二次根式教案范文

时间:2022-09-27 06:23:35

引言:寻求写作上的突破?我们特意为您精选了4篇二次根式教案范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

二次根式教案

篇1

2.能够准确熟练的对二次根式进行运算。

重点:二次根式的基本概念、性质及其相关运算。

难点:综合运用二次根式的性质和法则进行运算。

教学过程:

一、复习概念

情境设置1:

2,39,42,27,15,13,-a2-1,a2

①请找出上述式子中的二次根式。

②①中的二次根式都是最简二次根式吗?最简二次根式需要满足哪些条件?

③有同类二次根式吗?怎么找同类二次根式?

④-a2-1为什么不是二次根式?

复次根式的基本概念:形如a(a≥0)的式子叫做二次根式。

最简二次根式判别方法:根号内不含分母,分母中不含根号,被开放数不含完全平方的因数(因式)。

同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

情境设置2:

已知:ABC中,∠C=90°,∠B=30°,AC=5

师:你能求出线段AC、AB的长吗?

生:可以,根据30°的直角三角形的三边之间的关系可知:

BC=3AC=3×5=3×5=15AB=2AC=25

也可以根据勾股定理得:

AB=AC2+BC2=52+152=20=25

师:已知直角三角形三边的边长你还能得到哪些结论?

生:我们还可以求出直角三角形的周长和面积。

CΔABC=AB+BC+AC=25+5+15=35+15

SΔABC=12AC・BC=12×5×15=12×5×15=523

师:能够求出AB边上的高吗?

生:可以,利用面积法:

SΔABC=12AB・hh=2SAB=52325=5435=154

师:在上述解题过程中,我们用到了二次根式的哪些性质和法则?

生:分别用到了:

a・b=a・bab=ab(要注意被开方数为非负数)

a2=a(a≥0)

师:特别注意a2和a2两个式子的取值范围。它们有什么区别?

生:根据二次根式被开放数的非负性的特点,前者a≥0,而后者的a可以取全体实数。

师:二次根式的“非负性”不仅仅体现在被开方数为非负数,二次根式本身也是非负的。

师:由此我们回顾了二次根式的四个性质,希望同学们熟练掌握。

二、例题

例题1:当x取何值时,下列各式在实数范围内有意义?

32-x,-1x,-x2,x1-x2,x2-4-4-x2x+2

分析:二次根式应满足两个条件:第一,有根号“”;第二,被开方数一定要大于或等于零。

例题2:已知:a、b为实数,a+4=b-6+6-b,求-1+ab

分析:二次根式本身的“非负性”,既要强调被开放数大于等于零,又要强调二次根式本身大于等于零,最终的结果一定要是最简二次根式。

例题3:已知:a=12-3,求a-1a2+4-a+1a2-4的值。

分析:本题突出二次根式的分母有理化和a2=a。

例题4:化简求值:x2-x3÷x1-x并选择一个合适的值带入求值。

分析:熟练运用二次根式的性质进行化简,并特别注意二次根式被开放数的非负性。

三、课堂练习

1.化简:

108=-42=9×8=32=2-32=(2-5)(5+2)=-x2y(x≤0)=

2.判断下列哪些是同类二次根式()

A.12和12B.18和27

C.3和13D.45和54

3.当1

4.计算:

(42+27)(32-33)54-6×218

(24-412+128)÷227+25+2(7+5)(5+2)

四、小结

篇2

本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。

教法建议

1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。

2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。

3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。

学生特点:实验班的A层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃,,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。

教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。

鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:

(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:

让学生先进行思考,解答。然后同学说出怎样进行二次根式的混合运算。

强调:运算顺序及运算律和有理数相同。

(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。

(三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。

学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。

对二次根式混合运算新课引入的建议

复习:

1.计算:(1);(2).

解:(1)(2)

==

=;=.

2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。

答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积相加。用式子表示为

m(a+b+c)=ma+mb+mc

多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加。用式子表示为

(a+b)(m+n)=am+an+bm+bn,

其中a,b,m,n都是单项式。

完全平方式是

;。

在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行二次根式的混合运算。引入新课。

对二次根式混合运算学法的建议

在进行二次根式的混合运算时,也有一个与分式运算相比较的问题,有的时候,加上团式分解、约分等技巧,可以大大简化计算过程,这是要灵活运用的.因此,在本节学习时,可以适当结合11.1节的内容,复习一下在实数范围内分解因式的问题,如

这里再顺便提一下,如

这种变形不是原来意义上的因式分解,否则就无法进行到底了.可以说是借助因式分解的方法,或具体说成提出,等等.

