间的3倍,以至于运行人员不得不外加磨擦力帮助机组停机。再者水轮机主轴密封漏水沿主轴喷向水轮机推力轴承,致使推力轴瓦进水,引起烧瓦事故。水轮机锥管、补气架、固定导叶等过流部件也有不同程度鱼鳞坑状磨损。

2磨蚀引起的问题及造成的损失

2.1磨蚀破坏造成水轮机效率降低,发电量减少

水轮机磨蚀破坏后水轮机水能效率、容积效率及机械效率大幅度降低,紫荆关三级水电站,经喷涂保护后水轮机效率提高10%左右,以1999年为例,由于泥沙磨蚀造成的直接电量损失就有1.28GWh之多。全省达17.18GWh。直接经济损失1169.75万元(包括配件开支及材料、人工费等)。

2.2磨蚀破坏威胁水轮机组安全运行

水轮机磨蚀破坏使水轮机组振动加剧,关机时间延长,漏水严重等问题都直接威胁水轮机组的安全运行,紫荆关一级水电站1997年污期发生顶盖穿孔故障,如不及时处理将会发展成水淹厂故,水轮机磨蚀问题必须解决以保障水电站安全运行。

2.3磨蚀破坏造成运行成本增加,电站经济效益下降

水轮机磨蚀破坏除了使电站发电量下降、安全性能降低外还增加电站检修工作量,检修次数增加,检修时间延长,缩短了检修周期,使电站运行维护成本增加,电站经济效益下降。

3过去采取水轮机抗磨蚀措施效果不明显

由于水轮机过水部件的磨蚀给水电站的安全运行及经济效益带来巨大损害,如何防治水轮机空蚀一直是水电站运行中的一个重要技术难题。近年来,我们采取了各种抗磨蚀的技术措施,但效果都不十分理想。

(1)采用更换母体材料,提高抗磨蚀能力,效果不明显,而且费用较高,紫荆关一级水电站由低碳钢转轮改换为镍铬不锈铸钢叶片转轮,运行时间比原低碳钢转轮延长半年,但费用是原转轮费用的2倍。

(2)采用金属喷焊技术,提高了转轮叶片出水边背面抗空蚀能力,由于工具限制,只能保护叶片背面,不能将整个转轮保护,且加工过程中叶片热变形和龟裂不易克服,加工难度大,工艺不好掌握,推广应用困难。

(3)镶衬辉绿岩铸石技术,虽能增加固定的抗磨蚀能力,但由于加工工作量及镶衬工作量大,受加工工具限制不易施工,应用困难。

(4)除上述措施外,还采用过加装扰流板、加高尾水水位等抗磨蚀方法,但都是解决局部磨蚀问题,不能彻底解决水轮机磨蚀问题。

4采用水轮机过流部件抗磨蚀新技术的优点

近年来与全国水轮机磨蚀试验研究中心合作、试验和应用推广了几种非金属抗磨蚀新技术,其优点与创新点在于:①整体加工、消除局部变形;②可在复杂、窄小的转轮流道中全方位的涂抹保护;③在工件表层形成包衣替代过流部件的更换,延长过流部件使用时间;④工艺简单,易操作、费用低、易推广。

5水轮机过流部件抗磨蚀新技术实验过程

5.1水轮机过流部件抗磨蚀技术抗磨材料的筛选

根据五一渠输沙量颗粒分析,见表2。对固定部件采用环氧金刚砂修补,常温修补经过三级电站3#机组及五级电站4#机组实验,发现抗磨蚀性能良好。但与水轮机母体材料粘接强度差、易剥落,一般运行3~6个月发生60%左右的剥落。根据现场实际,课题组决定采取加温至50℃时施工,得到了良好效果。对转动部件根据拒马河挟沙情况,最先使用弹性橡胶涂层,经过实验发现弹性橡胶在转轮叶片负压区粘接力弱,出现大片剥离脱落,而此处正是空蚀最严重区域,随后课题组经过研究决定改用复合尼龙保护。最后课题组经过反复实验、研究、比较、筛选最后确定对水轮机固定部件采用中温环氧金刚砂修补,转动部件使用复合尼龙喷涂粉末保护。

5.2转轮采用复合尼龙粉末喷涂

复合尼龙粉末为灰白色粉末,由高分子材料尼龙、环氧和多种添加剂经复合处理混合而成,既具有尼龙材料的耐磨、耐冲击性能又兼备环氧的优异的粘接性能。粉末喷涂在表面经过喷沙处理加热至200℃左右的转轮上,粉末喷涂就熔融流平形成保护层,经固化成膜,具有优良的耐磨蚀性能,其抗磨系数是30#钢的2~3倍,耐磨蚀性能是30#钢的1.5倍,粘接强度达60MPa以上,剪切强度35MPa,替代工件表面抵御流体中泥沙颗粒及空蚀的破坏,从而使工件使用寿命延长,保证了使用期的效率,其施工工艺也比较简单,首先将转轮去油污后喷沙除锈露出金属本体,并形成

表2五一渠沙样筛分试验表

一定毛糙度。用表面活性剂刷涂转轮表面,以加强金属与高分子材料的粘接力和界面防水性,然后在烘箱内加温,使温度达到200~220℃后保温30~60分钟,取出后用净化的0.1M~0.2MPa的压缩空气,通过专用喷枪,将装在专用喷粉器内的复合粉末喷涂到转轮表面并熔融流平,若一次喷涂厚度不足,可多次喷涂,最后在烘箱内保持180℃固化45~60分钟取出,完成全部工艺。复合尼龙粉沫喷涂工艺简单、易操作,只要空气能流通之处均能涂复,适合于造型复杂、流道较小的中小水电机组转轮,且施工时间短,10~15分钟即可喷涂一个转轮,但对温度控制要求严格。

5.3对水轮机固定部件采用环氧金刚砂涂层保护

环氧金刚砂由环氧树脂为主体辅以多元醇缩水甘油醚为活性稀释剂,加固化剂组成,其组成配方见表3。环氧树脂具有优异的粘接力,并且施工工艺简易,可在常温下施工。在加温至50~60℃时与钢铁的粘接抗拉强度为40M~60MPa。剪切强度为20M~35MPa,加入刚性填料金刚砂后抗磨性能优异,抗磨系数是30#钢的2倍,耐磨蚀性能相当于30#钢。其加工工艺是:工件去油污后经喷沙除锈露出金属本体,并形成一定的毛糙度。用表面活性剂刷涂需要涂复的工件表面,以强化粘结界面的粘接力和防水性,然后将工件加热至50℃左右将环氧树脂及活性剂、固化剂按比例搅拌均匀,呈乳棕色胶体状,用刷子或刮板,涂复在所需修复工件的表面上作为基层;再将余下的部分按1∶5重量比例加入金刚砂,充分拌合均匀成沙浆状,用刮板或加热后的抹刀涂复到基层上,充分压平使表面光滑,达到要求的厚度。可采用常温2~3天固化或处于50℃左右范围内3~4小时固化后即可使用。

表3环氧金钢砂涂层配方表

环氧树脂

100%

(与环氧树脂重量比)

664

20%

(与环氧树脂重量比)

偶联剂

1%~2%

(与环氧树脂重量比)

固化剂

18%~20%

(与环氧树脂重量比)

硅粉

30%~40%

(与环氧树脂重量比)

金钢砂

500%左右

(与环氧树脂重量比)

