时间:2022-12-15 15:56:40
引言:寻求写作上的突破?我们特意为您精选了4篇航天工程论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
2空间应用系统生物安全工程技术体系框架
空间应用系统生物安全工程技术体系覆盖了在空间应用有效载荷的工程研制过程中应遵循的生物安全要求、分析、设计防护以及评价等各项技术范畴,其总体框架如下图2所示。图中可以看出,在空间有效载荷产品研制过程中,空间生物安全在工程上首先需要解决的是空间生物安全要求指标问题,然后根据生物安全要求,结合空间应用的需求情况,对应用系统的生物危害材料进行危害等级的识别,再依据危害等级的识别结果确定相应的安全性包覆等级,作为空间实验载荷设备的生物安全性设计准则要求,依据此设计准则开展相应的安全性设计防护;在采用了必要的防护措施同时,有效载荷对于生物危害还应具备有效的监测手段,确保空间应用实验过程中的生物危害可检测。最后,空间应用载荷在上站之前,应对生物安全问题进行风险评估,其结果将作为空间科学实验载荷上站安全性认证的重要考核内容之一,从而为工程决策提供安全性方面的依据。
2空间应用系统生物安全的工程设计要素
2.1空间应用系统生物安全指标要求借鉴实验室生物安全标准以及国际空间站有关生物安全的经验,生物安全指标主要是指针对微生物的最低可接受阈值,相关指标又可细分为饮用水、食品、舱内空气、表面四个主要方面,其中,饮用水、食品以及舱内空气的最低可接受阈值与航天员的医学要求密切相关。对于表面的生物安全要求,涉及舱内舱体内表面、舱内平台设备和有效载荷设备表面等多个方面,其可能的影响除了传染到航天员(航天员有可能接触的情况下),影响航天员健康外,另一个重要的影响就是对硬件设备的腐蚀和侵蚀,最终导致硬件设备的失效或者污染舱内环境。因此,对于空间应用系统设备,应提出明确的表面生物安全指标要求,该要求可以参照空间站平台的表面微生物最低可接受阈值要求,也可根据空间应用系统载荷研制的特点和使用需求单独提出。另外,对于影响实验任务成功的可致病的病原体(包括植物可致病病原体和动物可致病病原体)也应根据实际情况提出有针对性的指标要求。空间应用系统生物安全相关指标体系框架如图3所示。图中涉及的植物可致病菌主要是寄生性病菌,病原体有病毒、类病毒、支原体、衣原体、立克次氏体、细菌、真菌、藻类、线虫和高等植物,其中以细菌、真菌、病毒、支原体和线虫诱发的病害较普遍和严重,尤以真菌性病害为最,如水稻的瘟病、小麦锈病、棉花的萎蔫病等。各种病原体的生理、生态、增殖方法和生活史以及侵染寄主的方式、途径和时期各不相同。可根据具体实验样品和实验要求确定需要检测的植物可致病菌。动物可致病菌主要是微生物,包括原生动物、细菌、真菌、病毒、支原体、酵母等,其中细菌和真菌污染是最常见的,如各种沙门氏菌等。可根据具体实验样品和实验要求确定需要检测和加以控制防护的动物可致病菌。以微生物污染为主要检测对象,包括原生动物、细菌、真菌、病毒、支原体、酵母等,其中检测重点为细菌和真菌。空间站微生物主要存在于舱内气体、食品、水、舱体材料、硬件设备表面以及有效载荷等地方,因此,其微生物控制的要求也应根据这些方面进行规定。例如,国际空间站微生物控制的指标要求如表1所示。我国空间站工程微生物控制定量要求主要参照国际空间站制定,在我国载人航天工程一期和二期阶段,未对微生物控制提出明确的定量要求,在载人空间站阶段,提出的初步医学要求中,也仅仅对空气和物体表面微生物控制提出了限值,与表1中国际空间站的相关规定是一致的,而对于食品和水未作明确规定。