一、教学目标

1.掌握二次根式的混合运算.

2.掌握乘法公式在混合运算的应用.

3.通过二次根式的混合运算,培养学生的运算能力.

4.通过例题由浅入深,层层深入,激发学生求知的欲望

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:二次根式的混合运算.

2.教学难点:混合运算的应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

1.复习,运算律及乘法分式,引导学生口答,并强调数的运算律在根式运算中的适用,引入例题.

2.通过例题由浅入深,层层深入,既提高学生学习的兴趣又激发学生求知的欲望;从例题的讲解中帮助寻找解题的方法,规律及注意点.

3.通过大量的练习,以期形成自己所掌握的知识.

七、教学步骤

(-)明确目标

前面学过二次根式的加减法的简单运算,但二次根式未必全是加减混合运算,它同样会出现二次根式的加、减、乘、除方等混合运算那么二次根式的混合运算的法则是什么?又将怎样运用它进行化简计算,这就是本节课所要研究的问题—二次根式的混合运算.

(二)整体感知

二次根式的混合运算中,应注意运算的次序.这是进行二次根式混合运算的前提条件;通过适当地复习乘法分式,分母有理化知识,然后再进行二次根式的混合运算的教学工作,将有助于更好地学习它;同样为了更好地理解二次根式的混合运算还可以将它与数的运算律和运算方法进行对比,以帮助学生更好地理解并准确地掌握好该知识,达到事半功倍的作用.

第一课时

(-)教学过程

【复习】

运算律在二次根式混合运算中仍适用.

各种整式乘法的法则.

乘法公式:.

.

提问:加法的交换律、结合律各是怎样的?乘法的交换律、结合律、分配津各是什么?

强调数的运算律在根式运算中仍适用后,可引入例题.

【例题】

例1计算:

(1);

(2).

解:略.

注:①加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于学生理解和掌握.②在运算过程中,对于各个根式不一定要先化简,而是先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如,没有对先进行化

重难点分析

本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。

教法建议

1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。

2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。

3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。

学生特点:实验班的A层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃,,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。

教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。

鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:

(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:

让学生先进行思考,解答。然后同学说出怎样进行二次根式的混合运算。

强调:运算顺序及运算律和有理数相同。

(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。

(三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。

学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。

对二次根式混合运算新课引入的建议

复习:

1.计算:(1);(2).

解:(1)(2)

==

=;=.

2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。

答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积相加。用式子表示为

m(a+b+c)=ma+mb+mc

多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加。用式子表示为

(a+b)(m+n)=am+an+bm+bn,

其中a,b,m,n都是单项式。

完全平方式是

;。

在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行二次根式的混合运算。引入新课。

对二次根式混合运算学法的建议

在进行二次根式的混合运算时,也有一个与分式运算相比较的问题,有的时候,加上团式分解、约分等技巧,可以大大简化计算过程,这是要灵活运用的.因此,在本节学习时,可以适当结合11.1节的内容,复习一下在实数范围内分解因式的问题,如

这里再顺便提一下,如

这种变形不是原来意义上的因式分解,否则就无法进行到底了.可以说是借助因式分解的方法,或具体说成提出,等等.

一、教学目标

1.掌握二次根式的混合运算.

2.掌握乘法公式在混合运算的应用.

3.通过二次根式的混合运算,培养学生的运算能力.

4.通过例题由浅入深,层层深入,激发学生求知的欲望

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:二次根式的混合运算.

2.教学难点:混合运算的应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

1.复习,运算律及乘法分式,引导学生口答,并强调数的运算律在根式运算中的适用,引入例题.

2.通过例题由浅入深,层层深入,既提高学生学习的兴趣又激发学生求知的欲望;从例题的讲解中帮助寻找解题的方法,规律及注意点.

3.通过大量的练习,以期形成自己所掌握的知识.

