接口技术论文范文

时间:2023-02-04 22:06:20

引言:寻求写作上的突破?我们特意为您精选了4篇接口技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

接口技术论文

篇1

1引言

激光具有波长单一和良好的方向性,所以和传统的探测方法相比,激光探测具有精度高,抗干扰能力强等特点,在激光测距、激光雷达、激光告警、激光制导、目标识别等军事领域,都得到了广泛应用。针对不同武器系统的需求,激光探测系统接口呈现出多样性。

近年来,随着应用需求和集成化度的增加,激光探测系内部、激光探测系统和各武器平台之间集成了不同厂商的硬件设备、数据平台、网络协议等,由此带来的异构性给探测系统的互操作性、兼容性及平滑升级能力带来了问题。

对激光探测系统而言,接口技术的设计是整个系统集成的关键技术。一个激光探测系统的设计、实施,有很大的工作量是在接口的处理上,好的接口设计可以提高系统的稳定性、运行效率、升级能力等,本文以激光探测系统接口技术为研究对象,着重分析其接口技术类型、设计考虑因素和验证方法。

2激光探测系统几种主要接口技术

接口是多要素或多系统之间的公共边界部分,对激光探测系统的接口包括机械接口、电气接口、电子接口、软件接口等,本文着重讨论电子接口。按物理电气特性划分,常用的激光探测系统接口类型可分为以下几类:

1TTL电平接口:最通用的接口类型,常用做系统内及系统间接口信号标准。驱动能力一般为几毫安到几十毫安,在激光探测系统中主要应用是作为长距离的总线数据和控制信号的传输

2CMOS电平接口:速度范围与TTL相仿,驱动能力要弱一些。

3ECL电平接口:为高速电气接口,速率可达几百兆,但相应功耗较大,电磁辐射与干扰与较大。

4LVDS电平接口:在标准中推荐的最大操作速率是655Mbps,电流驱动模式,信号的噪声和EMI都较小。

5GTL接口电平:低电压,低摆幅,常用作背板总线型信号的传输,虽然使用频率一般在100MHz以下,但上升沿一般都比较陡,特别是对沿敏感的信号,如时钟信号。

6RS-232电平接口:为低速串行通信接口标准,电平为±12V,用于DTE与DCE之间的连接。RS-232接口采用不平衡传输方式,收、发端的数据信号是相对于信号地的电平而言,其共模抑制能力低,传输距离近,多用于点对点接口通讯。

7RS-422/RS-485接口:采用平衡方式传输,采用差分方式,使其在通讯速率、抗干扰性和传输距离较RS-232接口有较大改善。多用于多点接口通迅。RS485电平接口可驱动32个负载,忍受-7V到12V共模干扰。

9光隔离接口:能实现电气隔离,更高速率的器件价格较昂贵。

10线圈耦合接口:电气隔离特性好,但允许信号带宽有限

11以太网:经常采用的是10Base-T和100Base-T两种主流标准,主要应用激光探测系统和分系统之间的接口通讯和数据传输。以太网接口具有性价比高、数据传输速率高、资源共享能力强和广泛的技术支持等众多优点。

12USB接口:USB总线接口是一种基于令牌的接口,USB主控制器广播令牌,总线上的设备检测令牌中的地址是否与自身相符,通过发送和接收数据对主机作出响应,其最大的优点是安装配置简单。

3激光探测系统接口方案设计考虑因素

随着大规模数字处理芯片和高速接口芯片的迅猛发展,激光探测系统也呈现出智能化、小型化、模块化的趋势。在激光探测系统中,信息接口的设计逐渐向标准化、网络化、多节点、高速等方向展