2.2空间应用系统生物安全等级的识别开展空间生物安全防护设计时,首先应对生物危害的等级(或称生物安全等级,BiosafetyLev-el,BSL)进行识别,根据不同的危害等级制定不同的设计防护策略,避免设计上的冒进所带来的安全患,或者设计过于保守而带来的资源浪费和技术瓶颈。根据NASA的生物安全小组的工作经验,所有有关生物学的材料都要进行生物危害识别,对识别出的生物危害材料都要分配一个生物安全等级[18]。因此,生物危害材料生物安全等级的确定是生物安全工程设计的首要出发点。NASA的JSC中心针对空间应用项目的生物安全等级制定了专门的规定[19],如表2所示。空间生物安全等级主要来源于地面公共卫生系统和实验室生物安全的相关标准,在空间上用时考虑了空间环境可能带来的影响,由于空间飞行独特的环境和条件,BSL-2微生物又被分为两类,BSL-2(中等风险)和BSL-2(高风险)。主要是由于在微重力环境下,微生物气溶胶可能比在地球1g重力下具有更大的风险,对于地面上BSL-2等级的微生物在空间应用时可能产生更严重的后果。因此,在对空间生物安全等级的规定上进行了适应性修改,其原则为:对于地面上可能导致灾难性后果(高致病性)的微生物(BSL-3和BSL-4)禁止在太空项目中使用;对于地面上可能造成中等危害后果的微生物,其在空间环境影响下可能带来更严重的后果,甚至是灾难性的,因此,地面上BSL-2级微生物在太空中又分为中等危害和高危害两类。我国载人航天工程目前采用的生物安全等级划分标准主要遵照现有的国内实验室生物安全防护等级相关规定,对于空间生物安全等级尚无具体的标准进行规定。因此,合理的划分生物安全等级对于工程中遴选生物样本和明确有效的控制措施具有重要的意义。
2.3空间应用系统生物安全包覆等级的识别与设计
2.3.1空间应用系统生物安全包覆等级的确定工程实践中,在已明确了有效载荷生物安全等级BSL的基础上,需要根据生物安全等级确定相应的包覆设计等级(LevelofContainment,LoC)要求。两个重要的原则是:1)生物安全防护的包覆等级不得低于其生物安全等级;2)存在多种微生物的情况下,其包覆等级应根据生物安全等级最高的生物样品来确定。我国空间站空间应用规划了多项有关生物、生命、生态、医学等应用与科学领域实验项目。以当前规划的有关生命科学研究的实验平台为例,确定其初步的生物安全包覆等级,如表3所示。
2.3.2空间生物安全设计准则空间应用载荷生物安全控制的优先级主要包括五个层次(见图4)。工程设计实现过程中,有效载荷研制单位应根据识别出的生物载荷的生物安全等级确定相应的防护设计准则,遵循以下原则:1)生物材料的选择上,应在满足科学实验需求的前提下,尽量选择危害等级低的生物材料和样品;2)生物实验载荷的生物包覆等级应与其生物安全等级相对应,不得低于其生物安全等级;3)对于具有致病性或可能导致设备故障的主要微生物应具有实时监测或者离线检测能力;4)包覆设计应按照最小风险控制或者故障容限,或者两者相结合的设计准则进行设计,如金属结构采用较高的安全系数要求;采用多层密封包覆等;5)包覆设计应考虑最大使用条件下进行设计,并采用试验的方法验证;多层包覆设计时,应对每层包覆手段的有效性进行独立验证;6)采用物理隔离的方式进行包覆设计时,应满足密封设计要求,如所有泄漏路径均采用软密封件,垫片或其他密封材料进行双重密封;金属零件沿着所有接口有两个密封(如盖);流体连接器内部和外部的双道密封;电连接器外部双道密封和引脚周围双密封等;7)采用密封设计时,需要考虑容器材料与有害生物质的相容性设计与验证问题;8)采用多层包覆设计时,应尽量采用组合式包覆形式,即不同形式的隔离方式,如物理隔离与负压相结合,确保各级包覆是相互独立的,不会发生关联失效;样本操作用手套箱采用在手套故障的情况下保持负压的双故障容限的设计等;9)对于有限寿命的生物危害防护措施,如HEPA过滤器,应具有有效的寿命预测手段,以便采取定期的更换或者清洗消毒等措施。