七、教学步骤

(-)明确目标

前面学过二次根式的加减法的简单运算,但二次根式未必全是加减混合运算,它同样会出现二次根式的加、减、乘、除方等混合运算那么二次根式的混合运算的法则是什么?又将怎样运用它进行化简计算,这就是本节课所要研究的问题—二次根式的混合运算.

(二)整体感知

二次根式的混合运算中,应注意运算的次序.这是进行二次根式混合运算的前提条件;通过适当地复习乘法分式,分母有理化知识,然后再进行二次根式的混合运算的教学工作,将有助于更好地学习它;同样为了更好地理解二次根式的混合运算还可以将它与数的运算律和运算方法进行对比,以帮助学生更好地理解并准确地掌握好该知识,达到事半功倍的作用.

第一课时

(-)教学过程

【复习】

运算律在二次根式混合运算中仍适用.

各种整式乘法的法则.

乘法公式:.

.

提问:加法的交换律、结合律各是怎样的?乘法的交换律、结合律、分配津各是什么?

强调数的运算律在根式运算中仍适用后,可引入例题.

【例题】

例1计算:

(1);

篇3

(一)知识教学点:

1.熟练运用判别式判别一元二次方程根的情况.

2.学会运用判别式求符合题意的字母的取值范围和进行有关的证明.

(二)能力训练点:

1.培养学生思维的严密性,逻辑性和灵活性.

2.培养学生的推理论证能力.

(三)德育渗透点:通过例题教学,渗透分类的思想.

二、教学重点、难点、疑点及解决方法

1.教学重点:运用判别式求出符合题意的字母的取值范围.

2.教学难点:教科书上的黑体字“一元二次方程ax2+bx+c=0(a≠0),当>0时,有两个不相等的实数根;当=0时,有两个相等的实数根;当<0时,没有实数根”可看作一个定理,书上的“反过来也成立”,实际上是指它的逆命题也成立.对此的正确理解是本节课的难点.可以把这个逆命题作为逆定理.

三、教学步骤

(一)明确目标

上节课学习了一元二次方程根的判别式,得出结论:“一元二次方程ax2+bx+c=0(a≠0),当>0时,有两个不相等的实数根;当=0时,有两个相等的实数根;当<0时,没有实数根.”这个结论可以看作是一个定理.在这个判别方法中,包含了所有各种情况,所以反过来也成立,也就是说上述结论的逆命题是成立的,可作为定理用.本节课的目标就是利用其逆定理,求符合题意的字母的取值范围,以及进行有关的证明.

(二)整体感知

本节课是上节课的延续和深化,主要是在“明确目标”中所提的逆定理的应用.通过本节课的内容的学习,更加深刻体会到“定理”与“逆定理”的灵活应用.不但不求根就可以知道根的情况,而且知道根的情况,还可以确定待定的未知数系数的取值,本节课内容对学生严密的逻辑思维及思维全面性进行恰如其分的训练.

(三)重点、难点的学习及目标完成过程

1.复习提问

(1)一元二次方程的一般形式?说出二次项系数,一次项系数及常数项.

(2)一元二次方程的根的判别式是什么?用它怎样判别根的情况?

2.将复习提问中的问题(2)的正确答案板书,反之,即此命题的逆命题也成立,即“一元二次方程ax2+bx+c=0,如果方程有两个不相等的实数根,则>0;如果方程有两个相等的实数根,则=0;如果方程没有实数根,则<0.”即根据方程的根的情况,可以决定值的符号,‘’的符号,可以确定待定的字母的取值范围.请看下面的例题:

例1已知关于x的方程2x2-(4k+1)x+2k2-1=0,k取什么值时

(1)方程有两个不相等的实数根;

(2)方程有两个相等的实数根;

(1)方程无实数根.

解:a=2,b=-4k-1,c=2k2-1,

b2-4ac=(-4k-1)2-4×2×(2k2-1)

=8k+9.

方程有两个不相等的实数根.

方程有两个相等的实数根.

方程无实数根.

本题应先算出“”的值,再进行判别.注意书写步骤的简练清楚.

练习1.已知关于x的方程x2+(2t+1)x+(t-2)2=0.

t取什么值时,(1)方程有两个不相等的实数根?(2)方程有两个相等的实数根?(3)方程没有实数根?

学生模仿例题步骤板书、笔答、体会.

教师评价,纠正不精练的步骤.