3.1接口信号传输中的干扰噪声

3.1.1接口信号传输中的主要干扰形式

a)串模干扰:杂散信号通过感应和辐射的方式进入接口信道的干扰。串模干扰的产生原因主要是传输中插件等所产生的接触电势、热电势等噪声引起的。

b)共模干扰:干扰同时作用在两根信号往返线上,而且幅指相同。共模干扰产生的原因,主要是传输线路较长,在发送端和接收端之间存在着接地的电位差。

3.1.2接口信号传输中的抗干扰措施

a)传输线的选择

为了抑制由于杂散电磁场通过电磁感应和静电感应进入信道的干扰,接口传输线应尽量选用双绞线和屏蔽线,并将屏蔽层接地,而且屏蔽层的接地要于激光探测系统一端浮地的结构形式配合,不要将屏蔽线层当作信号线和公用线。

b)传输线的平衡和匹配

采用平衡电路和平衡传输结构是抑制共模干扰的有力措施。目前广泛使用的是差分式平衢性线电路,例如RS-422/RS-485标准串口电路。

接口信号传输时还要考虑与传输线特性阻抗的匹配问题。一般长线传输的驱动器接收器都适用于驱动特性阻抗为50Ω—150Ω的同轴电缆和双绞线,一般接口接收器的输入阻抗要比传输线的特性阻抗大,因此要设法将两者匹配,最好将发送端和接收端匹配。

控制信号线的具体配置:控制信号线要和强电、数据总线、地址总线分开,尽量选用双绞线和屏蔽线,并将屏蔽层接地。

c)隔离技术:电位隔离是常用的抗干扰方法,接口信号采用光电隔离和电磁隔离可以切断接口内外线路的电气连接,从而减弱露流、地阻抗耦合等传导性干扰的影响。3.2接口硬件的选择原则:

3.2.1为各类接口选择合适的总线接口芯片、接口总线,并设计具体的接口电路。

3.2.3选择接口芯片时应根据激光探测系统CPU/MPU类型,总线类型/宽度和系统所完成的功能并按照高效、经济、可靠,方便、简单的原则来确定。

3.2.4设计具体的接口电路应具体考虑电源问题

3.2.5数据/命令的锁存和驱动

激光探测系统内部及激光探测系统和其他系统间实施数据/命令传输时,一般采用数据锁存技术来适应双方读写的时间要求。

3.3接口的实时性

由于激光探测系统对数据处理和传输的实时性要求很高,设计时要使时钟抖动、通道间时延、工作周期失真以及系统噪声最小化,所以设计接口时尽量选用高通讯速率和同步工作方式。

接口软件的设计原则

同步通讯系统软件设计要充分考虑数据流量的控制,最好在数据发送方发送数据时每隔一段时间插入一段空闲时间,从而保证数据同步传输的可靠性。

异步通讯系统软件设计要充分考虑合理的数据校验方式,可以根据系统要求选择冗余校验、校验和、冗余校验的方法。

4激光探测系统接口方案设计验证

构建高速有效的激光探测系统接口是非常有挑战性的,并且设计者需要在设计接口前后就考虑多个因素,详细的系统级的验证都是必须的。

4.1设计前的验证

基于指令集模拟器和硬件模拟器软硬件模拟技术是一种高效、低代价的系统验证方法。接口设计软件采用汇编,C,C++等语言编写,用户编写的接口源程序经过交叉编译器和连接器编译,输入到软件指令集模拟器进行软件模拟。而接口硬件验证则采用硬件描述语言如VHDL设计,经过编译后由硬件模拟器模拟。但设计前的验证也有一定的局限性,比如只能验证数字接口和验证环境理想化等缺点。这些都需要设计后的验证

4.2设计后的验证

最常见的验证方法是制作模拟激光探测系统内部接口和系统间外部接口的通用信号源,通用信号源可以模拟探测系统内部的如主回波、时统、显示、键盘等信号,也可以模拟输入外部操控命令,并将激光探测系统状态、测量数据等信息显示输出。