5.4有待改进的问题

通过以上实验使用水轮机过流部件抗磨蚀新技术,推广应用的主要难点是:施工过程中的温度控制,温度控制掌握的好坏直接影响保护效果的优与劣。再有需改进的问题是:转轮保护的复合尼龙保护层,修补技术不易掌握,修补处易剥落,现采取整只转轮全部清除后再重新保护的方式。以上问题有待进一步研究改进。

6水轮机过流部件防护的效果及经济效益

篇4

2电极顶紧装置的改进

公司目前使用的石墨化炉顶紧装置的动力由液压站提供,执行部分每台石墨化炉由2只200mm(液压缸直径)/125mm(活塞杆直径)-600mm(液压缸行程)的液压缸顶推,每只油缸装在相应的油缸支座上,油缸支座上装有机械压力表以显示液压系统压力。整个顶紧装置完全采用人工控制、手工记录的方式,中控室如需要获得位移变化量与当前压力值,只能依靠人工现场监视、测量、记录。这种控制方式无法满足生产的及时性与准确性的要求。为确保产品质量,优化顶紧装置的控制方式,减少人力,公司相关技术人员经过认真研究,制定了可行性方案,决定将顶紧装置进行改造。

2.1装设位移控制装置

电极升温过程中其位移变化量与压力值的控制是高功率电极生产过程中的一个非常重要环节,因此对其控制精度要求高,特别是在中、低温阶段对位移变化量的控制要求更高。为了保证电极伸缩量的准确性、可靠性,决定在电极顶紧装置上装设位移传感器及数显表,将传感器本体安装在液压缸缸体上,电子尺与液压缸活塞头固定在一起,随着活塞的移动而移动,并将测量数据传至PLC的模拟模块中,实现高功率电极生产过程位移变化量的实时监测。

2.2改变压力控制方式

由于产品在送电过程中有长度变化,为了保证炉内电极柱的良好连接,内热串接石墨化炉有活动电极,加压装置通过活动电极对电极柱施加一定的压力。压力大小要合适,既要保证电极柱的良好连接,又要保证产品不被压坏。而随着产品在送电过程中长度的变化,活动电极也会移动,压力也会有所波动。这就要求压力控制系统应该有自动稳压功能,根据压力变化情况随时对压力进行调整,以便保证压力在规定范围内波动。又由于电极在升温过程中既不能被拉伸,也不能堆挤,这就要求升温过程中位移变化速率与压力必须协调一致,为此,在液压系统中装设数显压力传感器、失压压力继电器,以便能够快速、可靠地检测到系统压力的变化并与电气控制系统配合,实现在线监测与控制。

3监测功能的实现

3.1数据采集

本次对10台石墨化炉进行了技术改造,每台石墨化炉的顶紧装置上加装了2只位移传感器,1只数显压力继电器,1只失压压力继电器。位移传感器和压力传感器作为连续监测的设备,主要采集电极位移变化量信号和压力信号。现场设计安装了PLC控制柜,负责采集每台顶紧装置的位移信号(4~20mA)与压力信号(4~20mA),并对采集到的信号进行A/D处理,将处理结果放入对应的内部寄存器,上位机通过DH+数据总线读取内部寄存器的压力与位移信号。

3.2数据通讯

根据生产的工艺要求和控制特点,采用DH+总线组成现场控制系统,选择AB公司SLC-500系列PLC做现场主站,完成总线的通信控制与管理;选择PC作为第二类主站,完成各站数据的读写、系统配置、故障诊断等;选择位移传感器、压力传感器等组成从站完成对电极生产过程中位移变化量与当前压力值的实时测量。

3.3数据监测与控制

根据石墨化炉现场状况及其他一些实际情况,此次技术改造主要是建立一个自动采集真实数据、自动记录、实时进行数据监测的系统。监测功能的实现是在原有的直流供电控制系统上位机上的组态画面中添加了顶紧装置新增的监测画面,新增界面与原有的界面设计在同一画面内,界面一目了然,传感器的数据采集由PLC完成,控制室中的操作员可以通过人机界面了解系统状态,并决定是否要调整PLC的控制,或是暂停正常的控制,进行特殊的处理。被采集到的数据能够自动存储到数据库管理系统当中,以便追踪趋势并进行分析。操作人员在监控直流供电系统数据的同时可以直观地监测到顶紧装置上传的数据,操作人员能够快速准确地根据电极石墨化工艺要求对直流输出功率进行控制,并且能根据位移变化速率与当前压力值对直流供电装置的输出功率做出及时的调整。使电极在石墨化过程中既不会由于拉伸产生裂纹,也不会被压坏。

篇5

2救生舱氧气系统数学模型

为了估测救生舱氧气系统的性能,首先需得到救生舱氧气系统压力P、气体温度T和氧气系统参数的时间差t。依据氧气系统结构该中含有一个压力传感器,可通过瓶体氧气压力进行读数。由于该系统不含温度传感器,因此对正常气密性下的某飞机1个月的108个数据点进行采集,完成对上述数据点氧气压力值、外界环境温度以及驾驶舱内温度的偏相关分析,从而得到瓶体内气体的温度。偏相关性分析通常应用于各种相关的变量中,清除其中的变量干扰后,得到两两变量之间的简单相关关系。采用偏相关来分析消除氧气系统本身的渗漏率干扰后,外界环境温度与驾驶舱温度对气瓶压力的相关性。通过偏相关对其进行研究可知,驾驶舱内温度、外界环境温度以及氧气系统压力参数和氧气压力的相关性。氧气压力值主要受外界温度以及驾驶舱温度的影响,并且受外界环境温度的影响更大一些。基于来自空客的资料,可将瓶体内气体温度拟合公式描述成T=(TAT+Tc)/2,其中TAT表示外界温度、Tc表示驾驶舱温度。在通过点与点相比得到压差的过程中,为了使点和点在同一标准下完成比较,通过理想气体方程P1/T1=P2/T2,将压力转变成相同环境温度下的压力PS,各点的压力值均具有可比性,从而可得航段渗漏率PL=PS/t=(PS1-PS2)/(t2-t1),其中t1表示飞机着陆时间,t2表示为飞机起航时间。上述理想气体方程还可应用于任一温度下机组氧气系统压力的预测,从而降低了由于冬季航行前后温差较大而引起的需频繁更换氧气瓶的工作量,提高了工作效率。因为飞行航段时间间隔较短,系统压力值波动不大,易受到外界温度拟合精度以及压力传感器探测精度的干扰,造成最终得到的压力值变化很大。通过比较两个间隔超过24小时的点的压力值来解决上述问题,假设间隔24小时的渗漏率用PL24表示,为了清除采样过程中数据坏点的干扰,需完成对其的3天滚动平均,最终即可得到能够体现系统性能特性的24小时3天滚动平均渗漏率ΔPLavg24。ΔPLavg24=∑I=nI=1(PL24-1+…+PL24-n)/n(1)其中,n表示3天中点的总量。经以上处理后可基本得到研究机组氧气性能的有关数据。而对氧气系统效果的分析,和对氧气使用时间的估计则可采用一元线性回归法,其方法仅分析一个自变和一个因变量之间的统计关系。主要通过其分析标态氧气压力值PS和气瓶安装时间To的统计关系。假设PS和To的关系满足式(2):PS=U1+U2*To+_(2)其中,PS表示被解释变量,To表示解释变量,U1、U2表示待估计参数,_表示随机干扰项,其主要体现了PS被To解释的不确定性。通过普通最小二乘法对一元线性回归进行求解,具体的求解公式如下:Toavg=∑nI=1(To1+…+Ton)/n(3)PSavg=∑nI=1(PS1+…+PSn)/n(4)其中,Toavg表示解释变量均值,PSavg表示被解释变量均值。U2=∑[(To-Tovag)*(PS-PSavg)]/∑(To-Toavg)2(5)U1=PSavg-U2Tovag(6)氧气系统固有的气密性能随U2的降低而降低。U1值主要和各时间段有关,对性能分析不产生任何影响。该方法可完成氧气系统性能的机队排序,但是不能识别单机的性能恶化,仅可实现对未更换氧气瓶以及充氧数据的监控。而对于时间段较长的机组氧气性能改变的监测只能采用相互独立样本T检验的方法来完成,该方法能够分析短期机组氧气性能恶化的状态。该方法先采集前后两个时间段的PLavg24数据样本,通过比较上述两组数据的变化程度对机组氧气系统出现恶化的时间段以及恶化程度进行判断,该种方法不能完成整个机队的氧气系统性能排序。具体公式如下F=S21/S22(7)其中,S21表示上一时间段n项数据PLavg24的方差,S22表示下一时间段m项数据的方差,式(7F(n-1,m-1)分布,可采用差找F分布的方法得到F值,依据F对两组数据的差异性进行判断,若检测出两组数据相似概率低于2.5%,则可判断这两组数据有显著差异,从而基于两组数据的均值对氧气系统渗漏率的改便程度进行判断。