2.4空间生物危险的监测空间微生物的监测是实施微生物控制的前提条件。目前对于载人航天工程领域,较为先进的微生物监测技术主要包括以下几项:1)非培养核酸技术(基于PCR聚合酶链反应);2)三磷酸腺苷生物发光技术(ATP);3)生物传感器,直接激光检测;4)流式细胞术方法;5)基质辅助激光解析/电离飞行时间质谱(Matrix-AssistedLaserDesorption/IonizationTimeofFlight(MALDI-TOF)massspectrometry);6)微观方法(MicroscopicMethods)。传统上,环境和人员的微生物监测主要集中在采用基于培养技术的细菌和真菌。然而,在空间环境中,采用大量的分子、生化和理化实验系统,建立在非培养技术基础之上。采用单一的监测技术往往难以满足微生物监测的需求,因此,在工程实践中,空间科学实验载荷研制单位应根据自身产品的特点,结合各种检测技术的优缺点,合理选用生物检测技术。生物检测技术选用参考表如表4所示。另外,空间科学实验载荷应重点监测BSL-2级以上的微生物。根据国外的经验(ISS,MIR)[10],空气中主要的细菌种类为金黄色葡萄球菌和枯草芽孢杆菌,内表面主要的细菌种类为金黄色葡萄球菌和芽孢杆菌等;真菌主要为青霉属和曲霉。在监测点设置方面,对于密闭的实验培养箱,应从空间应用的需求出发,对于影响实验效果的入口端应设置微生物监控装置,防止舱内空气和水源中的有害微生物影响实验效果;同时对于出口端同样需要设置微生物监控装置,防止科学实验产生的有害微生物污染舱内大气环境和热控管路。
2.5空间应用系统生物安全风险评估国际空间站上,有效载荷生物材料的生物危害风险评估在发射前必须进行,评估生物有害物质的标准包括微生物的特性,感染剂量,微生物的存量、感染途径,以及与实验协议相关的危害。识别出的所有有害微生物被分配一个生物安全等级(BSL)。有效载荷安全审议小组参照BSL为每个有效载荷制定必要的防护等级。空间应用生物安全风险评估的实施流程如图5所示。
他是一位桃李满天下的教授,也是一位硕果累累的学者,在生命的长河里,他的每一个侧面,都值得我们尊敬。他就是清华大学航天航空学院工程热物理研究所教授宋耀祖。
峥嵘岁月,风云流荡。自1970年毕业于清华大学精密仪器系以来,他始终拼搏在热科学与技术领域的科研前沿阵地,着重对工程技术的研究,已累计发表学术论文约180篇,与忠合编“热物理激光测试技术”等书籍。这些应用基础研究工作为解决工程科技方面的问题提供了宽广的理论基础。
多次承担国家自然科学基金,“国家重点基础研究发展规划项目”(973项目),863项目,国家教委博士点基金等资助的科研项目以及云南省、日本大金公司等企业的节能减排项目。特别是在工业过程的节能与余热利用领域,以他为技术负责人的学术团队在国内外首次发明了一种热法磷酸生产的新技术,发明专利技术已获8个奖项,其中重要的奖项有“国家技术发明奖二等奖”、“第十一届中国专利优秀奖”。“云南省技术发明一等奖”、“第四届发明创业奖”、“第二届全国杰出专利工程技术奖”等。该发明技术现已实现了产业化,取得了显著的经济效益与节能减排的社会效益。在航天器的热控制技术领域,他被总装备部任命为“载人航天工程(921工程)”出舱航天服专家组成员,为确保“神七”出舱航天服内生命保障系统的正常工作做出了贡献。荣获总装备部中国载人航天工程办公室表彰的“为神舟七号载人航天飞行任务的圆满成功做出了重要贡献”的荣誉证书。
岁月荏苒,当年风华正茂的栋梁之才虽已不复往日的英姿飒爽,但他沧桑的脸庞上却写满了智慧与亲切,他乐于将自己的科研经验与后辈分享,他说在他长期的工程技术研究中,最大的体会是,取得工程技术研究成功的三要素是:基础、实践、团队。其一,“基础”乃是指通过系统的理论学习掌握宽厚的基础理论,如数学,物理,化学等基础知识(这些基础知识往往通过自学去掌握是十分困难的),借助于这些基础知识能通过自学进一步理解与掌握有关领域的专业知识与专门的技能;其二,“实践”是取得工程技术研究成功的必经之路。亲临工程现场,参加实验与试验,向一切有实践经验的人请教等都是实践的重要环节。在实践的基础上进行理论分析,通过理论与实践的结合,确定研究目标,明确技术难点,寻求与探索解决问题的技术方案,技术途径;其三,“团队”乃是指,在明确解决问题的技术方案基础上,组织与带领好一支学术团队,在团队内既有分工,又有协作。既要发挥每一个团队成员的聪明才智,又要给每一位团队成员创造各自的发展空间。