篇2

1引言

《计算机接口技术》课程是计算机科学与技术专业的一门专业主干课程,是大学本科生掌握计算机硬件基础知识和常用接口技术的入门课程[1]。课程由微型计算机工作原理和微处理器、汇编语言程序设计、常用接口技术三个部分组成。该课程目的使学生通过本门课程的学习,掌握计算机系统的构成,建立起整机概念,并培养学生具有一定的独立分析和解决问题的能力,为后续课程的学习以及将来的工作奠定坚实的基础。但由于本门课程是一门实践性很强的课程,并且具有知识点多、概念抽象、理论性强等特点,学生掌握起来并非易事,就以往学生的反应,此门课程学习难度大,知识不易理解,普遍存在“重软件、轻硬件”的现象,大大降低了学生的学习热情,动手实践能力的培养也受到很大的限制,如何能够提高学生学习热情,激发学生的学习欲望,是需要解决的问题,笔者结合多年的教学经验和教学实践,在实验教学过程中进行了一些教学改革的初步探索。

2引用

proteus仿真软件Proteus嵌入式系统仿真与开发平台是英国labcenterelec⁃tronics公司开发,是目前世界上最先进、最完整的嵌入式系统设计与仿真平台。它包括原理图编辑与仿真软件包isis和布线编辑软件包ares两部分组成。Proteus7.5SP3及其以上版本新增对8086CPU及其相关接口芯片的仿真。硬件实验设备由于结构固定、资源有限且成本高、损耗大以及寿命低等缺点,pro⁃teus的引用对于改善教学实验环境,激发学生学习知识的求知欲,以及学习兴趣,提高教学效果,是一个不错的选择,此外,学生只要在自己的电脑上安装proteus软件后,可以不受时间和空间的限制,进行设计仿真操作,既节约了成本,又能充分发挥学生自己的思维和想象,对实验教学来说是一个课堂的延伸[2]。对于8086来说,将其编写好的源程序可通过外加EMU8086编译器生成.exe文件,然后在proteus上进行仿真,达到教学目的。Proteus的引用不仅可在实验教学上使用,也可在理论教学中使用,教师可以在课堂上边讲理论知识,边进行教学演示,直观形象,使学生对生涩难懂的知识进行有效的消化、吸收,是教学的有力的辅助工具。实践证明,引用proteus,达到了提高教学效果的目的,更加利于学生学习兴趣的培养。Proteus是教学的一个有利的补充,但它只是一个仿真软件,不能完全代替实物实践,仿真实验和实验箱上的实验还是有区别的,由于实际电路运行时表现的各种电气特性等,使在proteus上调通的,在硬件上不一定能够成功的实现,基于以上认知,采取proteus仿真实验和实物实验相结合的方法进行教学。要求学生先课下通过proteus软件进行仿真,模拟实验效果,再到实验室进行实际硬件电路的操作,查看实验效果,这种教学搭配,充分利用proteus仿真软件的形象直观性,增强学生好奇心,激发学生学习热情,同时提高学生的学习效率,达到更好的学习效果。

3课时安排

计算机接口技术课程主要分为微机原理、汇编语言程序设计和接口技术三大模块,共64学时,为兼顾各个模块之间的承上启下以及知识的连续性,主要分配学时如下表1:微机原理主要讲授微机基本知识,如微处理器、微型计算机、微机系统的概念以及微机的结构和工作原理、时序知识、指令系统等,汇编语言程序设计涉及内容有汇编语言源程序的格式、变量属性、分支结构、循环结构和子程序设计,接口技术涉及内容有存储器、输入输出接口、常用I/O接口芯片等。实践教学在整个课程中起着重要作用,通过实践,对理论知识进行消化和理解,同时学生的动手能力能够得到很好的锻炼,培养学生分析解决问题的能力,做到理论与实践有效的结合,实践教学总学时16学时,具体分配如下表2,其中汇编语言程序设计部分安排4学时,由于此部分上机实践只需计算机即可,不需其他硬件,学生在课上学习好程序的设计和调试方法后,可以利用课下时间在图书馆或宿舍完成作业和上机实践,节约课上学时,为其他内容的讲授提供充足的时间。接口技术实验共分为6次实验,分别为proteus的使用、8259中断控制器、8255并行接口芯片、8253定时计数器以及A/D、D/A转换。每次实验安排2学时,要求学生课下提前预习,为下次实验做充分的准备,保证每次实验顺利地进行,完成相应的实验任务。其中proteus的使用这一实验安排1次,是因为在本门课程学习之先,学生已学习过《电路制图与仿真》这门课程,此门课程主要介绍proteus软件的使用,因此在proteus的实验主要介绍EMU8086编译器的使用,学会使用proteus进行8086的仿真。常用接口芯片部分的5次实验均设置了基本实验部分和提高部分两个层次,其中基本部分要求每一个学生必须完成,按照电路原理图进行连线,编写实验程序,完成实验效果。提高部分要求学生在完成基本部分后,有余力的学生可对电路进行设计并编写相应的程序改善接口的性能。每一个层次的实验,要求学生进行现场演示。