3自抗扰控制器氧气系统参数优化数学模型

遗传算法是一种依据生物遗传以及进化机制的适用于复杂系统改进的自适应概率改进算法。其模拟自然及遗传时产生的选择、交叉及变异等现象,从一个初始种群开始,在经过随机选择、交叉及变异处理后,得到一群更适应环境的个体,通过这样不停的进行繁衍进化,最终可获取到一群最适合环境的个体,从而得到失事飞机救生舱氧气系统控制问题的最优解。

3.1考虑控制约束的自抗扰控制器参数优化设计目标函数的建立评价失事飞机救生舱氧气系统性能的过程中,一般情况下会采用一个以失事飞机救生舱氧气系统瞬时误差e(t)为泛函的积分为目标函数,通过时间乘绝对误差积分准则(ITAE)对系统的动态性能进行评价,以时间乘与误差成绩绝对值的积分为性能指标,用式(8)描述JITAE=∫#0t|e(t)|dt(8)如果只考虑失事飞机救生舱氧气系统的动态特性,则给定的参数通常会造成氧气控制过大,不能实现预期的控制效果。由于氧气控制能量有限,所以将umax与umin作为一项重要的指标进行加权,则有Ju=umax-umin×∫#0|u(t)|dt(9)通过氧气控制能量受限以及氧气浓度误差泛函评价标准,采用权重系数法获取一个失事飞机救生舱氧气系统性能的评价指标,用式(10)描述J=Je+Ju=∫#0t|e(t)|dt+wk|umax-umin|×∫#0|u(t)|dt(10)通过上述过程可以得到目标函数的最优极小值,需要将其转化成极大值问题,因为J>0,故取g=1=J。遗传算法是一种自由选择的算法,在进行迭代时一定会出现很多不可行染色体,为了使算法能够高效的识别同时越过不可行染色体,需使系统的输出误差不超过给定范围。对于不可行染色体,通过惩罚策略赋予其一个很小的惩罚值,融入惩罚策略的遗传算法适应度函数可描述成:maxf=1/Ju<Umax,u>Umin,|e|<EPuUmax,u"Umin,|e|{E(11)其中,Umax与Umin分别表示氧气浓度控制量的惩罚上限及下限,符合UmaxUsatmax,UminUsatmin,其中Usatmax与Usatmin分别表示氧气浓度饱和输入的上下限,|e|表示氧气浓度控制误差允许范围,P表示很小的一个罚值。

3.2改进遗传算法自抗扰控制器氧气系统参数整定过程在实际应用时遗传算法会出现早熟收敛以及收敛效率低的现象,导致其不得不用很长的时间去寻找最优解。为了避免上述弊端,采用一种改进自适应混沌遗传算法完成失事飞机救生舱氧气系统参数的优化。该算法通过浮点数编码,依据个体适应度值的排序完成对父体的选择,并且结合了自适应交叉、自适应变异以及混沌移民,对失事飞机救生舱氧气系统得参数整定,其遗传算法整定流程图用图1描述。

3.2.1失事飞机救生舱氧气系统参数的编码通过经验设定法整定跟踪微分器、扩张状态观测器中饱和函数的幂指数a以及线性区域的边界d。进行简化操作后,遗传算法的搜索区域以及不可行染色体的个数均降低了,效率得以提高。变量的数量越多,计算精度越高,二进制编码的速度就越低,对于精度要求高,搜索范围大的遗传算法,可采用浮点数编码。而自抗扰控制器涉及到的参数很多,同时区间分布广,不适合采用二进制编码,所以在确定失事飞机救生舱氧气系统的参数时采用浮点数编码。

3.2.2失事飞机救生舱氧气系统参数初始种群的选取通过经验设定法确定一组失事飞机救生舱氧气系统参数。其中跟踪微分器参数r可通过对象的响应速度来确定,和扩张状态观测器有关的各种参数可通过提到的动态失事飞机救生舱氧气系统参数确定法来确定,非线性误差状态反馈失事飞机救生舱氧气系统参数可通过PD控制器控制一个积分串联型对象的参数来确定。失事飞机救生舱氧气系统参数需符合下式:u<Umax,u>Umin,|e|<E(12)在失事飞机救生舱氧气系统参数附近大范围随机搜索符合式(12)的个体,直至得到的个体数目与遗传算法中群体大小相同,从而防止了很多的不可行个体的出现,提高了失事飞机救生舱氧气系统参数整定的效率,如图1所示。

4实验验证

为了验证本文模型的有效性,需要进行相关的实验分析。实验将飞机失事后气体压力为150Pa,气体温度为28℃的救生舱氧气系统作为仿真验证对象。传统控制模型与本文控制模型调节阶跃响应仿真结果对比用图2描述。传统控制模型与本文控制模型氧气浓度信号跟随仿真结果对比用图3描述。图2分析图2和图3可得,本文控制模型与传统控制模型相比,调节效率高,超调量小,达到了一个很好的控制效果。在系统运行的初始阶段,本文控制模型的响应速度很快,在时间为25s左右时,舱内氧气即达到人体能够适应的安全范围内,在300s内即达到稳定状态;超调最大值也在18%—23.5%安全范围内。在系统连续变动已知的时,本文控制模型与传统控制模型相比,调节效率更高,超调幅值更小,可以稳定的保持在人体可接受范围内。在系统达到稳定后,在400s—450s之间加入3.6V电压,本文控制模型可以以更短的时间,更小的超调达到稳定状态,动态响应效果好。救生舱是一个多参数、强耦合的复杂系统。在系统运行过程中,任意参数的变化都会影响氧气系统的模型结构,如飞机失事后救生舱气体压力变为180Pa,气体温度为30℃,则氧气系统模型发生改变,此时传统控制模型和本文控制模型阶跃响应仿真结果对比用图4描述。传统控制模型与本文控制模型信号跟随仿真结果对比用图5描述。分析图4和图5可得,当氧气系统模型改变后,本文控制模型变化不大,控制效果仍旧很好,而传统的控制模型动态性能下降,超调量升高同时调节速度更慢。通过上述仿真结果可以看出,本文控制模型的调节速度快,超调量小,达到了很好的效果。在救生舱系统参数改变后,本文控制模型与传统控制模型相比,有更好的自适应能力,使得系统氧气浓度可以一直保持在人体可承受范围内,有着更好的稳定性以及更高的调节效率。