从踌躇满志的懵懂学子,到崭露头角的青年才俊,从学识渊博的科研专家,到声望显赫的著名学者,一步步走来,“科研”二字是催促他前进的动力,“勤奋”二字是对他过往岁月最好的注解。近年来,由于年龄和身体原因,宋耀祖已从教学科研一线退了下来,他的角色在转变,不变的是,他仍在为社会贡献着自己的一份力量。利用退休后的时间,他还从事着“中国特色社会主义是中国发展的必由之路”的研究,先后为教师、学生讲授党课10多次,荣获清华大学“学习宣传贯彻党的十七大精神”征文一等奖,在“纪念改革开放三十年――中国专家学者科学与人文论坛”大会上获优秀论文一等奖。
每一次,当载人航天飞行圆满成功之时,举国欢腾,它都预示着中国人民再一次勇攀于世界科技高峰。然而,历尽千难成伟业,人间万事出艰辛。矗立在伟大的载人航天工程丰碑的背后,是“特别能吃苦、特别能战斗、特别能公关、特别能奉献”的载人航天精神,是具有强大威力的战斗精神!这种精神可穿越时空、可铸就辉煌!
军魂中铸就。军魂铸就了敢于战斗、善于战斗的精神;军魂生成了自强不息、锲而不舍的动力;军魂涵养了敢于负责、压倒一切的豪迈。作为中国航天领域迄今规模最庞大、技术难度大、质量可靠性与安全性要求最高的载人航天工程,从试验室到各个生产企业。从大漠风沙到瀚海惊涛,无不留下了航天人攻坚的足迹,洒下了航天人登攀的汗水。正是他们拥有军魂意识,才能知难而进,顽强拼搏,在困难面前百折不挠,在牺牲面前绝不退缩,才书写出载人航天史上如此壮丽的篇章。军魂,已成为当代军人的历史意识与现代观念熔铸的审美制高点。在装备建设发展的今天,我们要牢固军魂意识,拥有爱国、忠诚、奉献之情,勤勤恳恳、踏踏实实,为实现人生最大的价值,为实践崇高而伟大的报国之行。
智勇中生成。起步较晚的中国航天人瞄准世界航天科技发展的前沿,依靠科学,尊重规律,不断探索,反复试验,终于取得了令人鼓舞的重大进展,获得了一批具有世界先进水平的核心技术和关键技术。正是他们讲究谋略、以智取胜,拥有很高的知识水平和科技素质,才能在较短的时间内,占领科技制高点,使中国一跃成为有能力实现载人航天的国家。勇是军人的武德,是取得胜利不可或缺的重要因素。要有太空,需要的不仅是浪漫的情怀,更是勇敢、用于献身的爱国精神。勇敢精神和讲究谋略历来也是兵家取胜之道。有勇有谋,其力无穷;智勇双全,所向无敌。《孙膑兵法八阵》中也曾有“智不足,将兵,自恃也。勇不足。将兵,自广也。”对于装备建设发展的今天,我们要继承中华民族崇谋尚智的优良传统,加强装备建设及高科技知识的学习,奋勇攀登科技高峰,不断提高谋略水平和实践指挥的能力,努力使自己成为能文能武、智勇双全的新型军事人才,并在更高的起点上推进军队装备建设又快又好的发展。
创新中流长。创新是一个民族进步的灵魂。歌德曾说,“不断改革创新,就会充满青春活力,否则,就可能会变得僵化”。在助推梦圆飞天的力量中,有一股强大的动力,那就是自主创新。在很多工程论证、立项时,工作人员面临着困难,大胆提出技术大跨越的思路。经过艰辛的探索,一步步把飞天梦想变成现实。创新是发展的本源,不创新就会陷入因循守旧,固步自封的状态。我军的装备建设要发扬创新精神,要坚持把自力更生、自主创新与积极借鉴国外先进技术相结合,通过原始创新、消化吸收再创新等形式,不断提高自主创新发展能力。我军的装备建设要在科学发展观的指引下,深入开展战略性、前瞻性、基础性研究,培养造就军事斗争准备和装备现代化建设需要的高素质具有创新思维的人才队伍,并为履行新世纪新阶段历史使命提供了强有力的支撑。
精神的力量是永恒的,正如那潺潺之水。它可以激励人们战胜困难,战胜自我;走出困难,超越自我。对于载人航天凸显的伟大的战斗精神,是我国航天工作者在载人航天事业奋斗中孕育产生的一种精神,是以爱国主义为核心的中华民族精神。它是军人的职业精神,是军人美德和价值的集中体现。战斗精神和武器装备是战斗力生成的两个非常重要的因素。在装备现代化建设的今天,我们要努力发挥载人航天精神的教育作用,发扬这种战斗精神,并以此不竭的动力之源促进装备建设的全面可持续发展!