4实验考核

实验评分标准分为实验操作部分、现场提问环节以及实验报告三个部分组成。学生抽签决定实验考核内容,并进行现场演示,教师根据学生实验操作过程、结果以及对现场的提问回答情况等形式进行现场评分,以激励学生学习主动性,达到教学目的。实验操作部分占实验总成绩的比例为50%,现场提问环节所占比例为30%,实验报告占20%,其中实验报告要求学生重点报告在实验过程中遇到什么问题,以及解决此问题的思路和方法以及实验的心得体会,避免抄袭和实验报告的形式化。

5充分利用多媒体

在进行实验教学过程中,充分利用多媒体,提升教学效果。为提高学生学习的热情,对于在实验过程中难懂的知识点,可以采用动画进行直观形象的演示,使学生更加能够领会实验的内容和目的,便于理解和记忆。

6结论

《计算机接口技术》是一门理论性和实践性都很强的课程,对于此门课程的教学也是一个不断学习和探索的过程。对于本门课程的改革实践,实验教学效果有了很大改善,学生主动性、学习热情有所提高。此课程是一门公认的教师难教、学生难学的课程[3]。随着时代的发展,计算机接口技术课程也应与时俱进,需要不断完善教学体系,更新教学内容,寻求新的教学方法,提高教学效果,充分调动学生的学习积极性和主动性,提高学生的综合能力、科学素质,为社会培养更多高素质的复合型人才。本课程的改革是一项长期艰巨的任务,需要不断探索和完善。

作者:鄢艳红 单位:广州中医药大学医学信息工程学院

参考文献:

篇3

数据采集系统中,通过微机COM端口的RS-232串行通讯及通过微机并行端口的并行通讯具有开发使用方便的特点,前者可与工作于11.0592MHz晶振下的8052单片机在波特率115200时,实现10ksps(samplespersecond)的连续数据采集和传输而不丢失数据,若要达到更高速率的数据采集,可以通过并行口通讯方式实现。当前微机均可通过配置CMOS,将基地址为378H的并行口设置为EPP模式以支持通过数据口双向传输通讯,并由芯片硬件自动产生握手信号,实现高速传输的目的。

为充分实现EPP模式的高速特性,外设应当及时响应EPP的握手信号,当数据采集系统工作于非实时多任务的WIN98操作系统环境下,为实现数据高速、均匀性采样,还需要在外设配置必要的数据缓冲存储器。如果数据采集速率低于EPP模式数据读入平均速率,就可能实现数据的连贯有效性。有资料[1]说明在EPP模式,可实现500kBytes/s以上的传输速率,这表明通过EPP模式,可以实现500ksps的数据采集系统。通过对EPP模式的深入实验分析,发现要实现500ksps,外设硬件及微机软件程序均要采取一些策略:硬件上必须配置FIFO数据缓冲存储器,才能协调数据采集严格的时间间隔要求与数据传输给微机的非实时、非均匀性之间的矛盾;软件程序方面应当采取双字读的方法,否则EPP模式下仅能实现250kBytes/s数据读取可行性。