篇6

2互动化营业厅信息集成需求分析

在互动化营业厅中各个专业应用以上信息系统,可改善营业厅服务环境,提升客户服务质量。但任一专业仅依靠自身采集的信息无法独立完成工作,例如:客户服务专业需要业务支持专业提供客户档案信息以识别客户身份;监控管理专业需要客户服务和业务支持专业提供设备运行状态,以实现对整个营业厅设备的统一监控。因此,需要在营业厅范围内全面考虑信息交互,实现专业间信息双向流动,互动化营业厅信息流如图1所示。同时,各专业内部应用系统之间也存在信息双向交互。支撑业务支持专业的自助服务设备管理系统和营销系统需交互客户档案和业务办理信息;监控管理专业的视频监控系统、展厅设备中控系统和营业厅服务管理系统需交互设备状态和视频信息等。应用系统之间信息流如图2所示。图1互动化营业厅信息流Fig.1Informationflowofinteractivebusinesshall图2应用系统信息流Fig.2Informationflowofapplicationsystem营业厅需要集成的信息可划分为3类:档案信息、业务信息和工况信息。档案信息包括企业、人员、设备的基本档案;业务信息描述每笔业务具体办理情况,包括办理时间、办理人员、业务类型、评价结果等;工况信息包括营业厅环境工况、设备运行工况和视频监控的现场工况。专业信息集成需求如图3所示。由于各应用系统在营业厅发展的不同阶段面向不同领域开发设计,数据模型和接口标准各不相同。因此,随着系统种类的增多和复杂度的增加,全局范围内的信息交叉重叠和数据孤岛现象凸显。图2中各系统须面向箭头另一端所指向的系统开发专用接口适配器,以完成数据模型的转换,且无法方便地实现营业厅范围内的信息交换和数据共享。此外,系统升级改造和数据模型变化会对相关系统产生影响,维护成本巨大。因此,实现系统间信息的有效集成需解决两方面问题:一是建立统一的信息交换数据模型;二是形成有效的信息交互机制。

3信息建模及交互方式

IEC61970CIM是对电网元件模型组织处理的方式,其核心思想是面向对象、互操作和即插即用,能够解决输电环节信息集成问题[6-7]。目前,IEC61970CIM应用还未延伸到用电领域。本文参照IEC61970CIM的建模思想[8-10],针对营业厅信息集成需求,将营业厅数据模型以分包的形式进行处理,并将其划分为档案包(Files)、业务包(Businesses)、设备包(Devices)、设施包(Facilities)、量测包(Measure)和字典包(Domain),每个包里定义了具体的对象类,图4描述了各包之间的关系。图4营业厅数据模型间的关系Fig.4Relationsamongdatamodelsofbusinesshall营业厅数据模型的分包内容如下。1)字典包:是数据单位的字典,定义了被其他任何包中任何类使用的属性的数据类型(Data)。2)档案包:建立了营业厅档案模型,包括企业档案类(EnterpriseFile)、营业厅档案类(HallFile)、营业员档案类(AssistantFile)和用电客户档案类(GuestFile)等。档案包是容器包,是其他包的基础,且依赖于字典包。3)业务包:建立了营业厅业务模型,包括业务咨询类(Consultation)、费用缴纳类(Payment)和业务办理类(Management)。用于支持涉及业务的各种应用,如营销系统、服务管理系统。业务包依赖于档案包、量测包和字典包。4)设备包:建立了营业厅的设备模型,包括自助服务设备类(SelfServiceDev)、智能排队设备类(QueueDev)、媒体设备类(ReleaseDev)、视频监控设备类(VideoDev)等。定义设备的基本属性和量测,用于各应用系统对设备的建模。设备包依赖档案包、量测包和字典包。5)设施包:建立了营业厅的设施模型,包括客户设施类(GuestFac)、营业人员设施类(AssistantFac)、展示设施类(ShowFac)、户外设施类(OutdoorFac)等,用于对营业厅设施的信息化管理。设施包依赖于档案包、量测包和字典包。6)量测包:描述了各应用间交换的动态量测数据的数据集合(MeasureSet)。对业务来说是业务量测数据集(BusiMeasureSet),包括时间、金额、满意率等;对设备来说是设备量测数据集(DevMeasureSet),包括状态量、数字量、浮点量等。量测包与业务包、设备包共同完成对业务、设备的动态描述。量测包依赖于字典包。信息与数据模型之间的对应关系如图5所示。图5信息与数据模型的对应关系Fig.5Correspondingrelationshipbetweeninformationanddatamodel图4所示的3层层次关系构建出营业厅信息的基础模型框架。营业厅运行过程中出现的新型数据对象可按需要添加到对应包中。业务包、设备包和设施包相互关联,且依赖于档案包和量测包,能够使数据对象在交互信息时通过统一接口描述其具有共性的行为,且行为细节被接口内部实现所隐藏,使对象间的信息交互更为方便。而营业厅的数据对象均可由位于上层的业务包、设备包和设施包的基础对象派生得出,并在子对象中丰富个性化属性,完成对模型的完整描述。自助缴费终端模型见图6。图6中,由自助服务设备(SelfServiceDev)派生出自助缴费终端设备(SelfPayDev)子对象,并加入读卡器、验钞机、打印机等自有属性,而自助服务设备本身聚合了档案包中的企业档案对象、营业厅档案对象、用电客户档案对象和业务包中的费用缴纳对象、业务办理对象,以及量测包中的业务量测数据集、设备量测数据集,建立了支持自助缴费终端业务和设备管理的完整信息模型。信息交互时利用工具导入导出信息模型,形成可扩展置标语言(XML)格式的模型信息文件,在营业厅采用面向服务架构(SOA)和基于企业服务总线(ESB)思想的局部信息总线实现各应用之间的信息交互。SOA是具有松耦合特点的组件模型,它从业务操作和工作流程的角度将应用相互联系,通过在应用之间定义良好的接口及契约,使各应用以统一和通用的方式进行交互,且应用内部的改变和新应用的接入不会对其他应用产生显著影响。例如:实际中,当营销系统的业务流程和数据结构发生变化时,不会对使用用电客户档案、企业档案等数据的自助服务设备管理系统、智能身份识别系统产生影响,有效减少了应用系统升级维护的工作量。ESB是SOA的消息传递架构,可提供事件驱动和文档导向等处理模式,以及分布式运行管理机制。利用基于ESB技术的局部信息总线可实现营业厅应用间不同消息和信息的准确、高效和安全传递。例如:自助服务设备管理系统中,自助服务终端设备的增减以及终端内部结构的变化可通过局部信息总线以消息方式及时通知服务管理系统和营销系统。基于SOA架构和ESB总线技术的信息交互方式如图7所示。

篇7

蓝牙技术是一项新兴的技术。它的主要目的是在全世界建立一个短距离的无线通信标准。它使用2.4GHz~2.5GHz的ISM(IndustrionScientifcMedical)频段来传送话音和数据。运用成熟、实用、先进的无线技术来代替电缆,它提供了低成本、低功耗的无线接口,使所有固定和移动设备通过微微网PAN(PersonalAreaNetwork)连接起来,诸如:计算机系统、家庭影院系统、无绳电话系统、通信设备等,相互通信,实现资源共享。蓝牙技术支持多种电子设备之间的短距离无线通信,这种通信不需要任何线缆,亦不需要用户直接手工干涉;每当一个嵌入了蓝牙技术的设备发觉另一同样嵌入蓝牙技术的设备,它们就能自动同步,相互通信,实现资源共享。