假设二项系数不是2,也不是1,而是k,还需考虑什么呢?如何作答?

练习2.已知:关于x的一元二次方程:

kx2+2(k+1)x+k=0有两个实数根,求k的取值范围.

和学生一起审题(1)“关于x的一元二次方程”应考虑到k≠0.(2)“方程有两个实数根”应是有两个相等的实数根或有两个不相等的实数根,可得到≥0.由k≠0且≥0确定k的取值范围.

解:=[2(k+1)]2-4k2=8k+4.

原方程有两个实数根.

学生板书、笔答,教师点拨、评价.

例求证:方程(m2+1)x2-2mx+(m2+4)=0没有实数根.

分析:将算出,论证<0即可得证.

证明:=(-2m)2-4(m2+1)(m2+4)

=4m2-4m4-20m2-16

=-4(m4+4m2+4)

=-4(m2+2)2.

不论m为任何实数,(m2+2)2>0.

-4(m2+2)2<0,即<0.

(m2+1)x2-2mx+(m2-4)=0,没有实根.

本题结论论证的依据是“当<0,方程无实数根”,在论证<0时,先将恒等变形,得到判断.一般情况都是配方后变形为:a2,a2+2,(a2+2)2,-a2,-(a2+2)2,-(a+2)2,……从而得到判断.

本题是一道代数证明题,和几何类似,一定要做到步步有据,推理严谨.

此种题型的步骤可归纳如下:

(1)计算;(2)用配方法将恒等变形;

(3)判断的符号;(4)结论.

练习:证明(x-1)(x-2)=k2有两个不相等的实数根.

提示:将括号打开,整理成一般形式.

学生板书、笔答、评价、教师点拨.

(四)总结、扩展

1.本节课的主要内容是教科书上黑体字的应用,求符合题意的字母的取值范围以及进行有关的证明.须注意以下几点:

(1)要用b2-4ac,要特别注意二次项系数不为零这一条件.

(2)认真审题,严格区分条件和结论,譬如是已知>0,还是要证明>0.

(3)要证明≥0或<0,需将恒等变形为a2+2,-(a+2)2……从而得到判断.

2.提高分析问题、解决问题的能力,提高推理严密性和思维全面性的能力.

四、布置作业

1.教材P.29中B1,2,3.

2.当方程x2+2(a+1)x+a2+4a-5=0有实数根时,求a的正整数解.

(2、3学有余力的学生做.)

五、板书设计

12.3一元二次方程根的判别式(二)

一、判别式的意义:……三、例1……四、例2……

=b2-4ac…………

二、方程ax2+bx+c=0(a≠0)

(1)当>0,……练习1……练习2……

(2)当=0,……

(3)当<0,……

反之也成立.

六、作业参考答案

方程没有实数根.

B3.证明:=(2k+1)2-4(k-1)=4k2+5

当k无论取何实数,4k2≥0,则4k2+5>0

>0

方程x2+(2k+1)x+k-1=0有两个不相等的实数根.

2.解:方程有实根,

=[2(a+1)]-4(a2+4a-5)≥0

即:a≤3,a的正整数解为1,2,3

当a=1,2,3时,方程x2+2(a+1)x+a2+4a-5=0有实根.

3.分析:“方程”是一元一次方程,还是一元二次方程,需分情况讨论:

篇4

(一)知识教学点:

1.了解根的判别式的概念.

2.能用判别式判别根的情况.

(二)能力训练点:

1.培养学生从具体到抽象的观察、分析、归纳的能力.

2.进一步考察学生思维的全面性.

(三)德育渗透点:

1.通过了解知识之间的内在联系,培养学生的探索精神.

2.进一步渗透转化和分类的思想方法.

二、教学重点、难点、疑点及解决方法

1.教学重点:会用判别式判定根的情况.

2.教学难点:正确理解“当b2-4ac<0时,方程ax2+bx+c=0(a≠0)无实数根.”

3.教学疑点:如何理解一元二次方程ax2+bx+c=0在实数范围内,当b2-4ac<0时,无解.在高中讲复数时,会学习当b2-4ac<0时,实系数的一元二次方程有两个虚数根.