1EPP模式读取速率的实验分析

图1为实验EPP模式读取速率的电路,实验程序为

Delphi结合内嵌汇编语言,涉及EPP读取的关键代码如下:

FUNCTIONREADDATA:BYTE;

VAR

STARTTIME,STOPTIME,DELAY:INT64;

NUMBER:LONGWORD;

QUERYPERFORMANCECOUNTER(STARTTIME);

FORNUMBER:=0TO999999DO

BEGIN

ASM

MOVDX,$37C

INAL,DX

MOVRESULT,AL

END;

END;

QUERYPERFORMANCECOUNTER(STOPTIME);

DELAY:=STOPTTIME-STARTTIME;

END;

此为循环1000000次读取EPP数据口程序,循环仅为方便用计时及示波器观察而设,并在执行前后分别读取系统计数值,DELAY值除以1.2后为执行花费的时间(单位为微秒),执行前先通过对地址379H的D0位写入高,使该位为低(注意:对该位写入低通常不能达到使该位变为低的目的,只有采取写入高才能使该位变为低),以清除EPP超时位,当A、B点均为低时,可实现最快的EPP握手,若A为高、B为低时,由于EPP周期开始时满足WAIT为低的要求,EPP自动在DATASTB处输出低,但因WAIT没有出现表示应答的高状态,EPP在延时10μs后,将DATASTB恢复为高以结束该次EPP访问过程,并置超时位。稍后因WAIT为低再次开始一次EPP访问过程,如果B为高,则WAIT为高,不能满足EPP的开始条件,故DATASTB保持为高,EPP在延时10μs后结束该次EPP访问过程,并置超时位。在发生超时情况下,数据仍然可正确读入

(这一特性与笔者所查资料[1]有出入),此结论可通过对比循环前后时间差来及实际读入数据值证实。

注意程序循环中并未执行清除EPP超时位的指令,根据笔者实验,即使已发生EPP访问超时,也不影响下一次的EPP读周期(包括对37BH的地址读及对37CH的数据读),但超时对EPP写周期有影响,在清除超时位之前,EPP写周期无效(因本文不涉及EPP写周期的内容,此处不再展开探讨)。在图2所示意波形中,当有正确握手的EPP读周期执行时间约为1.5μs,此时间是字节模式下一次有效EPP访问所需最短时间,在这段时间内,“INAL,DX”这一条指令占据了约90%以上的访问时间,验证此点仅需临时屏蔽“INAL,DX”指令,并比较所花费的时间差别即可。1.5μs相当于接近700kBytes/s的数据读速率。如果以“INEAX,DX”替代“INAL,DX”指令,可以充分利用EPP模式下硬件将4个8位数自动合并为1个32位数的特性,在一次I/O访问中由硬件自动产生4个DATASTB负脉冲从而实现4个字节的输入。因为一次字节模式的I/O访问所费时大约间需要1.5μs,减少这类指令的执行次数有利于实现更高速的EPP访问过程,经实验发现以4字节方式访问的EPP过程可以在3.2μs内读取一次,即平均每字节需0.8μs,相当于1.2MBytes/s,此实验结果是基于外设可以连续不断的输送数据理想前提,实际上要实现有效的数据传输,可得到的速率要低于该值。

2WIN98下高速EPP接口的构成

在WIN98环境下,由于非实时多任务的特性,运行于RING3的应用程序频繁作系统打断,这决定了靠软件无法实现连续均匀的数据采样,只有在硬件上配置数据缓冲存储器并及时传入微机以免数据缓冲存储器溢出。只要保证一定深度的数据缓冲存储器,且满足数据传输平均速率大于数据采样速率,就能将所采集的数据传入微机的大容量内存,以备处理。在硬件构成方面,为以较低代价获得大容量的FIFO数据缓冲存储器,采取CPLD器件结合512KB的SRAM方式,实现,由CPLD器件完成读写控制的FIFO特性及EPP模式的应答握手信号。接口结构及CPLD内部功能模块见图3所示,数据在CPLD控制下,以2μs的固定速率存入SRAM环状连续增量地址,因为EPP模式读取速率与数据采样的固定速率是异步的,控制逻辑为保证2μs的固定采样速率,当采样时间点到达时,不论当前是否处于EPP应答处理期间,优先执行数据采样,因为处理是在系统时钟脉冲驱动下的硬件行为,仅存在固定的传输延时,故两次采样间隔是严格保证的。