1蓝牙的结构体系

蓝牙协议栈的体系结构如图1所示。它是由底层硬件模块,中间层和高端应用层三大部分组成。

1.1蓝牙的底层模块

底层模块是蓝牙技术的核心模块,所有嵌入蓝牙技术的设备都必须包括底层模块。它主要由链路管理层LMP(LinkManagerProtocol)、基带层BB(BaseBand)和射频RF(RodioFraquency)组成。其功能是:无线连接层(RF)通过2.4GHz无需申请的ISM频段,实现数据流的过滤和传输;它主要定义了工作在此频段的蓝牙接收机应满足的需求;其带层(BB)提供了两种不同的物理链路(同步面向连接路SCOSynchronousConnectionOriented和异步无连接链路ACLAsynchronousConnectionLess),负责跳频和蓝牙数据及信息帧的传输,且对所有类型的数据包提供了不同层次的前向纠错码FEC(FrequencyErrorCorrection)或循环沉余度差错校验CTC(CyclicRedundancyCheck);LMP层负责两个或多个设备链路的建立和拆除及链路的安全和控制,如鉴权和加密、控制和协商基带包的大小等,它为上层软件模块提供了不同的访问入口;蓝牙主机控制器接口HCI(HostCntrollerInterface)由基带控制器、连接管理器、控制和事件寄存器等组成。它是蓝牙协议中软硬件之间的接口,提供了一个调用下层BB、LM、状态和控制寄存器等硬件的统一命令,上、下两个模块接口之间的消息和数据的传递必须通过HCI的解释才能进行。HCI层以上的协议软件实体运行在主机上,而HCI以下的功能由蓝牙设备来完成,二者之间通过传输层进行交互。

1.2中间协议层

中间协议层由逻辑链路控制与适配协议L2CAP(LogicalLinkControlandAdaptationProtocol)、服务发现协议SDP(ServiceDiscoveryProtocol)、串口仿真协议或称线缆替换协议(RFCOM)和二进制电话控制协议TCS(TelephonyControlprotocolSpectocol)组成。L2CAP是蓝牙协议栈的核心组成部分,也是其它协议实现的基础。它位于基带之上,向上层提供面向连接和无连接的数据服务。它主要完成数据的拆装、服务质量控制、协议的复用、分组的分割和重组(SegmentationAndReassembly)及组提取等功能。L2CAP允许高达64KB的数据分组。SDP是一个基于客户/服务器结构的协议。它工作在L2CAP层之上,为上层应用程序提供一种机制来发现可用的服务及其属性,而服务属性包括服务的类型及该服务所需的机制或协议信息。RFCOMM是一个仿真有线链路的无线数据仿真协议,符合ETSI标准的TS07.10串口仿真协议。它在蓝牙基带上仿真RS-232的控制和数据信号,为原先使用串行连接的上层业务提供传送能力。TCS是一个基于ITU-TQ.931建议的采用面向比特的协议,它定义了用于蓝牙设备之间建立语音和数据呼叫的控制信令(CallControlSignalling),并负责处理蓝廾设备组的移动管理过程。

1.3高端应用层

高端应用层位于蓝牙协议栈的最上部分。一个完整的蓝牙协议栈按其功能又可划分为四层:核心协议层(BB、LMP、LCAP、SDP)、线缆替换协议层(RFCOMM)、电话控制协议层(TCS-BIN)、选用协议层(PPP、TCP、TP、UDP、OBEX、IrMC、WAP、WAE)。而高端应用层是由选用协议层组成。选用协议层中的PPP(Point-to-PointProtocol)是点到点协议,由封装、链路控制协议、网络控制协议组成,定义了串行点到点链路应当如何传输因特网协议数据,它要用于LAN接入、拨号网络及传真等应用规范;TCP/IP(传输控制协议/网络层协议)、UDP(UserDatagramProtocol对象交换协议)是三种已有的协议,它定义了因特网与网络相关的通信及其他类型计算机设备和设备之间的通信。蓝牙采用或共享这些已有的协议去实现与连接因特网的设备通信,这样,既可提高效率,又可在一定程度上保证蓝牙技术和其它通信技术的互操作性;OBEX(ObjectExchangeProtocol)是对象交换协议,它支持设备间的数据交换,采用客户/服务器模式提供与HTTP(超文本传输协议)相同的基本功能。该协议作为一个开放性标准还定义了可用于交换的电子商务卡、个人日程表、消息和便条等格式;WAP(WirelessApplicationProtocol)是无线应用协议,它的目的是要在数字蜂窝电话和其它小型无线设备上实现因特网业务。它支持移动电话浏览网页、收取电子邮件和其它基于因特网的协议。WAE(WirelessApplicationEnvironment)是无线应用环境,它提供用于WAP电话和个人数字助理PDA所需的各种应用软件。

2蓝牙硬件的实现

蓝牙的技术规范除了包括协议部分外还包括蓝牙的应用部分(即应用模型)。在实现蓝牙的时候,一般是将蓝牙分成两部分来考虑,其一是软件实现部分,它位于HCI的上面,包括蓝牙协议栈上层的L2CAP、RFCOMM、SDP和TCS以及蓝牙的一些应用;其二是硬件实现部分,它位于HCI的下面,亦即上面提到的底层硬件模块,它已在图1中标示出。下面讨论蓝牙硬件模块的结构与性能。

蓝牙硬件模块由蓝牙协议栈的无线收发器(RF)、其带控制器(BB)和链路管理层(LMP)组成。目前大多数生产厂家都是利用片上系统技术SOC(System-On-Chip)将这三层功能模块集嵌在同一块芯片上。图2为单芯片蓝牙硬件模块结构图。它由微处理器(CPU)、无线收发器(RF)、基带控制器(BB)、静态随机存储器(SRAM)、闪存(Flash程序存储器)、通用异步收发器(UAST)、通用串行接口(USB)、语音编/解码器(CODEC)及蓝牙测试模块组成。下面分别叙述各部分的组成及功能。

(1)蓝牙基带控制器

蓝牙基带控制器是蓝牙硬件模块的关键模块。它主要由链路控制序列发生器、可编程程序列发生器、内部语音处理器、共享RAM裁器及定时链管理、加密/解密处理等功能单元组成。其主要功能:在微处理器模块控制下,实现蓝牙基带部分的所实时处理功能,包括负责对接收bit流进行符号定时提取的恢复;分组头及净荷的循环沉余度校验(CRC);分组头及净荷的前向纠错码(FEC)处理和发送处理;加密和解密处理等。且能提供从基带控制器到其它芯片的接口(诸如数据路径RAM客户接口、微处理器接口、脉码调制接口(PCM)等。

(2)无线收发器模块

无线收发器是蓝牙设备的核心,任何蓝牙设备都要有无线收发器。它与用于广播的普通无线收发器的不同之处在于体积小、功率小(目前生产的蓝牙无线收发器的最大输出功率只有100mW、2.5mW、1mW三种)。它由锁相环、发送模块和接收模块等组成。发送部分包括一个倍频器,且直接使用压控振荡器调制(VCO);接收部分包括混频器、中频器放大器、鉴频器以及低噪音放大器等。无线收发器的主要功能是调制/解调、帧定时恢复和跳频功能同时完成发送和接收操作。发送操作包括载波的产生、载波调制、功率控制及自动增益控制AGC;接收操作包括频率调谐至正确的载波频率及信号强度控制等。