三、教学步骤

(一)明确目标

在前一节的“公式法”部分已经涉及到了,当b2-4ac≥0时,可以求出两个实数根.那么b2-4ac<0时,方程根的情况怎样呢?这就是本节课的目标.本节课将进一步研究b2-4ac>0,b2-4ac=0,b2-4ac<0三种情况下的一元二次方程根的情况.

(二)整体感知

在推导一元二次方程求根公式时,得到b2-4ac决定了一元二次方程的根的情况,称b2-4ac为根的判别式.一元二次方程根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也有利于进一步学习函数的有关内容,并且可以解决许多其它问题.

在探索一元二次方程根的情况是由谁决定的过程中,要求学生从中体会转化的思想方法以及分类的思想方法,对学生思维全面性的考察起到了一个积极的渗透作用.

(三)重点、难点的学习及目标完成过程

1.复习提问

(1)平方根的性质是什么?

(2)解下列方程:

①x2-3x+2=0;②x2-2x+1=0;③x2+3=0.

问题(1)为本节课结论的得出起到了一个很好的铺垫作用.问题(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用.

2.任何一个一元二次方程ax2+bx+c=0(a≠0)用配方法将

(1)当b2-4ac>0时,方程有两个不相等的实数根.

(3)当b2-4ac<0时,方程没有实数根.

教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?

答:b2-4ac.

3.①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用符号“”表示.

②一元二次方程ax2+bx+c=0(a≠0).

当>0时,有两个不相等的实数根;

当=0时,有两个相等的实数根;

当<0时,没有实数根.

反之亦然.

注意以下几个问题:

(1)a≠0,4a2>0这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况.正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫.在这里应向学生渗透转化和分类的思想方法.

(2)当b2-4ac<0,说“方程ax2+bx+c=0(a≠0)没有实数根”比较好.有时,也说“方程无解”.这里的前提是“在实数范围内无解”,也就是方程无实数根”的意思.

4.例1不解方程,判别下列方程的根的情况:

(1)2x2+3x-4=0;(2)16y2+9=24y;

(3)5(x2+1)-7x=0.

解:

(1)=32-4×2×(-4)=9+32>0,

原方程有两个不相等的实数根.

(2)原方程可变形为

16y2-24y+9=0.

=(-24)2-4×16×9=576-576=0,

原方程有两个相等的实数根.

(3)原方程可变形为

5x2-7x+5=0.

=(-7)2-4×5×5=49-100<0,

原方程没有实数根.

学生口答,教师板书,引导学生总结步骤,(1)化方程为一般形式,确定a、b、c的值;(2)计算b2-4ac的值;(3)判别根的情况.

强调两点:(1)只要能判别值的符号就行,具体数值不必计算出.(2)判别根的情况,不必求出方程的根.

练习.不解方程,判别下列方程根的情况:

(1)3x2+4x-2=0;(2)2y2+5=6y;

(3)4p(p-1)-3=0;(4)(x-2)2+2(x-2)-8=0;

学生板演、笔答、评价.

(4)题可去括号,化一般式进行判别,也可设y=x-2,判别方程y2+2y-8=0根的情况,由此判别原方程根的情况.

又不论k取何实数,≥0,

原方程有两个实数根.

教师板书,引导学生回答.此题是含有字母系数的一元二次方程.注意字母的取值范围,从而确定b2-4ac的取值.

练习:不解方程,判别下列方程根的情况.

(1)a2x2-ax-1=0(a≠0);

(3)(2m2+1)x2-2mx+1=0.

学生板演、笔答、评价.教师渗透、点拨.

(3)解:=(-2m)2-4(2m2+1)×1

=4m2-8m2-4

=-4m2-4.

不论m取何值,-4m2-4<0,即<0.

方程无实数解.

由数字系数,过渡到字母系数,使学生体会到由具体到抽象,并且注意字母的取值.

(四)总结、扩展

(1)判别式的意义及一元二次方程根的情况.

①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式.用“”表示

②一元二次方程ax2+bx+c=0(a≠0).

当>0时,有两个不相等的实数根;

当=0时,有两个相等的实数根;

当<0时,没有实数根.反之亦然.

(2)通过根的情况的研究过程,深刻体会转化的思想方法及分类的思想方法.

四、布置作业

教材P.27中A1、2

五、板书设计

12.3一元二次方程根的判别式(一)

一、定义:……三、例……

…………

二、一元二次方程的根的情况……练习:……

友情链接