EPP模式的读取平均速率必须高于数据采样速率,一旦FIFO数据读空必须让微机正确处理,由前述实验可知,每次字节方式I/O执行时间约为1.5μs,如果通过在EPP的状态口(379H)的保留位输入代表FIFO读空的信号,则每完整读取均要执行两次I/O指令:EPP数据读及EPP状态读,至少需3μs完成读取一个字节,这也是通常方式能达到的最快有效读取速率。当采用双字读读及EPP状态读的方式时,需4.8μs完成4个数据字节读取,但此方式需要处理的一个问题:由于双字方式EPP数据读由硬件自动产生4个EPP数据读周期,当其执行完毕,执行EPP状态读发现FIFO已空,微机软件无法判别在从第几个EPP数据读周期开始FIFO为空,从而影响对数据队列的正确排序,故CPLD逻辑应当在FIFO队列还有至少4个未读数据时必须发出读空信号,微机程序应当在每次EPP开始前执行读取状态口的指令,以决定是否可以开始EPP数据读周期,从上分析可以看出为实现有效的EPP数据读取,平均每字节至少需要1.2μs,即可

以获得最快约800kBytes/s的数据传输速率。因500ksps的数据采集设计速率仅略低于800kBytes/s的数据传输速率,考虑WIN98工作环境,配置大容量的FIFO十分必要,采用大容量SRAM与CPLD器件构成FIFO,具有成本较低的优点,通过使用VHDL的行为描述,经CPLD器件开发软件的编译、综合、仿真、适配、下载,实现所需要的控制逻辑。根据设计,当数据锁存输出的下一个时钟脉冲(即83ns后),WAIT将输出为高电平,EPP在此时读取数据口信号,如果不采用外部缓冲驱动器,数据上升过程将耗时80ns,对EPP数据接收可靠性有不容忽视的影响,为减小电缆电容的影响,数据输出使用了74ALS574芯片作缓冲,其高电平输出能力达15mA,是ispLSI1032高电平输出能力的3.5倍,在电缆电容有100pF时,23ns可达到3.5V的逻辑高电平,保证数据接收可靠性。

篇4

目前典型的港口皮带机系统大体由两大部分组成,包括监控系统和现场作业系统,集电气自动化、计算机控制、通讯技术等技术于一体,但其控制系统所消耗的低压电能远不及现场作业系统所消耗的高压电能。这些高压能耗主要来源于皮带机系统的驱动单元,港口皮带机系统的驱动单元一般采用异步电动机,其价格便宜、运行可靠,得到广泛应用,但是其调速差、动率因数低、启动电流大等问题造成了电能的大量损耗,因此想要解决皮带机系统能耗过大的问题,其根本在于解决电动机的能耗浪费问题。

1.2电动机能耗的现状

相关数据显示,电动机是用电量最大的终端用能设备,目前我国电机每年总耗电量约3万亿千瓦时,电机耗电占全社会用电总量的64%、工业用电的75%。统计显示,我国电机系统(电机与拖动设备)运行效率比国外低10%~20%。据估算,我国电机效率每提高1%,每年可节约用电量260多亿千瓦时;假设我国电机效率提升了5%~8%,则每年节约的电量相当于2~3个三峡电站的发电量。我国推出的《节能中长期规划》,已经将电机节能列入重点工程,这一举措对皮带机传输系统节能技术的深入研究起到了很大的促进作用。