(3)微处理器(CPU)

CPU负责蓝牙比特流调制和解调所的所有比特级处理,且还负责控制收发器和专用的语言编码和解码器。

(4)Flash存储器和SRAM

Flash存储器用于存放基带和链路管理层中的所有软件部分。SRAM作为CPU的运行空间,在作时把Flash中的软件调用SRAM中。

(5)语音编/解码器CODEC(CoderDecoder)

语音编/解码器CODEC由ADC(数模转换器)、模数转换口(ADC)、数字接口、编码模块等组成。主要功能:提供语音编码和解码功能,提供CVSD(ContinuousVariableSlopeDeltaModulation)即连续可变斜率增量调制及对数PCM(PulseCodedModulation)即脉码调制两种编码方式。

(6)蓝牙测试模块

它是由DUT(DeviceUnderTest)即被测试模块与测试设备及计量设备组成。一般测试设备被测试设备构成一个微微网,测试设备是主节点,DUT是从节点。测试设备对整个测试过程进行控制,其主要功能提供无线层和基带层的认证和一致性规范,同时还管理产品的生产和售后测试。

(7)UART(UniversalAsynchronousKeceiverTransunitter)通用异步收发器和USB(UniversalSerialBus)通用串行接口。

功能:提供到HCI(HostConfrollerInterface)即主机控制器接口传输层的物理连接,是高层与物理模块进行通信的通道。

3TR0700单芯片介绍

RT0700单芯片是Transilica公司的蓝牙产品,其结构如图3所示。它把无线收发器与基带都集成到一块CMOS芯片上,替代传统的串行语音和通用串行接口电缆,为语音和数据业务提供无线连接。

3.1结构及工作原理

RT0700单芯片由收发器、基带、语音编/解码器(CODEC)、带有4个可配置的8bit接口的8051微处理器、两个串行口双高性能的通用异步收发器(UART)、4KB的静态随机存储器(SRAM)、64KB的Flash程序存储器等组成。

收发器由低噪放大器(LNA)、电平控制器(PA)、混频器、鉴频器、控制寄存器、发送滤波器、振荡器等组成。其工作原理是:来自接收天线上的信号经低噪放大器(LNA)放大后,送至多级滤波器,多级滤波器具有预选择功能,它把LAN的输出信号限制在2.4GHz的ISM频段内,去除负频率成分,输出适合进行下变频处理的信号。I、Q混频器把蓝牙频段的信号移频至低中频(IF)传输的调制信号。复合滤波器负责从下变频信号中滤除无用信号和噪声。鉴频器使用过采样技术从IF信号中取出蓝牙低调制指数信号;发送器由发送滤波器、频率合成器、功率放大器、振荡器、天线等组成。其工作原理是:发送滤波器是一个高斯数字滤波器,它对发送环Tx输入的数据进行数字过滤;振荡器的功能是驱动一个外部的晶体振荡器或者接受一个外部的时钟信号,向频率合成器提供一个低噪声的参考频率。功率放大器的主要功能是对频率合成器的输出功率放大到1mW左右,且对频率合成器起缓冲作用,减少负载变化对合成器的影响;发送天线:当使用差分输入的LNA时,它可以是一个低噪声的平衡双极天线;8051微处理器是一个8位的微处理器,它的主要功能是管理和实现蓝牙协议栈。它具有一增强的指令集、二级数据指针、扩展的SRAM和双UART。在TR0700中对一些重复性的操作诸如分组的组装和拆解、加密、地址编码/解码、纠错和同步等都由硬件来实现,这样能降低处理器的开销,有效地提高响应性能。TR0700除了8051微处理器本身所带有的一些特殊功能寄存器(SFR)外,还定义了一些新的特殊功能寄存器(SFR),它还引入了一些特殊的中断,如一个带有特殊保护的外部中断INT3等。RT0700的基带操作有三种模式可供选择:数据/地址、端口、测试。

篇8

摘要 (200-300字,包括模型的主要特点、建模方法和主要结果。)

关键词(求解问题、使用的方法中的重要术语) 内容较多时最好有个目录

1。问题重述

2。问题分析

3。模型假设与约定

4。符号说明及名词定义

5。模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型);

6。进一步讨论(参数的变化、假设改变对模型的影响)

7。模型检验 (使用数据计算结果,进行分析与检验)

8。模型优缺点(改进方向,推广新思想)

9。参考文献及参考书籍和网站

10。附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)

小经验:

1。随时记下自己的假设。有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。

2。随时记录自己的想法,而且不留余地的完全的表达自己的思想。

篇9

在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。

一、数学经济模型及其重要性

数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。

数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。

二、构建经济数学模型的一般步骤

1.了解熟悉实际问题,以及与问题有关的背景知识。2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因素或者还保留着不应该保留的因素。并对模型进行必要的调整修正。重复前面的建模过程,直到建立出一个经检验符合实际问题的模型为止。一个较好的数学模型是从实际中得来,又能够应用到实际问题中去的。

三、应用实例

商品提价问题的数学模型:

1.问题

商场经营者即要考虑商品的销售额、销售量。同时也要考虑如何在短期内获得最大利润。这个问题与商场经营的商品的定价有直接关系。定价低、销售量大、但利润小;定价高、利润大但销售量减少。下面研究在销售总收入有限制的情况下.商品的最高定价问题。

2.实例分析

某商场销售某种商品单价25元。每年可销售3万件。设该商品每件提价1元。销售量减少0.1万件。要使总销售收入不少于75万元。求该商品的最高提价。

解:设最高提价为X元。提价后的商品单价为(25+x)元

提价后的销售量为(30000-1000X/1)件

则(25+x)(30000-1000X/1)≥750000

(25+x)(30-x)≥750[摘要]本文从数学与经济学的关系出发,介绍了数学经济模型及其重要性,讨论了经济数学模型建立的一般步骤,分析了数学在经济学中应用的局限性,这对在研充经济学时有很好的借鉴作用。即提价最高不能超过5元。

四、数学在经济学中应用的局限性

经济学不是数学,重要的是经济思想。数学只是一种分析工具数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用,而不能将之替代经济学,在经济思想和理论的研究过程中,如果本末倒置,过度地依靠数学,不加限制地“数学化很可能经济学的本质,以至损害经济思想,甚至会导致我们走入幻想,误入歧途。因为:

1.经济学不是数学概念和模型的简单汇集。不是去开拓数学前沿而是借助它来分析、解析经济现象,数学只是一种应用工具。经济学作为社会科学的分支学科,它是人类活动中有关经济现象和经济行为的理论。而人类活动受道德的、历史的、社会的、文化的、制度诸因素的影响,不可能像自然界一样是完全可以通过数学公式推导出来。把经济学变为系列抽象假定、复杂公式的科学。实际上忽视了经济学作为一门社会科学的特性,失去经济学作为社会科学的人文性和真正的科学性。

2.经济理论的发展要从自身独有的研究视角出发,去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件,它不是无条件地适用于任何场所,而是有条件适用于特定的领域在实际生活中社会的历史的心理的等非制度因素很可能被忽视而漏掉。这将会导致理论指导现实的失败。

3.数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化,从而不利于经济学的发展。

篇10

2以《模拟电子线路》课堂为例,分析新的研究型教学模式创新改革与实践

对于信息工程专业来说,现有的研究型教学改革已经相当完善,研究型教学是指教师引导学生主动去进行学习的一种教学方式,可以极大的提高学生的学习兴趣和创新能力,然而,作为一个热点的教学改革模式,它所面临的问题仍然很多,比如在课堂中很难有足够的时间进行研究,或者缺乏在课下进行充分交流的平台,本文将在教学目标、教学内容、教学方法和实验分析四个方面进行进一步的研究型教学改革的探究.