每一次,当载人航天飞行圆满成功之时,举国欢腾,它都预示着中国人民再一次勇攀于世界科技高峰。然而,历尽千难成伟业,人间万事出艰辛。矗立在伟大的载人航天工程丰碑的背后,是“特别能吃苦、特别能战斗、特别能公关、特别能奉献”的载人航天精神,是具有强大威力的战斗精神!这种精神可穿越时空、可铸就辉煌!
军魂中铸就。军魂铸就了敢于战斗、善于战斗的精神;军魂生成了自强不息、锲而不舍的动力;军魂涵养了敢于负责、压倒一切的豪迈。作为中国航天领域迄今规模最庞大、技术难度大、质量可靠性与安全性要求最高的载人航天工程,从试验室到各个生产企业。从大漠风沙到瀚海惊涛,无不留下了航天人攻坚的足迹,洒下了航天人登攀的汗水。正是他们拥有军魂意识,才能知难而进,顽强拼搏,在困难面前百折不挠,在牺牲面前绝不退缩,才书写出载人航天史上如此壮丽的篇章。军魂,已成为当代军人的历史意识与现代观念熔铸的审美制高点。在装备建设发展的今天,我们要牢固军魂意识,拥有爱国、忠诚、奉献之情,勤勤恳恳、踏踏实实,为实现人生最大的价值,为实践崇高而伟大的报国之行。
智勇中生成。起步较晚的中国航天人瞄准世界航天科技发展的前沿,依靠科学,尊重规律,不断探索,反复试验,终于取得了令人鼓舞的重大进展,获得了一批具有世界先进水平的核心技术和关键技术。正是他们讲究谋略、以智取胜,拥有很高的知识水平和科技素质,才能在较短的时间内,占领科技制高点,使中国一跃成为有能力实现载人航天的国家。勇是军人的武德,是取得胜利不可或缺的重要因素。要有太空,需要的不仅是浪漫的情怀,更是勇敢、用于献身的爱国精神。勇敢精神和讲究谋略历来也是兵家取胜之道。有勇有谋,其力无穷;智勇双全,所向无敌。《孙膑兵法八阵》中也曾有“智不足,将兵,自恃也。勇不足。将兵,自广也。”对于装备建设发展的今天,我们要继承中华民族崇谋尚智的优良传统,加强装备建设及高科技知识的学习,奋勇攀登科技高峰,不断提高谋略水平和实践指挥的能力,努力使自己成为能文能武、智勇双全的新型军事人才,并在更高的起点上推进军队装备建设又快又好的发展。
创新中流长。创新是一个民族进步的灵魂。歌德曾说,“不断改革创新,就会充满青春活力,否则,就可能会变得僵化”。在助推梦圆飞天的力量中,有一股强大的动力,那就是自主创新。在很多工程论证、立项时,工作人员面临着困难,大胆提出技术大跨越的思路。经过艰辛的探索,一步步把飞天梦想变成现实。创新是发展的本源,不创新就会陷入因循守旧,固步自封的状态。我军的装备建设要发扬创新精神,要坚持把自力更生、自主创新与积极借鉴国外先进技术相结合,通过原始创新、消化吸收再创新等形式,不断提高自主创新发展能力。我军的装备建设要在科学发展观的指引下,深入开展战略性、前瞻性、基础性研究,培养造就军事斗争准备和装备现代化建设需要的高素质具有创新思维的人才队伍,并为履行新世纪新阶段历史使命提供了强有力的支撑。