2皮带机效率低的原因

由以上数据可知,皮带机系统的主要能耗部件为电动机,因此造成港口皮带机系统效率低下的主要原因是电动机效率低下。根据电机学原理,异步电动机在没有变频调节下进行启动,转矩特性与负荷特性会造成“小马拉大车”或者“大马拉小车”的现象。在港口建设初期,根据设计的年吞吐量选定电机的额定功率,一般按照皮带机所能承受的最大运输量来计算,但是考虑到皮带沿线长、阻力大,因此至少需要考虑20%的功率富余量。当生产运营时遇到空载或轻载情况时,便会出现严重的能耗浪费。当生产运营时遇到重载或超载现象时,便会使得负荷大于转矩,电机难以启动,甚至造成电流过大烧毁电机现象,然而当皮带机运转稳定后,又会使得负荷功率低于电机功率,进入轻载状态,再一次造成电能浪费,并且受现场各大机作业影响,出现负载变化不均,都会导致电能浪费的现象。此外,电动机的功率因数降低不仅影响自身效率,同时会吸收电网的无功功率,增加了供电线路不必要的损耗。

3港口皮带机系统节能技术研究

3.1震动给料器及流量控制器

在煤炭运输港口,对于皮带机系统,会经常遇到煤炭在皮带沿线上分布不均匀的情况,这会造成运输过程负载大小的不断变化,进而也会造成驱动单元能耗的增加。因此如果能提高煤炭在皮带上分布的连续性和均匀性,则会降低电能的消耗。目前,港口翻车机房通常使用的振动给料器正是确保通过翻车机房的煤炭能够均匀的落到皮带上。但是在取料机上还缺乏此类设备,同时如果能在皮带沿线上使用类似的自动控制技术,通过系统的实时监测,对作业现场的情况不断调整,准确地控制煤炭翻卸量或取料量,使翻车系统到装船系统达到闭环控制,将会明显提升整个系统的稳定性,同时还有效地降低了皮带机传输系统的耗电量。

3.2增减电机运行技术

近年来,在皮带机系统节能技术改造中,增减电机运行技术也日益成熟,成为一种新技术被推广使用。这项技术适用在多台电机作为驱动装置的系统中,其核心原理就是根据皮带机所承载负荷的变化准确实时地自动投入或切除驱动电动机的个数。现在的煤炭港口皮带机的驱动系统都由几台电机组成,所以这种技术特别适用于额定功率较大的煤炭运输港口的皮带机系统。煤炭港口的皮带机传输系统作业时,皮带机小负荷甚至空载运行的情况经常发生,轻载和空载时,多台电机共同驱动,各电机都处于低效率运行状态。采用“增减电机技术”根据负荷的变化实时改变运行电机的数量,使电动机输出功率与负载匹配最优化,可以有效避免这一情况的发生。“增减电机技术”的研究重点在于投入或切除电机的检测方法。电机电流检测和位置检测是港口技术工作人员较为青睐也比较成熟的检测方法。根据电机学原理,异步电机工作电流正比于负载转矩。据此,通过检测电机电流可以间接地检测出皮带机实际的负荷大小,将检测电流数据与电机额定电流数据进行对比,制定电流数据表,并划分区间,不同区间采用最优的电机数量。位置检测是指在堆场中根据堆、取料机的行走位置编码器确定堆取料机位于堆场的位置来确定皮带机系统工作长度,当堆、取料机位置靠近BH或BJ皮带沿线时,尾车所连接的皮带沿线到转接塔的距离较近,煤炭在皮带机上所形成的负荷相对较小,驱动系统可不必满功率运行,因此可以适当减少堆、取料机上驱动单元的运行数量,反之,当堆、取料机远离BH或BJ皮带沿线时,则可以适当增加驱动单元的运行的数量。尤其当取料作业开始启动或即将结束时,皮带机系统大多数处在空载或轻载运行,适当增减电机运行个数,便可以达到节能减排的目的。此方法通过手动操作或自动控制技术均可实现。

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页