2.1明确课程教学目标,真正发挥学生的主体地位

《模拟电子线路》是一门应用性较强的技术基础课程,主要介绍模拟电路的结构与工作原理、模拟电路的定性分析与定量计算、集成模拟电路的应用,是进行实验、测量以及微机原理的基础,也是高校理工科学生的一门必修课程.该课程包括理论教学和实验教学,学生在课堂上学习了基本的电路原理和估算方法后,通过实验课程的学习,锻炼自己的动手能力,理论与实践的结合,可以替将来的工作打下基础.课程的性质决定教学目标,同时也决定了其授课方式.在理论学习方面,从13年开始,我校就在原有基础上制定了新的信息工程专业人才培养方案,模拟电子技术作为信工专业的专业基础课,将和数字电子技术同时在第三学期开课,这样就为模拟电子后续的课程比如嵌入式系统、FPGA、DSP等课程提供了充足的时间,既能保证合理的授课顺序,也使学生尽早地掌握信工专业的基础知识,有利于参加各项科技设计活动,参与实验室开放性课题申请以及大学生电子设计竞赛等.在实验教学方面,实验课程体系由基础实验、综合实验、课程设计以及开放性实验构成,实验课将在学期第八周开始,这样既能保证学生具有一定的理论知识,也能够保证实验能够针对理论知识进行及时验证,以不断提高学生的知识运用能力和综合创新能力,并且鼓励学生在课外进入实验室或者课题组,参与大学生创新训练、飞思卡尔智能汽车竞赛、以及大学生电子设计竞赛等活动,并将这些课外活动列入培养方案,给予相应的额外学分,激发学生的学习兴趣和创新精神,真正达到以学生为主的教学目的.

2.2丰富教学内容,提高学生的综合能力

在新的专业人才培养方案中,针对模拟电子技术课程,删除了课程中比较繁琐以及难度较高的部分,重点讲解基础知识和应用,着重介绍目前的前沿知识,努力提高学生的综合能力和专业素养.课程针对教学改革后的学时安排,对以往陈旧部分的教学内容进行适当删减,包括放大电路的频率响应,功率放大器的部分内容以及波形电路及电源部分,针对部分可由EDA软件自动完成部分比如卡诺图部分,不再要求学生推导,只要求掌握过程即可.在删减陈旧内容的同时,还应加强基础理论知识的讲授,进行适当拓宽,如集成运算放大器和其他模拟集成电路的应用.在每章小结部分引入EDA内容,围绕教学的基本要求和重点内容进行仿真,培养学生的动手能力,加深课堂理解.课堂教学不必照本宣科,也不必完全采取教师讲授学生听课的灌输模式,老师根据课程性质,开辟新的教学方法.在每节课接近下课时间布置学习任务,让学生课后阅读教材,分组讨论,并且提出自己解决不了的问题.在下节课上课时,利用10—20分钟的时间分组汇报学习心得并提出问题,由其他小组对该问题进行解释.这样的互动学习结束后,教师可以针对各小组的疑难问题,结合教材难点和重点内容进行分析、讲解,这样一来,不仅调动了学生的积极性,让他们主动查阅资料解答疑惑,同时,也可以加深对知识点的记忆.

2.3充分利用多媒体网络技术教学,提高学生的综合能力

对于研究型教学来说,网络是老师教学信息的平台,而目前多媒体网络技术日新月异,当前学生获取信息的主要途径也是网络,因此,网络并不应该只局限于远程教学,应该存在于任何需要应用的教学课堂中,作为老师和学生之间共同研究和交流的平台.第一,利用网络技术培养学生的创新能力.传统的教学模式,教师和学生面对面授课,学生遇到难题,往往羞于向老师请教,或者在同老师交流的过程中产生失败感,面对纷繁枯燥的知识点,学生往往感到力不从心,缺乏自信.而面对虚拟的网络,学生不用担心同老师的交流带来的尴尬,面对网络这一新型学习工具,面对网络中丰富的知识,学生会有强烈的探索欲去探求新的知识.当然,这种探索是要在任课教师的有效引导下进行.任课教师通过《模拟电子线路》学习网站,将平时课堂上讲授的重要知识点梳理出来放在网站上供学生们共享;建立BBS模电学习交流网站,供学生们就相关知识点发表自己的看法.任课老师只要稍加引导,就能将网络变成教学阵地,为教师和学生共谋福利.第二,利用网络技术培养学生的思维能力.任课老师通过模电学习网站,将知识点上传到网络中,并留给学生一定的自我动手机会,学生针对学习网站中的大量知识点,可以进行整理、比较、分析,从大量纷繁复杂的信息中提取出有利于自身理解记忆的部分.通过这样的思维训练,可以培养学生的创新思维能力.同时,任课教师还可以针对知识点布置给学生诸如程序设计之类的课后作业,同一程序,不同的学生会有不同的分析方式和解决方法,通过网络信息平台上的交流,自然可以培养一种发散的思维方式.要实现以上要求,网络平台必须包括以下几个部分:

(1)课堂区:作为每一节课后的延伸,主要包括课件区和作业区,老师在课堂区该节课的课件以及课后作业供学生下载;

(2)综合讨论区:里面包括各个老师认为重要知识点的分区,学生可以对感兴趣的话题进行提问和探讨,针对问题和老师形成讨论;

(3)悬赏区:老师不定期的任务,并附加任务相应的分数,任务内容包括课堂知识的运用以及课堂延伸知识题目,学生领取任务并完成后可得到相应分数,允许学生在综合讨论区讨论相关题目,在每期任务完成后公布答案和完成人,实验任务也可放入悬赏区;

(4)意见区:学生和老师可就教学情况进行沟通,帮助老师及时了解问题所在,帮助教学任务的完成.

2.4上好实验课程,做好理论知识与实践能力的有效衔接

作为课堂教学的延伸,实验课是理论课的有效指导以及必要补充,因此,实验教学同样是提高学生创新及思维能力的有效途径,帮助学生巩固知识和发现创新.通过网络实验目的和实验过程,指导学生在实验过程中验证知识、开拓视野.最后通过网络上传实验结果以及学习心得,提出疑惑并寻求答案,通过各种途径提升学生的学习和动手能力,真正掌握所学习的知识.在课余生活中,建立了一个完全开放性的实验室,学生可以随时进入到实验室当中,通过完成实验内容验证自己所学习的知识,教师在授课过程中,将课程与实验相结合,鼓励学生进入实验室中去验证,通过在网络实验任务,促使学生主动进入实验室中完成任务并领取奖励,这样既调动了学生的学习积极性,使学生主动的参与网络知识的探讨,又可以有效的完善课堂教学,将网络中的问题拿到课堂中与学生互相探讨,创造了良好的学习氛围,在相互学习的过程中,教师也不断的积累了丰富的教学经验.

篇11

随着经济的快速发展,我国的科学技术也有了长足的进步,而与之密不可分的数学学科也有着不可小觑的进步,与此同时,数学学科的延伸领域从物理等逐渐扩展到环境、人口、社会、经济范围,使得其作用力逐渐增强。不仅如此,数学学科由原本的研究事物的性质分析逐渐转变到研究定量性质范围,促进了多方面多层次的发展,由此可见,数学学科的重要性质。在日常生活中,运用数学学科去解决实际问题时,首要完成的就是从复杂的事物中找到普遍的规律现象存在,并用最为清晰的数字、符号、公式等将潜在的信息表达出来,再运用计算机技术加以呈现,形成人们所要完成的结果。笔者以数学建模为例,分析了数学建模与计算机应用之间的关系,与此同时,也探寻了计算机应用技术在数学建模的辅助之下发挥的作用,并对数学建模进行概念定义,使得读者能够对数学建模的意义有着更深层次的了解,希望能够起到促进二者之间的良性发展。

1 数学建模的特质

从宏观角度上来讲,数学建模是更侧重于实际研究方面,并不仅仅是通过数字演示来完成事物的一般发展规律,与一般的理论研究截然不同。其研究范围之广,能够深入到各个领域当中,从任何一个相关领域中都能够找到数学学科的发展轨迹,从中不难看出数学学科的实际意义与鲜明特点。数学为一门注重实际问题研究的学科,这一性质方向决定了其研究的层次,其研究范围大到漫无边际的宇宙,小到对于个体微生物或者单细胞物体,综合性之强形成了研究范围广的特点。多个学科之间互相影响,从中找到互相之间存在的相互联系,其中有许多不能够被忽视的数学元素,且这些元素都是至关重要的,所以这个计算过程十分复杂,计算量与数据验算过程也十分耗费时间,因此需要充足的存储空间支持这一过程的运行。在数学建模的过程当中,所涉猎的数学算法并不是很简单,而建立的模型也遵循个人习惯,因此建成的模型也不是一成不变的,但是都能够得出相同的答案。 正因如此,在数学建模的过程当中,就需要使用各种辅助工具来完成这一过程。由于计算机软件具有的高速运转空间,使得计算机技术应用于数学学科的建模过程当中,与数学建模过程密不可分息息相关。由此可见,计算机技术的应用水平对于数学学科的重要作用。

2 数学建模与计算机技术之间的联系

篇12

 

水经氯消毒进入供水管网后与水中有机前驱物质发生反应生成消毒副产物[1]。三卤甲烷(THM)是饮用水中含量最大的消毒副产物,具有致癌、致畸作用,会引起肝、肾等器官的病变。许多供水行业学者对三卤甲烷的生成规律进行了研究,试图建立THM生成模型,以便于对供水管网中的THM含量进行预测。本文介绍了供水管网THM动力学模型的建立原理,首次应用EPANET建立真实供水管网三卤甲烷(THM)的生成模型,并对该水质模型进行验证,得到整个供水管网各点三卤甲烷浓度的水质模型。

1 给水管网THM动力学模型

当氯气加到水中数学建模论文,它与水中天然有机物(NOM)发生反应生成三卤甲烷以及其他消毒副产物,饮用水氯化消毒生成三卤甲烷反应可以写成:

Cl2+P→THM(1-1)

式中P――表示三卤甲烷形成的前驱物质。

根据质量作用定律,THM生成的速率表达式为:

(1-2)

式中[Cl2]――水中余氯的浓度;

[C]――形成三卤甲烷的前驱物质浓度;

n――相对于氯的反应级数;

m――相对于前驱物质的级数;

k­――THM生成的速率常数cssci期刊目录。

据文献报道[2]:三卤甲烷的形成相对于氯和前驱物都是一级n=1、m=1,总的反应级数是二级。

THM生成潜能(THMFP)是在一定的加氯量下,在足够的反应时间内原水体中的天然有机物与氯反应生成THM的能力[1],将THMFP代入(1-2),可得:

(1-3)

式中t――反应时间(h);

K――反应速率常数(L/mgh);

[THMFP]――THM的界限浓度(μg/L)。

在配水管网中,当t=0时,[THM]= [THM0],式(1-3)积分得:

(1-4)

2 EPANET给水管网THM生成模型

EPANET跟踪供水系统THM的增长,通过管道内部(主流区)和管壁处两个区域反应来处理的[3]。在主流区,自由氯(HOCL)与水中天然有机物(NOM)反应;在管壁处,氯与附着在管壁上的藻类等其它前体物质发生反应,存在管壁生长环作用[2]。

2.1 主流区反应

EPANET模拟具有n级反应动力学的主流区水体反应,其中反应的瞬时速率依赖于浓度,同时也考虑到THM极端增长中存在着极限浓度反应数学建模论文,THM属于一级饱和增长反应动力学模型,n=1,Kb>0,[THMFP]>0,即

R=Kb ([THMFP]-[THM]) [THM] (n-1) = Kb ([THMFP]-[THM]) (2-1)

式中R­――浓度反应的瞬时速率(μg/L/d);

Kb――主流区反应速率系数(d-1);

n――反应级数;

[THMFP]――THM的界限浓度(μg/L);

[THM]――THM的浓度(μg/L)。

主流区的反应系数Kb常常随着温度的增加而增加,取决于原水的水质,可通过棕色玻璃瓶中的水样静置来估计,分析瓶中三卤甲烷浓度与时间的关系。对于属于一级饱和增长反应的THM,自然对数([THMFP]-[THM0]) / ([THMFP]-[THM t])与时间t的曲线为一条直线,其中[THMFP]为THM的界限浓度,[THM t]为t时刻THM的浓度,[THM0]为零时刻THM的浓度,于是Kb由该直线的斜率来估计。

2. 2 管壁处反应

靠近管壁处的水质反应速率,可认为取决于主流区的浓度,THM管壁反应级数n= 1,即采用以下公式[3]:

R = (A/V) Kw C n= (A/V) Kw C(2-2)

式中 Kw――管壁反应速率系数;

(A/V)――管道内单位容积的表面积。

管壁反应系数Kw取决于温度数学建模论文,与管龄和管材相关,由模拟人员设置。

3 管网THM生成模型的应用与验证

3.1 实例简介

本研究所用的是横山桥镇配水管网,横山桥镇用水由西石桥水厂供给,输水管线长达17km,在横山桥进行二次增压并二次加氯,通过两条输水管线供给全镇(自来水普及率100%),管径为100~600mm,节点数248,管段数261。管网除镇区为环状外,周边农村均为枝状。在此供水管网中设置了7个水质调查点,分别位于供水干管和管网末梢(见图1)。

图1 实际管网水流方向及7个水质监测调查点

Fig.1 The actual flowdirection of pipe network and 7 water quality monitoring sites

注:1. 增压站;2. 横山家苑;3. 营业所;4.加油站;5.曹巷村;6. 龙塘村;7. 谢家村cssci期刊目录。

3.2模型建立与验证

3.2.1模型建立

在EPANET模型中选择模拟周期为96h,水力步长为30min,水质步长为5min,每5min输出一组水质数据。通过对比模型计算结果和管网实测数据,调整模型输入数据,使模型计算误差达到最小数学建模论文,模型校核后输入初始参数见表1及THM时变曲线图2。局部管网的THM水质模型结果见图3。

表1 THM模型的输入数据

Tab. 1 Input data in THM model

 

THM平均

浓度/μg/L

主流区的反应系数

Kb­/ d-1

管壁反应系数

Kw/m/d

友情链接